+ All Categories
Home > Documents > Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI,...

Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI,...

Date post: 25-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
70
Turbulence in Magnetised Plasma Successes, Failures, and the Known Unknowns Alex Schekochihin (Oxford) S. Cowley (Culham) W. Dorland, T. Tatsuno, G. Plunk (Maryland), G. Howes (Iowa), E. Quataert (Berkeley), G. Hammett (Princeton) T. Horbury, R. Wicks (Imperial), C. Chen (Berkeley), A. Mallet (Oxford) M. Kunz (Oxford), F. Rincon (Toulouse), M. Rosin (UCLA) Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405, 291 (2010) Rosin et al., MNRAS, in press; arXiv:1002.4017
Transcript
Page 1: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Turbulence in Magnetised PlasmaSuccesses, Failures, and the Known Unknowns

Alex Schekochihin (Oxford)S. Cowley (Culham)

W. Dorland, T. Tatsuno, G. Plunk (Maryland),G. Howes (Iowa), E. Quataert (Berkeley), G. Hammett (Princeton)

T. Horbury, R. Wicks (Imperial), C. Chen (Berkeley), A. Mallet (Oxford)M. Kunz (Oxford), F. Rincon (Toulouse), M. Rosin (UCLA)

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

Page 2: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Part I. The Knowns

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

Page 3: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

1. Free Energy Cascade

–TδS energy

heating

Generalised energy = free energy of the particles + fields

Kruskal & Oberman 1958Fowler 1968Krommes & Hu 1994Krommes 1999Sugama et al. 1996Hallatschek 2004Howes et al. 2006Schekochihin et al. 2007Scott 2007

PPCF 50, 124024 (2008)

injection

Page 4: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Plasma Turbulence: Analogous to Fluid, But…

small scales in 3Dphysical space

small scales in 6Dphase space

PPCF 50, 124024 (2008)

–TδS energy

heatinginjection

Page 5: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

k–1/3

Alfvén waves+compressive fluctuations

KAW

δfiδE

δB

electronLandaudamping

GYROKINETICSFLUID THEORY

k–4/3ion Landaudamping Entropy

cascade

Page 6: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade

k–5/3

k–7/3

ApJS 182, 310 (2009)

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

W =

GYROKINETICSFLUID THEORY

energyinjected

δfi

ion Landaudamping Entropy

cascade

entropy energy

Page 7: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Route to Heating (Dissipation)

energyinjected

ApJS 182, 310 (2009)

Alfvén waves+compressive fluctuations

KAW

Entropycascade

δE

δB

Ionheating

Electronheating

Electronentropycascade

The splitting of the cascade at the ion gyroscaledetermines relative heating of the species

δfi

Page 8: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade: Solar Wind, DNS

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

δfi

Entropycascade

Page 9: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade: Solar Wind

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

k–5/3

k–7/3

k–1/3

[Bale et al. 2005, PRL 94, 215002]

δfi

Entropycascade

Page 10: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade: Solar Wind

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

[Sahraoui et al. 2009, PRL 102, 231102]

δfi

Entropycascade

Page 11: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

GK Cascade: 3D DNS (by G. Howes)

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

[Howes et al. 2008, PRL 100, 065004]

δfi

Entropycascade

Page 12: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

GK Cascade: 3D DNS (by G. Howes)

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

[Howes et al. 2011, submitted]

δfi

Entropycascade

Page 13: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

GK Cascade: 2D DNS (by T. Tatsuno)

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

ion Landaudamping

k–1/3

Alfvén waves+compressive fluctuations

KAW

k–4/3

δE

δB

electronLandaudamping

[Tatsuno et al. 2009, PRL 103, 015003;more detail in arXiv:1003.3933]

δfi

Entropycascade

Page 14: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

2. Anisotropy at All Scales: Inertial Range

[Horbury et al. 2008, PRL 101, 175005]

[Wicks et al. 2010,MNRAS 407, L31]

ωlinear ~ ωnonlinear

[Goldreich & Sridhar 1995]

“critical balance”

Alfvénic (MHD) turbulence:

(2+1)D route through

phase space

Page 15: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

2. Anisotropy at All Scales: Inertial Range

[Horbury et al. 2008, PRL 101, 175005]

[Wicks et al. 2010,MNRAS 407, L31]

ωlinear ~ ωnonlinear

[Goldreich & Sridhar 1995]

“critical balance”

