+ All Categories
Home > Documents > Tutorial 9 (ISSCC 2006) Signal Integrity for High Speed ...

Tutorial 9 (ISSCC 2006) Signal Integrity for High Speed ...

Date post: 09-Feb-2022
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
91
1 Tutorial 9 (ISSCC 2006) Signal Integrity for High Speed Circuit Design Hong-June Park POSTECH, Pohang, Korea [email protected] http://asic.postech.ac.kr
Transcript

1

Tutorial 9 (ISSCC 2006)

Signal Integrity for High Speed Circuit Design

Hong-June Park

POSTECH, Pohang, Korea

[email protected]

http://asic.postech.ac.kr

2

Overview1. Introduction

2. Transmission lines (reflections, terminations, loss of FR4 PCB)

3. SPICE parameters of coupled transmission lines, vias, connectors and cables

4. Signaling techniques (Multi-drop vs point-to-point, single-ended vs differential)

5. Compensation techniques for ISI, loss & reflection

6. Crosstalk & reduction techniques

7. IBIS (I/O Buffer Information Spec) model and power integrity

8. References

3

1. Introduction

4

Legacy CMOS Chip-to-Chip Interface

CMOS inverters used as both driver & receiver

Logic threshold voltage VLT used at receiver as reference for decision

Logic threshold: PVT sensitive

requires a large signal swing for reliable operation

generates a large SSO(simultaneous switching output) noise

Low Ron of CMOS inverter driver reflection on transmission line

not suitable for high-speed operation

5

High-speed chip-to-chip interface (1/2)GTL (Gunning Transceiver Logic)

Receiver: differential pair

Reference voltage for decision at RX: VLT VREF(external reference)

Min required input swing: VREF-0.2V to VREF+0.2V

signal swing 0.8V Reduces SSO noise & power

Open drain driver(NMOS): reduce capacitance, Output rise time > fall time

Termination used to avoid reflection in transmission line

Data rate >= 400Mb/s , low power 10mW per output (125mW in ECL)

[B.Gunning 1992]

6

High-speed chip-to-chip interface (2/2)LVDS (Low Voltage Differential Signaling)

A CMOS alternative to ECL

Send two complementary signals self reference (no extra reference)

Signal swing: +- 0.35V (spec: min +-0.25V, max +-0.45V)

Input common mode voltage: 1.2V (spec: min 1.125V, max 1.375V)

Speed 2X of single-ended because of small signal swing & low noise

7

6.3 GB/s0.25~3.15G1,4,8,16UniDir, P2P, LVDS, SW0.8VRapidIO(*)

10 GB/s2.5G1-32UniDir, P2P, LVDS, SW0.8VPCI-Exp(*)

4 GB/s66~533M16,32,64BiDir, P2P, Single, CMOSPCI-X (*)

133 MB/s33M32BiDir, MultD, Single, CMOSPCI

2.1 GB/s533.33M32BiDir, P2P expected to be replaced by PCI Exp

AGP8X

3.2 GB/s3.2G8BiDir, P2P, Diff, CurM, SW0.2VR-XDR

2.066 GB/s1.033G16BiDir, MultD, Single, CurM, SW0.8VR-DRAM

4.3 GB/s533M64BiDir,MultD,Single,SSTL,SW0.7~1.4VDDR2

50, 100 MB/s400M, 800M1UniDir, P2P, Diff, CurM, SW250mVIEEE1394

375 MB/s1.5G, 3G1UniDir, P2P, Diff, CurM, SW250mVS-ATA2

60 MB/s12M, 480M1UniDir, P2P, Diff, CurM, SW400mVUSB 2

MaximumThroughput

Data Rate (b/s)

DataWidthBus type, SignalingInterface

Name

UniDir: unidirectional, BiDir: bidirectional, P2P: point-to-point, MultD: multi-drop, Diff: differential, CurM: current mode output, SW: swing, R-: Rambus, CMOS: CMOS inverter output stage, PCI-X: PCI-Extended, PCI-Exp: PCI-Express, (*): currently under development

Standards for high-speed chip-to-chip interface

8

2. Transmission lines

(reflections, terminations, loss of FR4 PCB)

9

(1) Composed of two conductors with length [E.Bogatin](2) Has a signal path and a return path(3) A uniform cross section required along the length direction(4) Constant L & C per unit length => wave propagation without distortion

What is transmission line ?

No Distortion

Distortion

Transmission Line

Non Transmission Line

10

Examples of transmission lines

Uniform cross section required

11

If circuit size << wavelength of the highest freq. of signal

When can we use KCL & KVL analysis ?

∫∫ ⋅∂∂

−=⋅ dSBt

dLE

∫∫∫ ⋅−=++5

4

3

2

1

0)(tIL

dtdEdlEdlEdl

dttdIL

CtQtIRtVs

)()()()( ⋅++⋅=

Maxwell equations reduced to KCL, KVL

The loop current I(t) is the same at all locations of loop at a given time t

(KVL: Kirchhoff voltage law)

+

-

R

EI (t)

1

0

2 3 4 5

6

7

8

LVs (t)

C

I (t)

12

Frequency spectrum of clock signal

dB

Frequency (n/T)

TTn

TTn

dndndVHarmonicthn

R

R

⎟⎠⎞

⎜⎝⎛ ⋅

⋅⋅⋅

⋅=−π

π

ππ

sin)sin(2

Rknee T

f 5.0=

Significant energy up to

When do we need transmission line analysis ?(1/2)

