+ All Categories
Home > Documents > Two dimensional staggered current phase

Two dimensional staggered current phase

Date post: 30-Jan-2016
Category:
Upload: tyanne
View: 81 times
Download: 2 times
Share this document with a friend
Description:
Two dimensional staggered current phase. Congjun Wu. Kavli Institute for Theoretical Physics, UCSB. Reference: C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, 247007 (2005). C. Wu and S. C. Zhang, Phys. Rev. B 71, 155115(2005); - PowerPoint PPT Presentation
Popular Tags:
36
1 Two dimensional staggered current phase Congjun Wu Reference: C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, 247007 (2005). C. Wu and S. C. Zhang, Phys. Rev. B 71, 155115(2005); S. Capponi, C. Wu and S. C. Zhang, Phys. Rev. B 70, 220505(R) (2004). Kavli Institute for Theoretical Physics, UCSB UCSB, 01/13/2006
Transcript
Page 1: Two dimensional staggered current phase

1

Two dimensional staggered current phase

Congjun Wu

Reference: C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, 247007 (2005).

C. Wu and S. C. Zhang, Phys. Rev. B 71, 155115(2005);

S. Capponi, C. Wu and S. C. Zhang, Phys. Rev. B 70, 220505(R) (2004).

Kavli Institute for Theoretical Physics, UCSB

UCSB, 01/13/2006

Page 2: Two dimensional staggered current phase

2

Collaborators

• S. C. Zhang, Stanford.

• S. Capponi, Université Paul Sabatier, Toulouse, France.

Many thanks to D. Ceperley, D. Scalapino for helpful discussions.

• J. Zaanen, Instituut-Lorentz for Theoretical Physics, Leiden University, the Netherlands.

Page 3: Two dimensional staggered current phase

3

Background: pseudogap in high Tc superconductivity

• D-density wave state? It is related but different from the staggered flux phase.

Chakravarty, et. al., PRB 63, 94503 (2000);

M. Hermele, T. Senthil, M. P. A. Fisher, PRB 72, 104404 (2005).

Affleck and Marston, PRB 37, 3774 (1988);

Lee and Wen, PRL 76, 503 (1996).

• Estimated orbital AF magnetic moment per plaquette .

B21

• Neutron scattering results are controversial.

H. A. Mook et al., PRB 69, 134509 (2004). C. Stock et al., PRB 66, 024505 (2002).

Page 4: Two dimensional staggered current phase

4

Background: T=17K transition in URu2Si2

P. Coleman, et al., Nature 417, 831 (2002).

O. O. Bernal, PRL 87, 196402 (2001).

• AF moments are too small to explain the specific heat anomaly.• Hidden order. Incommensurate orbit current state?• NMR line-width broadening below Tc.

Page 5: Two dimensional staggered current phase

5

Background: two-leg ladder systems

• Analytical results: Bosonization + RG.

• Numerical results: DMRG. Marston et. al., PRL 89, 56404, (2002); U. Schollwöck et al., PRL 90, 186401,

(2003). D. Scalapino, S. White, and I. Affleck, Phys. Rev. B 64, 100506 (2001).

H. H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 58, (1998)J. Fjarestad, and J. B. Marston, Phys. Rev. B 65, 125106 (2002).C. Wu , W. V. Liu, and E. Fradkin, Phys. Rev. B 68, 115104(2003)

Page 6: Two dimensional staggered current phase

6

Use spin-orbit coupling to probe the DDW phase

• SO coupling induced ferromagnetism in the DDW phase in La2-xBaxCu2O4.

• The DDW state: staggered orbital moments.

The ferromagnetic state: uniform spin moments.

Staggered Dzyaloshinskii-Moriya SO coupling.

• Ferromagnetic moments ( ) along [110] direction.

B21

C. Wu, J. Zaanen, and S. C. Zhang, Phys. Rev. Lett. 95, 247007 (2005).

Page 7: Two dimensional staggered current phase

7

Reliable 2D QMC results without the sign problem!

top view d-density wave

S. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

• 2D staggered currents in a bi-layer model.

• Alternating sources and drains; curl free v.s. source free

Page 8: Two dimensional staggered current phase

8

Outline

• The 2D staggered ground state current phase in a bi-layer model.

• Spin-orbit coupling induced ferromagnetism in the DDW phase in La2-xBaxCu2O4.

