+ All Categories
Home > Documents > Tutorial on EV Design-I

Tutorial on EV Design-I

Date post: 14-Apr-2018
Category:
Upload: al-janez
View: 221 times
Download: 0 times
Share this document with a friend

of 24

Transcript
  • 7/30/2019 Tutorial on EV Design-I

    1/24

    u

    ElectricVehicleDesign

    TaiRanHsu,Ph.D.

    DepartmentofMechanicalandAerospaceEngineering

    SanJose,California

    October12,

    2011

    TaiRanHsu

    nd , , , ,

    NewYork,ISBN:9780071543736,1994

    SpartanZeroEmissionsHybridHumanPoweredVehicleZEMHHPV,byAmandeep Manik,

    ScottMacPherson,HeathFieldsandMarkRafael,SanStateUniversitystudentseniordesign

    projectreport,ElectricalEngineeringDepartment,May2008

  • 7/30/2019 Tutorial on EV Design-I

    2/24

    Content

    Part1TheBasics

    HistoryofElectricVehicles

    Anatomyof

    EVs

    DesignforPower

    DriveTrain

    DesignforVelocityandNochargeCruisingRange

    Part2Hybrid

    EVs

    and

    Regenerative

    Braking

    System

    RegenerativeBrakingSystems(RBS)forHybridGaselectricVehicles

    TheFlywheelDrivenRBS

  • 7/30/2019 Tutorial on EV Design-I

    3/24

    ElectricVehicles PastandPresent

    LightWeight,Low Speed

    NeighborhoodandLightUtilityVehicles(Limitedtostreetswithlowpostedspeedlimits)

    HighSpeed,LongCruisingRange

    (Freewaylegal)

    NissanLeaf(2010) TeslaRoadster

    ChevyVolt(2011) TeslaModelS(2012)

  • 7/30/2019 Tutorial on EV Design-I

    4/24

  • 7/30/2019 Tutorial on EV Design-I

    5/24

    DesignforPower

    TheveryfirstiteminEVdesignistodeterminehowmuchelectricpower

    requiredto

    drivethevehicle atatopvelocitywithexpectedpayloadsfora nochargecruising

    range.Asimpleformulafromrigidbodydynamicswilldothejob.

    thefollowingforces:1)Thefrictionforcesbetweenthewheeltiresandtheroadsurface(Ff)

    2 T eaero ynamicresistance Fr

    3)Thedynamicforcesassociatedaccompaniedwithanyaccelerations(Fd)

    g

    V,aFr

    Ff

    Fd

    W=mg

    Fg

  • 7/30/2019 Tutorial on EV Design-I

    6/24

    ElectricPowerRequirement

    Thepower(P)requiredtodrivethevehicleatvelocityVis:

    ) VFFFFP gdrf +++=wherePhastheunitofhorsepower(hp);Fin(lb);Vin(ft/s)

    1hp=550ftlb/s

    InSIsystem: PhasaunitofWatt(W):1W=1J/s;(1J=1Nm),

    so1W=1Nm s,an 1 W=0.7457 p

  • 7/30/2019 Tutorial on EV Design-I

    7/24

    ForcesonRunningEVs

    Fr ,

    Fd

    f

    W=mg

    Fg

    Thetotalweight ofthevehicle(curbwt.+payload)isveryimportantinthedesign

    Normally weight distribution is about 45% on front axel

    required power for EVs with 4 wheels:

    Ff =N = (W/4)

    where = coefficient of friction, or rolling resistance factor between wheel tires

    and road surface:

    = 0.015 on a hard surface (concrete)

    = 0.08 on a medium-hard surface (asphalt)

    = 0.3 on a soft surface (sand)

    The-values may vary with speed V (mph) with: = 0.012 (1 + V/100)

  • 7/30/2019 Tutorial on EV Design-I

    8/24

    ForcesonRunningEVs contd

    Fr ,

    Fd

    f

    W=mg

    Fg

    Theaerodynamicdragforce(Fr)tothevehicleisunavoidablewhenitisrunning.Itcanbeexpressedas:

    Fr =(Cd AV2)/391 withnegligiblewind

    whereFr isin(lb),Aisthefrontalareain(ft2)andVisthevelocityofthevehiclein(mph)

    ThedragcoefficientCd fortypicalEVsare:

    Cd =0.3to0.35forcars;0.33to0.35forvans;and0.42to0.46forpickuptrucks

    CoefficientCd needstobemodifiedwhenthereisarelativewindvelocityofVw present:Cw =[0.98(Vw/V)

    2 +0.63(Vw/V)]Crw 0.4(Vw/V)

    where Vw =averagewindvelocity(mph);V=vehiclevelocity(mph);Crw =relativewindcoefficient=1.4

    formostsedans

    Totalaerodynamicdragforceonvehicleis:

    Fr =(Cd A

    V

    2

    )/391+[0.98

    (Vw/V)

    2

    +0.63

    (Vw/V)]Crw 0.4

    (Vw/V)

  • 7/30/2019 Tutorial on EV Design-I

    9/24

    ForcesonRunningEVs endsV,a

    Fr

    Ff

    Fd

    Dynamicforces(F )tothevehicleneedstobeaccountedforonlyifthevehiclechangesitsvelocity

    W=mg

    Fg

    e.g.,inaccelerationsordecelerations. Themagnitudeoftheseforcesis:

    Fd =

    Ma

    where M = mass in slug or kg in SI system; and a = acceleration with (+) sign and deceleration with

    (-) sign in unit of ft/s2 of m/s2 in SI system

    Gravitational,orbodyforce(Fg)indeterminingtherequiredpoweronlywhenthevehicletravelson

    slopedroads.Itsmagnitudeis:Fg = W Sin

    in which W = the total weight of the vehicle; = is the inclination of the road surface. A +ve sign for

    traveling up the slope and a ve sign for down-slope traveling.

    NoticeAll

    forces

    are

    related

    to

    the

    WEIGHT

    of

    the

    vehicle.

    Minimizing

    weight

    is

    amajorconsiderationindesign

  • 7/30/2019 Tutorial on EV Design-I

    10/24

    TypicalDriveTrainofEVs

    Wheel

    ManualMotor&Differential

    GearDriveShaft

    TransmissionController

    DriveAxles

    Wheel

    BatteryBanks

    &BMS

  • 7/30/2019 Tutorial on EV Design-I

    11/24

    DesignofDriveTrain

    Threeusefulformula:

    h = Tor ue xm hxRevolution/mile / 315120x for selectin motor

    Torquewheel =Torquemotor x(OverallgearratioxOveralldrivetrainefficiency()

    Speedwheel (mph)=(rpmmotor x60)/(Overallgearratioxrevolution/mile)

    where 0.9, Overallgearratio=rpmmotor/rpmwheel

    Determine thetorqueofwheels:

    Torquewheel =Ff R+Fh

    whereR=radiusofdrivingwheeltire,ft;h=distancebetweencenterofgravity(CG)

    ofthevehicleandthewheelaxel,ft

  • 7/30/2019 Tutorial on EV Design-I

    12/24

    DesignofElectricSystemandBMS

    Electricsystemanditsassociatedbatterymanagementsystem(BMS)arethecardiologysystem

    ofhumanbodies.MostEVscontainasystemasillustratedbelow:

    BatteryCharger

    e.g.,48DCV,15A

    BatteryBanks

    e.g.48DCV,4000Wh ea.