V

0

TR

T

dT

TR

n corresponds to frequency of n/T

13

488R

knee

knee Tvfv ⋅

=⋅

(Length of signal line) >

1/8 wavelength corresponds to Max voltage –3dB

21

1

0

x

⎟⎠⎞

⎜⎝⎛ ⋅

λπ x2cos

)point3dB(−

When do we need transmission line analysis ?(2/2)

14

Wave propagation in lossless transmission line(1/2)

+

V ZC∆

ZL∆

I

V

t0=t

+

VV→0

V0 V0 V0

I0=z l=z

0=tνl

=t

Characteristic impedance: constantCLZO =

Propagation velocity: constantLC1

C increases current & L deceases current

C reduces impedance & L increase impedance balanced at Zo

Transmission line: a resistor of Zo to a fast changing signal

C speeds up, L slows down balanced at v

Maxwell equation wave propagation

15

Wave propagation in lossless transmission line(2/2)

Maxwell equation wave propagation

∫∫ ⋅∂∂

−=⋅ dSBt

dLE vILdt

zILddtdV ⋅⋅−=

⋅⋅−=

Φ−=−

)(

vVCdt

zVCddtdQI ⋅⋅=

⋅⋅==

)(

CL

IVZo == LC

1=ν

vVCIvILV ⋅⋅=⋅⋅=

uncharged

+ + ++ + + + + +

- - - - - - - - -

path of loopintegration

t=0

z=0

I

+-

V

⊗V V

I

Vin(t)E=0

I z

Propagates with velocity v

z+∆z

∆QB

16

µ0, ε1

Exi

Hyi incident

µ0, ε2

Ext

Hyt transmitted

Exr

Hyr

reflected

TEM wave with no source on the boundary

∫ =Φ

−=⋅ 0dtddlE

∫ ==⋅ 0IdlH

xtxrxi EEE =+

ytyryi HHH =−

Reflection of plane wave at boundary

xixr EZZZZE

12

12

+−

=Satisfies the following power relation.

(Incident power) = (Transmitted power) + (Reflected power)

yrxrytxtyixi HEHEHE ⋅+⋅=⋅

11 ε

µoZ =2

2 εµoZ =

211 ZE

ZE

ZE xtxrxi =−

xixt EZZ

ZE12

22+

=

17

Reflection in transmission line

,

,

Reflection coefficient:12

12

ZZZZ

VV

i

r

+−

==Γ

tri VVV =+ tri III =−Boundary condition:

1ZIV

IV

r

r

i

i == 2ZIV

t

t =From circuit theory:

Γ+== 1i

t

VVTTransmission coefficient:

z=0

-

+

-

+

-

+

rI

iI

iV rV tV

iI

rI

tI

tI1Z 2Z

18

Termination: (1) Reduce reflection (2) Reduce ringing in high-Q lumped circuit

If TD > 20% x TR ringing, reflections Termination Required

If TD < 20% x TR reflections smeared out Invisible No termination required

If TR=1ns, FR4 (v=6inch/ns),

Max. allowable length without termination = 0.2 x v x TR = 1.2 inch (3cm)

Termination of transmission line

(1) series termination

(2) parallel termination

19

Series terminated and open ended case (1/2)

20

Series terminated and open ended case (2/2)

21

Return path of transmission line (1/2)The current form a loop (signal path + return path).The loop follows the least impedance path.

At Low frequency:

The least resistive path

At High frequency:

The least inductive path[H.W. Johnson 1993]

Signal path

Return path

Return path

Signal path

22

Lossy transmission line: skin effect loss

metalskin f

1 dσµπ

=

fR dW

1 dW

1 R sskinmetalskinmetal

=+=σσ 4

metals W

1.25 Rσπµ

=

W

4W

metal

dskin

dskin

metal

Return path

fRR s=

23

Metal

+-

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

+ + + + + + + + +

- - - - - - - - -

+QE=0

Qdipole

E

Electricallyneutral

D V

-Q

Metal

Dielectric

Lossy transmission line: Dielectric loss

dipoleQ Q E - −=00ε

( ) E Q R0dipole ⋅−⋅= 1εε

DD

VQ R εεε

C 0 ===

VtanC VCj

Vtanj-(Cj Icap

⋅⋅+⋅=

⋅⋅⋅=

δωω

δω )1

δtan2 ⋅⋅= Cπ Gd

PCBFR4026.0tan =δ

fGG d ⋅=

Induced dipole charge increases capacitance

Delay of dipole rotation wrt E field change heat dielectric loss

24

Lossy transmission line (AC simulation)

0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14mil

TL1

Ground Reference

40inch FR4 microstrip, -3dB freq = 400 MHz (800Mbps)

100k 1M 10M 100M 1G 10G-0.10.00.10.20.30.40.50.60.70.80.91.01.1

Mag

nitu

de

Frequency (Hz)

No Loss Skin Loss Dielectric Loss Skin + Dielectric Loss

25

Effect of loss on eye diagram5Gbps FR4 microstrip line, 1m(40inch) long, Rs=Rt=50

No Loss

0.500

0.136

Skin Effect + Dielectric LossDielectric Loss

0.230

Skin Effect

0.275

26

Effect of reflection on eye diagram5Gbps FR4 microstrip line, 0.3m long

Either source or parallel termination gives the same eye patterns

No termination: Rs=Rt=17

0.180

Source termination : Rs=50, Rt=17

Source & parallel termination :Rs=Rt=50

0.331

Parallel termination : Rs=17, Rt=50

0.501

0.170

27

3. SPICE parameters of

coupled transmission lines,

vias,

connectors,

& cables

28

SPICE parameter of FR4 microstrip line

G (S/m)R (Ω/m)C (F/m)L (H/m)

0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14mil

TL1

Ground Reference

71005143 −×. 101029511 −×.f.