• T-invariant decomposition and the sign problem in quantum Monte Carlo simulations.

Page 9: Two dimensional staggered current phase

9

The tilt distortion in La2-xBaxCuO4

• Low temperature orthorhombic (LTO) phase at doping<0.12.

,0 .}.)({

ijjij chcitcH

• Spin processes as electron hops in the lattice. Time reversal invariance requires the appearance of “i”.

• The Dzyaloshinskii-Moriya type SO coupling appears in the band structure.

Page 10: Two dimensional staggered current phase

10

Pattern of the DM vector N. E. Bonesteel et al., PRL 68, 2684 (1992).

• 2-fold rotations around c axis on O sites.

• Inversion respect to Cu sites.

• Reflection respect to the [110] direction.

)0,,()(,)0,,()( 12ˆ,21ˆ, i

eiii

eii yx

0, zji

zijzzji

jiij

• Hermitian.

yxyx eiiieiyxyx eiei,, ˆ,,ˆ,, ,

xyeii

yxeiixyyxyx yx

eiei ,ˆ,

,ˆ,,,,

• DM vectors:

Page 11: Two dimensional staggered current phase

11

SO coupling induced ferromagnetism in the DDW phase

• DM coupling as staggered spin flux. Assume 21

.).

()(Im

,

,,

int,

chcc

cciH

y

x

eii

eiij

ii

MF

• DDW as staggered charge flux.

.).

()(

,,1

,,,1

chcc

cciH

y

x

eii

ijeii

iDM

2/)(2,1 yx

• Ferromagnetic moments appear with doping.

//k

mev)20,mev2,mev100( t

1.0// S

Page 12: Two dimensional staggered current phase

12

• Spin polarization is fixed along the [110] direction regardless of the ration of .

General pattern of the DM vector

)( yxddw SSgOF

Sx+Sy Sx-Sy Sz DDW

TR odd odd odd odd

Two-fold rotation

odd odd even odd

reflection odd even even odd

21 /

Page 13: Two dimensional staggered current phase

13

• In realistic systems, .

S is only suppressed 15% compared to the value at .

General pattern of DM vectors 21

1221 , • Define

chckkkicH Qkk

kk .)(2 ,//21//,

• The magnitude of ferromagnetic moment is also robust due to the large anisotropy of the Dirac cones.

k

//k

)2

,2

(

mev221

21

Page 14: Two dimensional staggered current phase

14

• Ferromagnetic moments should be easy to detect by neutron scattering, muon spin relaxation, hysteresis behavior etc. So far, no such moments are reported.

Experiment proposal

• SO coupling by itself does not induce spin moments in superconducting phase due to the TR invariance.

Page 15: Two dimensional staggered current phase

15

• If the DDW phase does not exists, a spin polarization along the [110] direction can induce a DDW orbital moment.

Staggered spin galvanic effect

Page 16: Two dimensional staggered current phase

16

• Due to the CuO pyramid, the inversion symmetry is broken in each layer. SO coupling is the uniform Rashba type but with opposite sign for two adjacent layers.

YBCO system (under investigation)

• Pairing structure: mixed singlet and triplet pairing.

• Rashba coupling effect in the DDW phase.

No spin moments on Cu sites, but AF moments can appear on O sites.

C. Wu, J. Zaanen, in preparation.

Page 17: Two dimensional staggered current phase

17

Outline

• The 2D staggered ground state current phase in a bi-layer model.

• Spin-orbit coupling induced ferromagnetism in the DDW phase in La2-xBaxCu2O4.

• T-invariant decomposition and the sign problem in quantum Monte Carlo simulations.

Page 18: Two dimensional staggered current phase

18

The bi-layer Scalapino-Zhang-Hanke Model

D. Scalapino, S. C. Zhang, and W. Hanke, PRB 58, 443 (1998).

)1()1()())((

)(}.{}.{

,,2

1,,2

1,,

//

dii

cicii

ciij

idic

iji

ijij

iji

nnVdcnnUSSJ

inchdctchddcctH

//t

t V J

U c

d

• U, V, J are interactions within the rung.

• No inter-rung interaction.