    DC DC

    Converter

    48DCV

    SPDTSwitch

    120VAC

    Power

    Source

    MainContactor

    400AMax

    ReverseContactor

    400AMax

    Electronic Throttle

    Motor

    Controller

    48DCV,250A(1hr)

    &ControlSwitching

    DCMotore.g.,10hp(40hppeak)

    48 72DCVserieswound

    ConnectedtoMechanicalDriveSystem

  • 7/30/2019 Tutorial on EV Design-I

    13/24

    MajorComponentsinElectricalSystem

    ComponentName Picture PrincipalFunction

    Batterycharger 15Awallchargerfrom110ACVto

    . .,

    Main contactor Itisaheavydutysafetyswitch

    Reversecontactor Toallowelectronically controlled

    Motorcontroller Tocontrolmotorspeedandallowssafe

    reversin

    DCmotor ThemotorthatdrivestheEV.Should

    deliverthemaximumdesigned power

    fortheEV

  • 7/30/2019 Tutorial on EV Design-I

    14/24

    BatteriesforElectricVehicles

    .Nocarcanrunwithoutgastank.Thelargerthegastankthefartherthecarruns.

    Batteriesarewherethevehicledrivingenergyisstored. NoEVorHEVcanrunwithoutbatteries.

    , .

    Characteristics LeadAcid LithiumIon NickeMetalHydride

    CommonBatteries

    for

    Vehicles

    Pbacid Liion NiMH

    Voltage(v) 12 3.2to3.6percell 1.4to1.6percell

    Electrolytec Surfuric

    acid Lithium

    salts

    Alkaline

    TheorecticalEnergyDensity 3542 150250 6070

    (kW/kg)

    TheoreticalAmphr 45 3to12 5to10

    .

    Regularchargingtime(hr) 4to8 1.5to2 1

    Memoryeffect Atlowvoltage No No

    Selfdischarge 2to10%/mo 1%/mo >30%/mo

    Cost Low Hig Mo erate

  • 7/30/2019 Tutorial on EV Design-I

    15/24

  • 7/30/2019 Tutorial on EV Design-I

    16/24

    DesignforVelocity

    ThevelocityoftheEVrelatestothespeedofthedrivingmotorandthedrivetrain

    o eve c e,ass own y e ormu a:Speedvehicle (mph)=(RPMmotor x60)/(overallgearratioxrevolutions/mile)

    where Overallgearratio=RPMmotor/RPMwheel

    Revolutions/mile=5280/(d)inwhichd=diameterofwheeltireinft

    Thevelocity(orspeed)ofthevehicle(V)inthefollowingformulaisalsorelatedtothe

    Obviously,theelectricpower(P)intheaboveequationmustbegreaterthanthepower

    requiredto

    drive

    the

    motor

    (hpmotor)

  • 7/30/2019 Tutorial on EV Design-I

    17/24

    DesignforNochargeRange

    ecru s ngrangeo an epen son ow astt eve c etrave sonspec c

    roadconditionsandthetrafficenroute.

    Thecruisin ran eofanEV R canbeobtainedb usin thefollowin formula:

    R =nE Vav/P miles

    where n=totalno.ofbatteriesorcells

    E =(TheoreticalAmph)x(voltageoutputbyeachbatteryorcell,v)from

    characteristicsoftheselectedbatteries(Wh)av = verageve c eve oc ty m es r

    P =Requiredpowertodrivethevehicle,W

  • 7/30/2019 Tutorial on EV Design-I

    18/24

    DesignCase

    A neighborhoodelectricvehiclewithacurbweightat1200lbs andisdesignedtocarrya

    payloadof400lbs.thevehicleisdesignedtooperateunderthefollowingconditions:

    1) Thevehicleispoweredby2banksofleadacidbatterieswith12voutputbyeachbattery.

    Eachbankconsistsof4batteriesconnectedinseries. TheDCamphoutputis45/battery.2) Travelsonstraightflatconcretepavedroadswithanaverageslope av =3

    o.

    3) MaximumspeedVmax =35mphwithanaveragespeedVav =25mph(or36.67ft/s).

    Thelatterisusedasthedesignedvelocity

    4) Thevehicleisdesignedtoaccelerationfromzeroto25mphin30secondsaftereachstop.

    5) Thevehiclehasasmallfrontsurfaceareaof8ft2 withanaerodynamicdragcoefficientCd =0.3.

    6) Thevehiclewheeltirediameteris20inches.