.41040948

72682−×

+

f.

.

××

+×−

11

9

1088541

1033583

[ ]Hzfrequencyf = Ω== 5.48CLZo

29

SPICE parameter of coupled microstrip line

L matrix ( )mH

⎥⎥⎦

⎢⎢⎣

××

××−−

−−

78

87

10231731007421

10074211023173

..

..

⎥⎥⎦

⎢⎢⎣

××

××−−

−−

1013

1310

10258911033878

10338781025891

.-

-.

.

.

C matrix ( )mF

R matrix

⎥⎥⎦

⎢⎢⎣

×

××+⎥

⎤⎢⎣

⎡−

4

4

10086180

01008618720820072082

.

..

.f

( )mΩ

( )Hzfrequencyf =G matrix

⎥⎥⎦

⎢⎢⎣

××−

×−××+

⎥⎥⎦

⎢⎢⎣

××−

×−×−−

−−

−−

−−

1113

1311

912

129

10065521027021

10270211006552

10937031061341

10613411093703

.

.f

.

.

..

..

( )mS

[H.B.Lee 2006]

30

lossyTL.rlc(single line)* N1* L0305.14e-9 *C0129.51e-12* R02.7208* G03.3358e-9*Rs8.4094e-4*Gd18.854e-12

Txxx INP VSS OUT VSS ZO=50 TD=16.6N * lossless

Wxxx INP VSS OUT VSS RLGCfile=lossyTL.rlc N=1 L=5

Wyyy I1 I2 VSS O1 O2 VSS RLGCfile = diffTL.rlc N=2 L=1

HSPICE model of FR4 microstrip lines

diffTL.rlc (2-coupled microstrip)* N2* L03.2317e-0071.0742e-008 3.2317e-007* C01.2589e-10-8.3387e-013 1.2589e-10* R02.72080 2.7208* G03.9370E-09-1.6134E-12 3.9370E-09*Rs8.0861E-040 8.0861E-04*Gd2.0655E-11-1.2702E-13 2.0655E-11

31

SPICE parameter of USB cableL matrix ( )m

H

⎥⎥⎦

⎢⎢⎣

××

××−−

−−

78

87

10035.2106815.1

106815.110035.2

⎥⎥⎦

⎢⎢⎣

××−

×−×−−

−−

1112

1211

10961591018565

10185651096159

..

..

C matrix ( )mF

R matrix

⎥⎥⎦

⎢⎢⎣

×

××+

⎥⎥⎦

⎢⎢⎣

×

×4-

-4

1-

-1

105374.20

0105374.2

102.81770

0102.8177f

( )mΩ

( )Hzfrequencyf =

G matrix

⎥⎥⎦

⎢⎢⎣

××−

×−××+

⎥⎥⎦

⎢⎢⎣

××−

×−×−−

−−

−−

−−

1113

1311

910

109

10089721081278

10812781008972

10945721098991

10989911094572

..

..

..

..f

( )mS

on-Twisted Power Pair Polyvinyl Chloride (PVC) Jacket

Outer Shield

Inner Shield Aluminum

28 AWG Tinned Copper Drain Wire

Twisted Signaling Pair:

White: D-

Gray: D+Cross section

32

Via hole in 4-layer PCB

Copper: 0.7mil

FR-4: 4mil

Copper: 1.4mil

Copper: 1.4mil

Copper: 0.7mil

FR-4: 4mil

FR-4: 48mil

A B C

A : Via Drill = 14mil

B : Via Land Pad = 26mil

C : Via Clearance = 40mil

4-Layer PCB Stack-up Via-hole Dimension

Side view

C1 C2

L

Trace on layer 1 Trace on layer 4

0.21pF

C1

48.3 Ω0.21pF0.98nH

Zo.effC2L

VSS

VDD

Layer1 = Signal1

Layer4 = Signal2

21.

CCLeffZo+

=

33

SPICE parameter of 184pin DIMM connector

0.2550.360.2551.6491.649

C3 (pF)C2 (pF)C1 (pF)L2 (nH)L1 (nH)

0.08

Cm1 / CT

0.06 0.250.45

Cm2 / CTK2K1

2*1 LLMK = M : mutual inductance

4mm

2.5mm

2.0mm

0.41mm

0.26mm

Inductive coupling

dominant

in connectors

K > Cm/CT

CT = C1+C2+C3+Cm1+Cm2

34Freq [Hz] (log)

Z [

ohm

] (log)

Dotted Line : MeasuredSolid Line ...: Fitting

C=107 nF

ESL=0.62 nH

ESR=0.013 Ohm

100nF MLCC capacitor (1608)

Inductive

Capacitive

35

4. Signaling techniques

(Multi-drop vs point-to-point,

single-ended vs differential)

36

Single-ended vs. differential

Single-ended multi-drop

Differential multi-drop

Single-ended point-to-point

Differential point-to-point

Multi-drop vs. point-to-point

37

DRAMTR

SR

OZ

LL

RL

CL

oT ZR =Minimize reflection

oS ZR =

Point-to-point single-ended signaling

-Small reflection-High speed

-High capacity-Small PCB area-Low cost

Point-to-PointMulti-Drop

38

Eye pattern of point-to-point signaling3Gbps, 5cm microstrip FR4, RS=50, ZT=50, a DRAM chip at RX end

0.425

DRAMTR

SR

OZ

LL

RL

CL

39

Multi-drop single-ended signalingChip pin capacitive loading reduces both Zeff & veff