This can be argued to be a universal feature of anisotropic wave turbulence and works! E.g.,• KAW turbulence [Cho & Lazarian 2004, ApJ 615, L41]• Rotating hydro turbulence [Nazarenko & Schekochihin 2011, JFM; arXiv:0904.3488]• ITG turbulence in tokamaks [Barnes, Parra & Schekochihin 2011, in preparation]

Alfvénic (MHD) turbulence:

Page 16: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

2. Anisotropy at All Scales: Sub-Larmor Range

[Chen et al. 2010, PRL 104, 255002]

(2+1)D route through

phase space

Page 17: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

First adiabatic invariant conserved provided Ωi > νii

3. Plasma Microinstabilities: Origin

holds already for B > 10–18 GChanges in field strength ⇔ pressure anisotropy

Page 18: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

First adiabatic invariant conserved provided Ωi > νii

3. Plasma Microinstabilities: Origin

holds already for B > 10–18 GChanges in field strength ⇔ pressure anisotropy

[Schekochihin et al., ApJ 629, 139 (2005)]

anisotropy relaxedby collisions

change in Bdrives

anisotropy

ignoreevolution of

Page 19: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

First adiabatic invariant conserved provided Ωi > νii

3. Plasma Microinstabilities: Origin

holds already for B > 10–18 GChanges in field strength ⇔ pressure anisotropy

[Schekochihin et al., ApJ 629, 139 (2005)]

anisotropy relaxedby collisions

change in Bdrives

anisotropy

ignoreevolution of because

and so

Page 20: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

First adiabatic invariant conserved provided Ωi > νii

3. Plasma Microinstabilities: Taxonomy

holds already for B > 10–18 GChanges in field strength ⇔ pressure anisotropy

Magnetic field decreases: Δ<0

FIREHOSE:

MIRROR:

Magnetic field increases: Δ>0

destabilisedAlfvénwave

resonantinstability

Page 21: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. Plasma Microinstabilities: Where and When?

Magnetic field decreases: Δ<0

FIREHOSE:

MIRROR:

Magnetic field increases: Δ>0

[Schekochihin et al., ApJ 629, 139 (2005)]

Typical structure of magnetic fieldsgenerated by turbulence

(MHD simulations with Pm >> 1by A. B. Iskakov & AAS)

for details seeSchekochihin et al. 2004,

ApJ 612, 276

Page 22: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. Plasma Microinstabilities: Where and When?

Magnetic field decreases: Δ<0

FIREHOSE:

MIRROR:

Magnetic field increases: Δ>0

[Schekochihin et al., ApJ 629, 139 (2005)]

Typical structure of magnetic fieldsgenerated by turbulence

(MHD simulations with Pm >> 1by A. B. Iskakov & AAS)

for details seeSchekochihin et al. 2004,

ApJ 612, 276

weakerfield

strongerfield

Page 23: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Solar Wind: Marginal

FIREHOSE:

MIRROR:

Magnetic field increases: Δ>0

Plasma is in the marginalstate with respect to plasma microinstabilities

Magnetic field decreases: Δ<0

MIRROR

FIREHOSE

[Bale et al., PRL 2009]

Page 24: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

MIRROR

FIREHOSE

[Bale et al., PRL 2009]

How to Model The Marginal State?

Magnetic field decreases: Δ<0

FIREHOSE:

MIRROR:

Magnetic field increases: Δ>0

To leapfrog having to doan honest microphysical job,simply assume closure (fudge)

[Kunz et al., MNRAS 410, 2446 (2011)]

Page 25: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

A Microphysical Dilemma

How is this achieved?• Enhanced particle scattering isotropises pressure AND/OR• Magnetic field structure and evolution modified to offset change

MIRROR

FIREHOSE

[Bale et al., PRL 2009]To leapfrog having to doan honest microphysical job,simply assume closure (fudge)

Page 26: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Why This Is An Important Question

How is this achieved?• Enhanced particle scattering isotropises pressure AND/OR• Magnetic field structure and evolution modified to offset change

To leapfrog having to doan honest microphysical job,simply assume closure (fudge)

Model by limiting Δ(more collisionality → less viscosity)[Sharma et al. 2006; Schekochihin & Cowley 2006]

Model by limiting rate of strain(in a sense, more viscosity)[Kunz et al. 2011]

Page 27: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Why This Is An Important Question

How is this achieved?• Enhanced particle scattering isotropises pressure AND/OR• Magnetic field structure and evolution modified to offset change

To leapfrog having to doan honest microphysical job,simply assume closure (fudge)

Model by limiting Δ(more collisionality → less viscosity)[Sharma et al. 2006; Schekochihin & Cowley 2006]

Model by limiting rate of strain(in a sense, more viscosity)[Kunz et al. 2011]