  • 7/30/2019 Tutorial on EV Design-I

    19/24

    Designforpowerrequirement:

    canbeobtainedbytheequation:

    whereV=Vav =25mph=25x5280/3600ft/s=36.67ft/s

    Thefrictionforce: Ff = W/4 =0.015x(1600)/4=6lbs

    Theaerodynamicdragforce:Fr =(CdAV2)/391=(0.3x8x252)/391=1.4lbs

    ThedynamicforceFd =Ma=(1600/32.2)x[(36.67 0)/30]=60.7lbs

    ThegravitationalforceFg =WSin =1600Sin(3o)=83.74lbs

    TotalforcesactingonthevehicleisF =6+1.4+60.7+83.74=151.84lbs

    HencetherequiredpowerP =FV=151.84x36.67ftlbs/s=5568ftlbs/s

    =5568 550 p =10.12 p

    =10.12/0.7457kW=13.58kW

  • 7/30/2019 Tutorial on EV Design-I

    20/24

    SelectionofDCmotor:

    se e ormu a: pmotor =

    orquewheel xmp

    x

    evo u on m e

    x

    Intheaboveformula:

    Torquewheel =FfR +Fh withR=10/12=0.833ftandh=2ft(estimated)

    with forces:Ff=6lbs,Fr=1.4lbs,Fd =60.7lbs,andFg =83.74lbs,

    andRevolution/mile=5280(ft/mi)/(2R) (ft/rev) = 1009 rev/mi,

    an = . , a common assump on, we ave e orsepower o e mo or o e:

    Hpmotor =[6x10/12+(1.4+60.7+83.74)x2]x25(mph)x1009rev/mi/(315120x0.9)=26.39hp

  • 7/30/2019 Tutorial on EV Design-I

    21/24

    DesignforNochargeRange

    R =nE Vav/P

    w ere n=no.o a er es=

    E =

    (TheoreticalAmph)x(voltageoutputbyeachbatteryorcell,v)fromcharacteristicsoftheselectedbatteries(Wh)

    =45(Amph)x12(v)=540Wh

    = av = mp

    P= Requiredpowertodrivethevehicle=13.58kW=13580W

    Hencethenochargecruisingrangeis:

    R=8x540x25/13580=0.318mi

    ThisnochargecruisingrangeRfortheEVisUNACCEPTABLYLOW!!

    Oneneedtoeitherusemoreandmorepowerfulbatteries(n),orcutdownthepower

    requirement(P)byreducingtheweight (W)ofthevehicle.

  • 7/30/2019 Tutorial on EV Design-I

    22/24

    in nochargecruisingrange:

    d

    Higher

    spe

  • 7/30/2019 Tutorial on EV Design-I

    23/24

    EVswithHigher VelocityandBetterNochargeCruisingRange

    Maximumvelocity(V)andNochargecruisingrange(R)arethetwomostimportantdesign

    .presenceinmarketplace.

    Uptillveryrecently,mostEVscouldonlybeusedforwhatistermedasneighborhood

    .

    LowVandRareprimarilyattributedtothe limitedelectricpowerandtheenergystorage

    systemsusinglessthanefficientbatteries.

    FordFocus

    Electric

    MitsubishiI NissanLeaf TeslaModelS

    E ectr cVe c esonCurrentMar et

    , ,

    Milesper

    charge

    Upto100miles 50to85miles 100miles 160 to300miles

    dependto

    batterypackSeats Five Four Five Seven

    ro ec e

    availability

    a e a rea y

    available

    ar y

    *Qualifyfor$7,500federaltaxcreditwithpossible$5,000staterebate.Source:MakeWayforElectricVehiclesSanJoseMercuryNews,April3,2011

  • 7/30/2019 Tutorial on EV Design-I

    24/24

    Low wei ht

    Streamline exterior

    Simple drive train DC to get started

    o run a ove mp

    Use more high frequency components (> 400 Hz)

    DC motor that gets 96 volts

    AC motor that gets 400 volts

    Matching controller and motor impedance

    Use high energy density batteries


Recommended