222

222

)41(4

LL

LL

CLffCRY

⋅−=

ππ

lCC

Z

lCC

L ZL

o

Leff

⋅+

=+

=1 lC

Cv

lCCL

LL

eff

⋅+

=

⎟⎠⎞

⎜⎝⎛ +

=1

40

Multi-drop single-ended signaling

0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14mil

TL1

Ground Reference

Cross section

1. Multi-drop Section Length l = 1cm

2. Drop Number = 4

3. Total PCB channel length = 5cm

4. Chip pin loading: LL = 4nH, CL = 2.2pF, RL = 10 Ω

5. Zo=50 Ω, Zeff = 29.5 Ω

41

DRAM 1 DRAM 4with ZS=ZT=29.5 ohm

with ZS=ZT=50 ohmDRAM 1 DRAM 4

Single-Ended: 4-Drop, 3Gbps, 5cm microstrip FR4 (output swing 0.5V)

0.206

0.089

Eye pattern of multi-drop signaling

0.206

42

Differential transmission line (1/3)Differential signaling: send complementary signals V1 & V2.

Combined signal V1 & V2: decomposed into odd & even modes.

43

msodd LLL −=

msodd CCC ⋅+= 2

mseven LLL +=

seven CC =

evenodd ZZ <

evenodd TDTD <

odd

oddodd C

LZ =

oddoddodd CLTD ⋅=

In microstrip lines

Odd mode: slightly smaller Zo, slightly faster than even mode.

For spacing > 3 W : Zo & speed about the same for odd & even modes

Differential transmission line (2/3)

Termination of differential line terminates both odd & even modes

oddeven

oddeven

ZZZZR

−⋅⋅

=2

1

evenZR =2

oddZR =1

22oddeven ZZR −

=

44

0.5 1.0 1.5 2.0 2.5 3.00.860.880.900.920.940.960.981.001.021.041.061.081.101.121.14

Nor

mal

ized

Impe

danc

e

S / W

Zeven / Zo Zodd / Zo

0.5 1.0 1.5 2.0 2.5 3.0

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

Nor

mal

ized

TD

S / W

TDeven / TDo TDodd / TDo

Differential transmission line (3/3)Zo (Characteristic Impedance) TD (Delay Time)

W: width of TL, S: spacing between TLs

⎟⎠⎞⎜

⎝⎛−

⎟⎠⎞⎜

⎝⎛+

=

t

m

s

m

o

even

CC

LL

ZZ

1

1

⎟⎠⎞⎜

⎝⎛+

⎟⎠⎞⎜

⎝⎛−

=

t

m

s

m

o

odd

CC

LL

ZZ

1

1 ⎭⎬⎫

⎩⎨⎧

⎟⎠⎞⎜

⎝⎛−⋅

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞⎜

⎝⎛+=

t

m

s

m

o

evenC

CL

LTD

TD 11

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞⎜

⎝⎛+⋅

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞⎜

⎝⎛−=

t

m

s

m

o

oddC

CL

LTD

TD 11

mst CCC +=

45

5. Compensation techniques for

ISI, loss & reflection

46

ISI (Inter Symbol Interference)caused by limited BW

TransmittedSIgnal

ReceivedSIgnal

Unit Pulse Response

1 1 1 0 1 1

1st bit

2nd bit

3rd bit

4th bit

5th bit

6th bit

47

HH

HL

LH

LL

0 1 1 1 0 0

How to reduce ISI

LH00LL01HL11HH10

outputpresentprevious

(1) TX equalization (pre-emphasis)

Z-1 Z-1

x(n)

Z-1Z-1a1a2a3a4

y(n) y(n)

x(n)

T 2T 3T t

a1a2

4T 5T

a3 a4

]4[ˆ4]3[ˆ3]2[ˆ2]1[ˆ1)()( −⋅−−⋅−−⋅−−⋅−= nyanyanyanyanTxnTy

(2) RX equalization (DFE: decision feedback equalization)

Single pulse response

4-tap DFE

48

TX equalization (Pre-emphasis)- 5Gbps, 1m FR4 microstrip line

Without pre-emphasis With pre-emphasis

- 5Gbps, 2m FR4 microstrip lineWithout pre-emphasis With pre-emphasis

0.135 0.197

0.045

RS=RT=50 ohm, 0.2~0.8V normal, 0~1V @ data transition, 0.3V eye

49

RX equalization: DFE (1m microstrip FR4, 10Gbps)1-tap 2-tap

tap coefficients 0.1822 tap coefficients 0.1409 0.0595

0.150

3-tap 4-tap

tap coefficients

0.1176 0.0472 0.0498

tap coefficients

0.1116 0.0424 0.0428 0.0172

0.216 0.287

50

480Mbps, 5m

5Gbps, 3m

0.477

Eye patterns at RX end of USB cable (No equalization)

5Gbps, 2m

51

1-tap 2-tap

3-tap 4-tap

0.058

0.144 0.170

tap coefficients

0.3406

tap coefficients

0.2434 0.1133

tap coefficients

0.2181 0.1010 0.0879

tap coefficients

0.2033 0.0746 0.0769 0.0309

RX equalization: DFE (3m USB cable, 5Gbps)

52

RX equalization: DFE (2m USB cable, 5Gbps)1-tap 2-tap

3-tap 4-tap

Tap coefficient 0.2894

0.106

Tap coefficients 0.2312 0.0772

0.211

Tap coefficients

0.2021 0.0644 0.0686

0.282

Tap coefficients

0.1896 0.0434 0.0679 0.0147

0.315

53

DRAM1

0.0047-0.06230.1260-0.2585-DFE

(LMS)