I believe this is goingto be hard to justify becausemicroinstabilities are not sufficiently close to the

Larmor scale, so can’t havemuch scattering

Page 28: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Nonlinear Firehose

Schekochihin et al., PRL 100, 081301 (2008)Rosin et al., arXiv:1002.4017 (2010)

Principle of nonlinear evolution: firehose fluctuations cancel on average the change in the mean field to keep anisotropy at marginal level

microscalefluctuations

macroscalefield

How is this achieved?• Enhanced particle scattering isotropises pressure AND/OR• Magnetic field structure and evolution modified to offset change

Model by limiting Δ(more collisionality → less viscosity)[Sharma et al. 2006; Schekochihin & Cowley 2006]

Model by limiting rate of strain(in a sense, more viscosity)[Kunz et al. 2011]

Page 29: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Nonlinear Firehose

[Rosin et al., arXiv:1002.4017 (2010)]

Page 30: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Nonlinear Firehose

[Rosin et al., arXiv:1002.4017 (2010)]

Page 31: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Gyrothermal Instability (GTI)

[Schekochihin et al., MNRAS 405, 291 (2010)]

Heat fluxes also drive fast microphysical instabilities

Page 32: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Gyrothermal Instability: Equations

• Keep the gyroviscous terms in the “Braginskii” stress (this is valid even without collisions and is necessary to get the fastest growing mode for the firehose)• Keep pressure anisotropies and parallel ion heat fluxes

[Schekochihin et al., MNRAS 405, 291 (2010)]

• Consider just (Alfvénically polarised parallel-propagating modes – they decouple and can be calculated without knowing pressures or heat fluxes)

Heat fluxes also drive fast microphysical instabilities

Page 33: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Gyrothermal Instability: Linear Theory

[Schekochihin et al., MNRAS 405, 291 (2010)]

In the collisional limit,

Instability criterion:

Preferred scalein marginal state:

Page 34: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Gyrothermal Instability: Linear Theory

[Schekochihin et al., MNRAS 405, 291 (2010)]

Instability criterion:

In the collisional limit,

So, Alfvénically polarisedperturbations can be unstableat Δ>0!

MIRROR,GTI

FIREHOSE

Preferred scalein marginal state:

Page 35: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Gyrothermal Instability: Nonlinear Theory

Instability criterion:MIRROR,

GTI

FIREHOSE

So, Alfvénically polarisedperturbations can be unstableat Δ>0!

GTI saturates by the samemechanism as the firehose:magnetic fluctuationsadjusting (increasing) Δ

[It might actually destabilisemirror — no idea what then]

[Rosin et al., arXiv:1002.4017 (2010)]

Preferred scalein marginal state:

Page 36: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Nonlinear GTI

[Rosin et al., arXiv:1002.4017 (2010)]

Page 37: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Nonlinear GTI

[Rosin et al., arXiv:1002.4017 (2010)]

Page 38: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

[Cf. Nonlinear Firehose]

[Rosin et al., arXiv:1002.4017 (2010)]

Page 39: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Part I. The Knowns

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

1. Kinetic turbulence is a generalised (free) energy cascade in phase space towards collisional scales. The free energy cascade splits into various channels: AW + compressive above ion gyroscale (“inertial range”) KAW + entropy cascade belowion gyroscale (“dissipation range”)2. Turbulence is anisotropic at all scales Scaling theories based on the critical balance conjecture give results that seem broadly to be consistent with SW evidence and GK simulations3. Plasma is marginal to microinstabilities (firehose, mirror etc. driven so by spontaneous generation of pressure anisotropies)

Page 40: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Part II. The Known Unkonwns

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

Page 41: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

1. Ion vs. Electron Heating

energyinjected

ApJS 182, 310 (2009)

Alfvén waves+compressive fluctuations

KAW

Entropycascade

δE

δB

Ionheating

Electronheating

Electronentropycascade

The splitting of the cascade at the ion gyroscaledetermines relative heating of the species

δfi

Page 42: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Free Energy Cascade

k–5/3

k–7/3

energyinjected

ApJS 182, 310 (2009)

k–1/3

Alfvén waves+compressive fluctuations

KAW

δfiδE

δB

electronLandaudamping

GYROKINETICSFLUID THEORY

k–4/3ion Landaudamping Entropy

cascade

Page 43: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

2. Compressive Fluctuations

k–5/3

energyinjected

ApJS 182, 310 (2009)

Alfvén waves+compressive fluctuations

δE

δB

If compresivefluctuations

havea parallelcascade,

density andfield strengthare damped

Alfvén wavesLandau damped

via conversion intodensity/field-strength

fluctuations

Barnesdamping

ion Landaudamping

δne, δB

Page 44: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

SW: Compressive Fluctuations Undamped?