0.0055-0.06390.1247-0.25820.6971ISI

4T3T2T1TpeakDRAM1

-0.03590.0910-0.14420.1026-DFE

(LMS)

-0.05210.0917-0.13400.07390.4322ISI

4T3T2T1TpeakDRAM4

DRAM4

RX equalization: DFE to reduce reflection(1/3)Multi-drop(4-Drop), 3Gbps, 5cm microstrip FR4, ZS=ZT=29.5 ohm

ISI from SPICE & DFE tab coefficients from LMS algorithm

Sampling time points started from the peak point time

54

3-tap DFE

0.642

tap coefficients

-0.2576 0.1262 -0.0656

1-tap DFE

tap coefficients

-0.2173

0.435

tap coefficients

-0.2710 0.1285

0.561

2-tap DFE

DRAM1: 4-Drop, 3Gbps, 5cm microstrip FR4, ZS=ZT=29.5 ohm, 0.5V swing

0.206

No DFE

RX equalization: DFE to reduce reflection(2/3)

55

DRAM4: 4-Drop, 3Gbps, 5cm microstrip FR4, ZS=ZT=29.5 ohm, 0.5V swing

No DFE

3-tap DFE

0.322

tap coefficients

0.1020 -0.1369 0.1111

2-tap DFE

0.196

tap coefficients

0.1146 -0.1126

1-tap DFE

tap coefficients

0.0823

0.094

RX equalization: DFE to reduce reflection(3/3)

56

6. Crosstalk & reduction techniques

57

Electric & magnetic couplings

Electric(capacitive) couplingCs: flux from M1 to GND Cm: flux from M1 to M2 Magnetic(inductive) coupling

Ls: all flux around bLm: flux around a

Out of magnetic fluxes generated by b, only the fluxes encircling a will generate magnetic coupling

[E.Bogatin]

58

Crosstalk between coupled TL (1/7)

Vs

Aggressor line

Victim line

OZ

1V

FEVNEV

OR

OR

OR

OROZ

TD

TD

Matched coupled line:

Ls

Ls

LmCm

Cs

Cs

Capacitive & Inductive Coupling

OO RZ =

59

Capacitive Coupling

( )dttdVdxCZVd mO

Cτ−

⋅=− 12 2

( )dttdVdxCZVd mO

Cτ−

⋅=+ 12 2

Inductive Coupling

( )dttdVdxLVd m

Lτ−

⋅=− 12 2

( )dttdVdxLVd m

Lτ−

⋅−=+ 12 2

( )( )τ

τ−−

tdtdVdxCm

1

OZ

+CdV2

−CdV2

OZ

Aggressor Line

Victim Line

( )( )τ

τ−−

tdtdIdxLm

1

OZ

−LdV2

+LdV2

OZVictim Line

Crosstalk between coupled TL (2/7)

60

( )dttdV

ZLCZdxdV

O

mmONE

τ22

1 −⎟⎟⎠

⎞⎜⎜⎝

⎛+=

( )dt

TDtdVZLCZdxdV

O

mmOFE

−⎟⎟⎠

⎞⎜⎜⎝

⎛−= 1

2

Capacitive + Inductive

After integration with x along length l

( ) ( ) ( )( )TDtVtVLL

CCtV

S

m

T

mNE 2

41

11 −−⎟⎟⎠

⎞⎜⎜⎝

⎛+=

( ) ( )t

TDtVLL

CCTDtV

S

m

T

mFE ∂

−∂⎟⎟⎠

⎞⎜⎜⎝

⎛−= 1

2

Near-end crosstalk (NEXT):

Far-end crosstalk (FEXT):

Crosstalk between coupled TL (3/7)

61Inductive coupling > capacitive coupling because of exposure to air

7 14 21 28 35 42

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Rel

ativ

e R

atio

Spacing (Mils)

Lm / Ls Cm / Ct

0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14milS

14mil

Ground Reference

TL1 TL2

Crosstalk between coupled TL (4/7)

62

S = 7, 42 mil (W=14mil)

0.0 2.0n 4.0n 6.0n 8.0n 10.0n 12.0n 14.0n-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

FEXT

NEXTC

ross

talk

Vol

tage

(V)

Time (Sec)

7mil Spacing 42mil Spacing

Vs = 0V to 2V step,

R0 = 50Ω

Rise time = 100ps

Length = 40 inch (1 meter)

Crosstalk between coupled TL (5/7)

63

Peak values of crosstalk with spacing

7 14 21 28 35 42-350.0m

-300.0m

-250.0m

-200.0m

-150.0m

-100.0m

-50.0m

0.0

50.0mC

ross

talk

Vol

tage

(V)

Spacing (Mils)

FEXT NEXT

NEXT

FEXT

Crosstalk between coupled TL (6/7)

64

Empirical equations

Crosstalk between coupled TL (7/7)

[Y.S.Sohn, IEEE 2001]

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛ ⋅−+

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=

36.125.0049.0963.0

7.275.052.3exp07.115.1HT

HW

HS

HT

HWCt

ε

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛−⋅⎟

⎠⎞

⎜⎝⎛ ++⎟

⎠⎞

⎜⎝⎛ +⋅⎟

⎠⎞

⎜⎝⎛=

−−− 98.0037.08.078.0083.0

227.036.132.1402.017.1HT

HW

HS

HS

HWCm

ε

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛ ⋅−+⎟

⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=

−−−− 026.00052.00006.073.0041.0

084.075.089.1exp39.3018.017.3

TH

WH

HS

TH

WH

WHLs

µ

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛⋅⎟

⎠⎞

⎜⎝⎛ ++⎟

⎠⎞

⎜⎝⎛ +⋅

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛−⎟

⎠⎞

⎜⎝⎛−=

−−− 09.113.003.26.218.116.0

037.1418.089.007.138.2415.0

WT

WH

HS

HS

WT

WHLm

µ

65

Crosstalk of 2 & 8 parallel lines (1/3)

Aggressor line0R 0R

0R 0R

Vs

Victim lineNEXT FEXT

2-coupled

Aggressor line0R 0R

0R 0R

Vs3

Victim lineNEXT FEXT

Aggressor line0R 0R

Vs2

Aggressor line0R 0R

Vs1

Aggressor line0R 0R

Vs7

Aggressor line0R 0R

Vs6

Aggressor line0R 0R

Vs5

Aggressor line0R 0R

Vs8

8-coupled0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14mil28mil

14mil

Ground Reference

TL1 TL2

0.7 mil

7 mil

1.4 mil

Air

FR4 (ε=4.5)

14mil28mil

14mil 14mil

8 Coupled Lines

TL1

Ground Reference

TL2 TL8

66

Crosstalk of 2 & 8 parallel lines (2/3)NEXT

FEXT

Vs = 0V ~ 2V, R0 = 50Ω

Rise time = 200ps

Length = 8 inch (20 cm)

0.0 500.0p 1.0n 1.5n 2.0n 2.5n 3.0n 3.5n 4.0n 4.5n 5.0n-250.0m

-200.0m

-150.0m

-100.0m

-50.0m

0.0

50.0mC

ross

talk

Vol

tage

(V)

Time (sec)

8-coupled 2-coupled

67

0.0 1.0n 2.0n 3.0n 4.0n 5.0n-600.0m

-500.0m

-400.0m

-300.0m

-200.0m

-100.0m

0.0

100.0mC

ross

talk

Vol

tage

(V)

Time (sec)

8-coupled 2-coupled

Crosstalk of 2 & 8 parallel lines (3/3)

NEXT

Vs = 0V ~ 2V, R0 = 50Ω

Rise time = 50ps

Length = 8 inch (20 cm)

FEXT

68

Far-end CrosstalkNear-end Crosstalk

No Crosstalk

0.408

0.422

Effect of crosstalk on eye patterns10Gbps PRBS signals applied to all 8 parallel lines (L = 8 inch)

69

Reduction of NEXT

1. Shorten PCB channel length reduce duration time

2. Increase spacing reduce capacitive coupling and inductive coupling

3. Circuit technique: Subtract VNE for positive VNE and add VNE for negative VNE during 2TD.

Near-end Crosstalk Equation

( ) ( ) ( )( )TDtVtVLL

CCtV

S

m

T

mNE 2

41

11 −−⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+=

70

Reduction of FEXT (1/4)

1. Increase the rise & fall times of signal

2. Shorten PCB channel length(TD)

3. Increase spacing smaller Cm & Lm

4. Reduce the difference between capacitive & inductive coupling ratios (ex: Strip line: difference=0, Microstrip line: difference < 0)

Far-end Crosstalk Equation

( ) ( )t

TDtVLL

CCTDtV

S

m

T

mFE ∂

−∂⎟⎟⎠

⎞⎜⎜⎝

⎛−= 1

2

71

5. Add a capacitor at receiver side between aggressor and victim lines

Inductive coupling > capacitive coupling, in FR4 microstrip line because of exposure to air

Adding capacitor at RX reduces the difference between two couplings

V s

A g g r e s s o r l in e

V ic t im l in e

OR

OR OR

OR1V

F EV

OZ T D

OZ T DAdded Capacitor

PC

[Guggenbuhl 1993]

0.082840.1692

( )mHLS ( )mFCTS

mL

LT

mC

C

n8.296 p1.131

1692.0==+⋅+⋅

S

m

PT

Pm

LL

ClCClC pFCP 63.13=∴

Reduction of FEXT (2/4)Unidirectional channel

72

Reduction of FEXT (3/4)Works in unidirectional channel

Vs=0~2V, R0=50Ω, TR=100ps, Length=40 inch(1m), FR4 microstrip

0.0 2.0n 4.0n 6.0n 8.0n 10.0n 12.0n 14.0n-400.0m

-350.0m

-300.0m

-250.0m

-200.0m

-150.0m

-100.0m

-50.0m

0.0

50.0m

100.0mC

ross

talk

Vol

tage

(V)

Time (sec)

No CP CP = 13.63pF

FEXT

73

Reduction of FEXT (4/4)Vs

Aggressor line

Victim line

OR

OR OR

OR1V

FEV

OZ TD

OZ TD

2PC

2PC

NEV

0.0 2.0n 4.0n 6.0n 8.0n 10.0n 12.0n 14.0n-400.0m

-300.0m

-200.0m

-100.0m

0.0

100.0m

200.0m

300.0m

400.0m

500.0m

Cro

ssta

lk V

olta

ge (V

)

Time (sec)

No CP CP = 13.63pFNEXT

FEXT

Does not work

in Bi-directional channel:

Problem in NEXT

Vs=0~2V, R0=50Ω, TR=100ps, Length=40 inch(1m), FR4 microstrip

74

Crosstalk-immune coding in parallel lines to reduce on-chip capacitive crosstalk

[Victor 2001]