[Bershadskii & Sreenivasan 2004,PRL 93, 064501]

Spectrum of magnetic-field strengthin the solar wind at ~1 AU (1998)

Density fluctuations in the solar windat ~1 AU (31 Aug. 1981)

[Celnikier, Muschietti & Goldman 1987,A&A 181, 138]

k–5/3

FLR: density modemixing withAlfvén waves

Page 45: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations are Passive-Kinetic

Density and field-strength fluctuations are passively mixedby Alfvén waves

require kinetic description: our expansion gives

Maxwellianequilibrium

ApJS 182, 310 (2009)

Page 46: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations are Passive-Kinetic

require kinetic description: our expansion gives

In the Lagrangianframe of the Alfvénwaves…

ApJS 182, 310 (2009)

Page 47: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations are Passive-Kinetic

require kinetic description: our expansion gives

In the Lagrangianframe of the Alfvénwaves…

equation is linear!

ApJS 182, 310 (2009)

Page 48: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations are Passive-Kinetic

require kinetic description: our expansion gives

In the Lagrangianframe of the Alfvénwaves…

equation is linear!

No refinement of scale along perturbed magnetic field(but there is along the guide field, i.e. kz grows)

ApJS 182, 310 (2009)

Page 49: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Collisionless Damping

require kinetic description: our expansion gives

equation is linear!

[Barnes 1966, Phys. Fluids 9, 1483] time to be cascaded in k^ byAlfvén waves, for which

Cascades of density and field strength fluctuationsare undamped above ion gyroscale

… but parallel cascade might be induced due to dissipation[Lithwick & Goldreich 2001, ApJ 562, 279] ApJS 182, 310 (2009)

Page 50: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations

k–5/3

energyinjected

ApJS 182, 310 (2009)

Alfvén waves+compressive fluctuations

δE

δB

If compresivefluctuations

havea parallelcascade,

density andfield strengthare damped

Alfvén wavesLandau damped

via conversion intodensity/field-strength

fluctuations

Barnesdamping

ion Landaudamping

δne, δB

Page 51: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Compressive Fluctuations

k–5/3

energyinjected

ApJS 182, 310 (2009)

Alfvén waves+compressive fluctuations

δE

δB

Alfvén wavesLandau damped

via conversion intodensity/field-strength

fluctuations

ion Landaudamping

δne, δB

If theirparallel cascade

is inefficient,density and

field strengthare only weaklydamped above ρi

Page 52: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Back to Alfvén Waves…

k–5/3

energyinjected

δE

δB

ion Landaudamping

Alfvén waves

Page 53: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. The 5/3 and the 3/2

k–5/3

energyinjected

Alfvén waves

δu

δB

ion Landaudamping

k–3/2

Page 54: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. The 5/3 and the 3/2

k–5/3

energyinjected

Alfvén waves

δu

δB

ion Landaudamping

k–3/2

δB δu

[Podesta 2006,JGR 111, 10109]

Page 55: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. The 5/3 and the 3/2

k–5/3

energyinjected

Alfvén waves

δu

δB

ion Landaudamping

k–3/2

δB δu

[Podesta 2006,JGR 111, 10109]

Page 56: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

3. The 5/3 and the 3/2

k–5/3

energyinjected

Alfvén waves

δu

δB

ion Landaudamping

k–3/2

δBδu

[Wicks 2011, PRL 106, 045001]

Page 57: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

4. Imbalanced Cascade

k–5/3

energyinjected

Alfvén waves

δu

δB

ion Landaudamping

k–3/2

δBδu δz+

δz–

[Wicks 2011, PRL 106, 045001][Wicks 2011, PRL 106, 045001]

Page 58: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

4. Imbalanced Cascade

ion Landaudamping[Wicks 2011, PRL 106, 045001]

In fact, all MHD turbulence is locally imbalanced

[From a balanced 5123 RMHD simulationby A. Mallet (2010)]

[Perez & Boldyrev 2009, PRL 102, 025003]

δz+

δz–

Page 59: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

4. Imbalanced Cascade

ion Landaudamping[Wicks 2011, PRL 106, 045001]

In fact, all MHD turbulence is locally imbalanced[Perez & Boldyrev 2009, PRL 102, 025003]

δz+

δz–

[Lucek & Balogh 1998, ApJ 507,984]

Page 60: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

4. Imbalanced Cascade

ion Landaudamping[Wicks 2011, PRL 106, 045001]