1. Opposite transition between adjacent lines

Miller effect increases crosstalk

2. Self-shielding code : eliminates the opposite transitions between adjacent lines of parallel TLs

3. A 32 bit bus encoded with 40 wires with a memory code

4. A 32 bit bus encoded with 46 wires with a memoryless code

5. While 63 wires are used for simple shielding of 32 bit bus

Data at t = n·T

Data at t = (n+1)·T

valid

0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0

valid valid invalid

75

7. IBIS (I/O Buffer Information Spec) model

and power integrity

76

IBIS(I/O Buffer Information Specification)

• includes electrical model of chip I/O pins

• includes DC I/V characteristics of I/O pins

• includes L R C parasitic elements of I/O pins

• combined with the netlist of PCB TL & passive elements PC board level simulation

• Do not contain chip internal circuitry easy to distribute

• http://www.eigroup.org/ibis/

77

IBIS model (v 3.2) (1/3)[Voltage Range] pin

[Power Clamp Reference]

Chip

GND

Pin

GND or [GND Clamp Reference]

GND Clamp [Pull down]

[Pull up]

C_comp C_pkg

R_pkg L_pkg

POWER Clamp

C_comp : silicon die capacitanceTerminator: [Pullup] replaced by Rpower, [Pulldown] replaced by Rgnd

78

IBIS example: A 16Mb SSTL DRAM chip[Component] KM44S4021BT, Samsung Electronics Co.

[Package] | [Package] & [Pin] not used in HSPICE| typ min maxR_pkg 236mOhm 171mOhm 301mOhm <default values L_pkg 5.65nH 4.33nH 6.97nH <default values C_pkg 0.97pF 0.84pF 1.10pF <default values

[Pin] signal model R_pin L_pin C_pin4 DQ0 DQ_LVTTL 241mOhm 5.60nH 1.07pF32 CLK IN_CLK 191mOhm 4.63nH 0.92pF13 /CAS IN_other 191mOhm 4.63nH 0.92pF14 /RAS IN_other 201mOhm 4.80nH 0.95pF16 A11 IN_other 221mOhm 5.30nH 1.05pF1 Vdd POWER5 Vddq POWER7 Vssq GND23 Vss GND

IBIS model (2/3)

79

[Model] DQ_LVTTL | [Model] used in HSPICEModel_type I/OPolarity InvertingEnable Active-HighVinh = 2.0V <VIH>Vinl = 0.8V <VIL>Vmeas = 1.4V <for delay time calculation>Cref = 50pF <Load capacitance @ measurement>| typ min maxC_comp 2.5pF 2.0pF 3.0pF < cap of pin to silicon sub >

typ min max[Voltage range] 3.3V 3.0V 3.6V[Pulldown]| DC I/V characteristic of pulldown NMOSFET | for Vout from –Vcc to 2Vcc, + current flows from pin to chip|Voltage I(typ) I(min) I(max)-3.6 -245mA -219mA -260mA-3.3 -233mA -207mA -256mA-3.0 -218mA -193mA -251mA

………..7.2 108mA 86.0mA 137mA

IBIS model (3/3)

80

btx1 vdd vss out1 in1 e1 nd_11 +file='IBIS_SSDDR.ibs' model='DQ_FULL' power=offrtx1 out1 out1_p 650mltx1 out1_p tx_out 3.47nctx1 tx_out 0 1.02p

w1 N=1 tx_out 0 rx_in 0 RLGCfile=para_test.rlc L=0.05

brx1 vdd vss rin rx_out e2 nd_12 +file='IBIS_SSDDR.ibs' model='DQ_FULL' power=offrrx1 rin rin_p 650mlrx1 rin_p rx_in 3.47ncrx1 rx_in 0 1.02p

TX

TX_PKG

RX

RX_PKG

Transmission Line

How to use IBIS in SPICE (1/2) HSPICE netlist

81

How to use IBIS in SPICE (2/2)

TL

IBIS PKG

TX

Vin

IBISPKG

RX

Rin

Vin

Rin

82

Power Integrity PDS: power distribution system

To reduce ground bounce & supply droop,keep a small VDD-VSS impedance at all frequencies

At low frequency use decoupling capacitor to reduce VDD-VSS impedance

At high frequency minimize loop inductance of decoupling cap & chip’s pad

How to design PDS(1) Use a voltage regulator module(VRM) to keep low impedance

at very low frequency up to several kHz(2) Determine the value of electrolytic cap for low frequency(3) Determine the target impedance seen by chip(4) Decide ceramic capacitors with different resonant frequencies

to keep the impedance low at high frequency(5) Decide the on-chip bypass capacitor(OBC) value to keep low

impedance for frequencies of several hundred or MHz higher

83

Design example: 1.8V supply, max allowed ripple +-5% with a 20A current pulse(36 Watt), a rise time 0.5ns,

100MHz, duty cycle 50%

(1) VRM (Voltage Regulator Module)Example: 3.3V-to-1.8V converter, response time 15 usec

(2) Determine the value of electrolytic capacitor for low frequency

How to design PDS (1/2)

Because of ESR and ESL of electrolytic cap, choose a larger valued electrolytic cap 2 x 2700uF chosen

FsVtI µµ 3333

8.105.01520

05.0=

××

=×∆×

=Required electrolytic capacitance

[L.Smith 1999]

84

(3) Determine the target impedance seen by chip

How to design PDS (2/2)

Ω=×

= mCurrentMax

RippleAllowedVoltageSupply 5.420

05.08.1)(

)()(

Target impedance seen by chip

[L.Smith 1999]

(4) Decide ceramic capacitors with different resonant frequencies to keep the impedance low for the desired frequency range at high frequency side

140 MLCC(multi layer ceramic capacitors) chosen with SPICEDifferent kinds of MLCCs with different resonant frequencies were chosen to cover the desired frequency range

(5) Decide the on-chip bypass capacitor(OBC) value to keep low impedance for frequencies of several hundred or MHz higher

OBC of 300nF chosen, Robc=0.004 Ohm chosen with SPICE

85

Relation between target impedance & the transient supply voltage

The impedance seen by chip must be kept smaller than Ztarget

for all frequency range of interest

Ω=×

= − mA

VI

RippleAllowedVZPEAK

SSDDTARGET 5.4

2005.08.1_

An impulse current waveform assumed.