In fact, all MHD turbulence is locally imbalanced

[From an imbalanced 5123 RMHD simulationby A. Mallet (2010)]

[Perez & Boldyrev 2009, PRL 102, 025003]

δz+

δz–

δz+

δz–

Scaling theories that are simpleextensions of those for the balancedcase do not describe correctly eithernumerics or measurements (whichalso disagree with each other)

Page 61: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

5. Microphysical Energy Injection

MIRROR

FIREHOSE

[Bale et al., PRL 2009]This means that there isenergy injection just abovethe ion Larmor scale

NB: The firehose (k ~ k⊥) or the nonlinear state of mirror modes (δB/B ~ 1)are not described by GK!

Page 62: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

5. Microphysical Energy Injection

k–5/3

k–7/3

energyinjected

k–1/3

Alfvén waves+compressive fluctuations

KAW

δfiδE

δB

electronLandaudamping

k–4/3

Entropycascade

MirrorsFirehoses

Page 63: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

MIRROR

FIREHOSE

[Bale et al., PRL 2009]

5. Microphysical Energy Injection

[Bale et al. 2009,PRL 103, 211101]

T⊥/T = 2.2, β = 0.2T⊥/T = 0.5, β = 1.9T⊥/T = 1.0, β = 0.7

The injection frommicroinstabilities not obvious:swamped by cascade?

Page 64: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

MIRROR

FIREHOSE

[Bale et al., PRL 2009]

5. Microphysical Energy InjectionThe injection frommicroinstabilities not obvious:swamped by cascade?

[Wicks et al. 2010,MNRAS 407, L31]

k2 E(k)

k⊥5/3 E(k⊥)

Firehose?(less anisotropic thanthe cascade)

Page 65: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

“Mirror Cascade”?

[Sahraoui et al. 2006,PRL 96, 075002]

• δB/B ~ 1• k << k⊥• Spectrum closer to –8/3 than –7.3

Page 66: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

6. Universal Not-Quite-KAW Cascade?

• δB/B ~ 1• k << k⊥• Spectrum closer to –8/3 than –7/3• But it tends to be –2.8 anyways (remarkable universality, btw!)

[Alexandrova et al. 2009,PRL 103, 165003]

Another interestingproblem to sort out

Page 67: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

6. Universal Not-Quite-KAW Cascade?

• δB/B ~ 1• k << k⊥• Spectrum closer to –8/3 than –7/3• But it tends to be –2.8 anyways (remarkable universality, btw!)

Another interestingproblem to sort out

[Saharaoui et al. 2010, PRL 105,131101 ]

Page 68: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

6. Universal Not-Quite-KAW Cascade?

• k << k⊥• Spectrum closer to –8/3 than –7/3• But it tends to be –2.8 anyways (remarkable universality, btw!)

[Howes et al. 2011, submitted ]

It might be just the usual criticallybalanced KAW cascade (–7/3)steepened a bit by electron Landaudamping (but no theory for that…)

GK simulations:

Page 69: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Part II. The Known Unknowns

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

1. Ion vs. Electron Heating What sets Ti/Te?2. Compressive fluctuations in the inertial range Why are they not damped?3. Velocity (3/2) and magnetic (5/3) spectra in the inertial range4. Nature of imbalanced Alfvénic cascade5. Microphysical energy injection How do the mirror/firehose fluctuations and the KAW cascade coexist in the sub-Larmor range?6. Universal scaling in the sub-Larmor range?[7. Perpendicular vs. parallel heating]

Page 70: Turbulence in Magnetised Plasmawpi/themedata/Vaslov...Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11 Schekochihin et al., ApJS 182, 310 (2009) Schekochihin et al., MNRAS 405,

Part I. The Knowns

Vlasov-Maxwell Kinetics in Space Plasmas, WPI, 31.03.11

Schekochihin et al., ApJS 182, 310 (2009)Schekochihin et al., MNRAS 405, 291 (2010)

Rosin et al., MNRAS, in press; arXiv:1002.4017

1. Kinetic turbulence is a generalised (free) energy cascade in phase space towards collisional scales. The free energy cascade splits into various channels: AW + compressive above ion gyroscale (“inertial range”) KAW + entropy cascade belowion gyroscale (“dissipation range”)2. Turbulence is anisotropic at all scales Scaling theories based on the critical balance conjecture give results that seem broadly to be consistent with SW evidence and GK simulations3. Plasma is marginal to microinstabilities (firehose, mirror etc. driven so by spontaneous generation of pressure anisotropies)


Recommended