)()( tIti PEAKSSDD δ⋅=−

∫−+

− ⋅=BW

BW

tjSSDD dejVtv ωω

πω)(ˆ

21)(

PEAK

BW

BW

tjPEAKSSDD IdtetIjI =⋅⋅= ∫−

−−

ωδω )()(ˆ

TARGETPEAK ZIjZjIjV ⋅≤⋅= )()(ˆ)(ˆ ωωω

)(_)()( tRippleAllowedVtZItv SSDDTARGETPEAKSSDD δδ ⋅×=⋅⋅≤ −−

Fluctuation in supply voltage.

BW: frequency range of interest.

86

Decoupling capacitors chosen

50mΩ0.5nH30x1nF

100mΩ0.5nH30x2.7nF

100mΩ0.5nH10x4.7nF

100mΩ0.5nH10x10nF

100mΩ0.5nH10x22nF

100mΩ0.5nH10x33nF

100mΩ0.5nH10x100nF

100mΩ0.5nH10x1uF

Multi-Layer Ceramic

Capacitor (MLCC)

140

Electrolytic Capacitor (2 or 7)

Capacitor

100mΩ0.5nH10x3.3uF

100mΩ0.5nH10x10uF

30mΩ7nH(2 or 7) x2700uF

ESRESLCapacitance

[L.Smith 1999]

87

PDS: electrical model

1mΩR0

67.5nHL_slew30mΩR_flat4nHL_out

Lpkg

VRM model

Lpkg=0.004nH (=2x0.4nH/200pins)200 VDD pins, 200 VSS pins

88

VDD-VSS impedance in frequency domain

1. VRM only2. VRM + 7 Electrolytic Cap.3. VRM + 7 Electrolytic Cap.+ MLCC4. VRM + 7 Electrolytic Cap.+ MLCC + OBC5. VRM + 2 Electrolytic Cap.+ MLCC + OBC

Target impedance = 4.5m

12

3

Frequency

4

5

|Z|

89

VDD-VSS: time domain voltage waveform

(*) : limited to -0.7V~VDD+0.7V by clamping diodes

I =20A, 0.5ns rise time

Time

162V

-159V

34.0V

-30.4V2.07V

1.47V

1.82V1.72V

1.VRM(*)

2. +7Electrolyticcapacitor(*)

3. +MLCC(18.3%)

4. +OBC(4.4%)

5. 2 Electro. cap +MLCC+OBC(5%)

1.81V

1.71V

90

8. References1. E. Bogatin, “Signal Integrity Simplified”, Prentice Hall, 20042. B.Gunning, L.Yuan, T.Nguyen, T.Wong, “A CMOS Low-Voltage-Swing Transmission-Line

Transceiver”, ISSCC 1992 Digest, pp.58-593. H.W.Johnson, “High-Speed Digital Design: A Handbook of Black Magic”, Prentice Hall, 1993 4. S.H.Hall, G.W.Hall, J.A.McCall, “High-Speed Digital System Design: A Handbook of

Interconnect Theory and Design Practices”, John Wiley & Sons, 20005. H.Johnson, M.Graham, “High-Speed Signal Propagation: Advanced Black Magic”, Prentice Hall,

20036. H.W.Ott, “Noise Reduction Techniques in Electronic Systems”, 2nd Edition, John Wiley & Sons,

19887. H.B.Lee, K. Lee, H.K.Jung, H.J.Park, "Extraction of LRGC Matrices for 8-coupled uniform lossy

transmission lines using 2-port VNA Measurements", IEICE Trans. on Electronics, vol.E89-C, no.3, Mar. 2006.

8. Y.S.Sohn, J.C.Lee, H.J.Park, S.I.Cho, “Empirical Equations on Electrical Parameters of Coupled Microstrip Lines for Crosstalk Estimation in Printed Circuit Board”, IEEE Trans. Advanced Packaging, vol.24, no.4, Nov.2001, pp.521-527

9. W.Guggenbuhl, G.Morbach, “Forward Crosstalk Compensation on Bus Lines”, IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, Vol.40, No.8, Aug, pp.523–527, 1993

10. B.Victor, K.Keutzer, “Bus Encoding to Prevent Crosstalk Delay”, IEEE/ACM International Conference on Computer Aided Design, Nov, pp. 57 – 63, 2001

11. L.D.Smith, R.E.Anderson, D.W.Forehand, T.J.Pelc, T.Roy, “Power Distribution System Design Methodology and Capacitor Selection for Modern CMOS Technology”, IEEE Trans. Advanced Packaging, vol.22, no.3, Aug. 1999, pp.284-291

91

Acknowledgements

Thanks to

Dr. Hyun-Bae Lee,

Mr. Jae-Seung Lee,

Mr. Hyung-Joon Chi,

Mr. Kyoung-Ho Lee,

Mr. Hae-Kang Jung

for help in preparing slide materials


Recommended