Page 19: Two dimensional staggered current phase

19

Reliable 2D QMC results without the sign problem!

top view d-density waveS. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

• T=Time reversal operation

*flipping two layers

• Alternating sources and drains; curl free v.s. source free

• T-invariant decomposition in quantum Monte Carlo (QMC) simulations.

Page 20: Two dimensional staggered current phase

20

Fermionic auxiliary field QMC results at T=0K

0.2,5.0,0,1.0,1// JVUtt

),()()(

)()(1

)(2

QrJeQJ

rrnrnL

rJ

r

rQi

iicurricurr

• Finite scaling of J(Q)/L2 v.s. 1/L.

• True long range Ising order.

• The equal time staggered current-current correlations

S. Capponi, C. Wu and S. C. Zhang, PRB 70, 220505 (R) (2004).

Page 21: Two dimensional staggered current phase

21

Disappearance of the staggered current phase

ti) increase

ii) increase

)(4

3 JVUE

iii) increase doping

Page 22: Two dimensional staggered current phase

22

Strong coupling analysis at half-filling

• Low energy singlet Hilbert space: doubly occupied states, rung singlet state.

• The largest energy scale J>>U,V.

UJVU4

3:E

• Project out the three rung triplet states.

-=

+

Page 23: Two dimensional staggered current phase

23

Pseudospin SU(2) algebra

)()(2

1 iiii ddcciQ

)()(2 iiiii

curt cddcin

)()(2

1 iiiibd dccdin

rung current

bond strength

cdw

• The pseudospin SU(2) algebra v.s. the spin SU(2) algebra.

c

d

• Pseudospin-1 representation.

down,up|

• Rung current states

UJVU4

3:E

1,0;1: Q

cba ;2

1

2

i

Page 24: Two dimensional staggered current phase

24

• Anisotropic terms break SU(2) down to Z2 .

Pseudospin-1 AF Heisenberg Hamiltonian

• t// induces pseudospin exchange.

)}()()()(

)()({

jQiQjnin

jninJH

bdbd

ijcurtcurtpseudoex

field external uniform:t

)2

1)(()(2 2

ibd iQEintH

c

d

t

//t //t

E

anisotropy site-on :E)(

4

3 JVUE

Page 25: Two dimensional staggered current phase

25

Competing phases

rung singlet

staggered current

• Neel order phases and rung singlet phases.

CDW

staggered bond order

Page 26: Two dimensional staggered current phase

26

Competing phases

ppz zJEzJt 0),4(2

• Subtle conditions for the staggered current phase.

is too large polarized pseudospin along rung bond strength

is too large rung singlet state

the easy axis of the staggered current

SU(2)Z2

favors the easy plane of staggered current and CDW.

t

0E favors the easy plane of staggered current and bond order.

t

E

• 2D spin-1 AF Heisenberg model has long range Neel order.

Page 27: Two dimensional staggered current phase

27

Outline

• The 2D staggered ground state current phase in a bilayer model.

• Spin-orbit coupling induced ferromagnetism in the DDW phase in La2-xBaxCu2O4.

• T-invariant decomposition and the sign problem in quantum Monte Carlo simulations.

Page 28: Two dimensional staggered current phase

28

Auxiliary Field QMC Blankenbecer, Scalapino, and Sugar. PRD 24, 2278 (1981)

Probability: positive number

Fermions:Grassmann

number

Auxiliary field QMC

• Decouple interaction terms using Hubbard-Stratonovich (H-S) bosonic fields.

• Integrate out fermions and the resulting fermion functional determinants work as statistical weights.

• Using path integral formalism, fermions are represented as Grassmann variables.

• Transform Grassmann variables into probability.

Page 29: Two dimensional staggered current phase

29

Absence of the sign problem in the negative U Hubbard model

)2

1)()(

2

1)((||)(}.{

ininUinchcctHii

jij

i

)}det()1),((exp{ 2

02

|| BIinddnZi

U

0)det()det()det( BIBIBI

• Factorize the fermion determinant into two identical real parts.

• HS decoupling in the density channel.

),()()(||)(

})(exp{

,,

0

inccUH

HHdB

ii

iI

IK

• B is the imaginary time evolution operator.

Page 30: Two dimensional staggered current phase

30

The sign (phase) problem!!!

• Huge cancellation in the average of signs.

• Generally, the fermion functional determinants are not positive definite. Sampling with the absolute value of fermion functional determinants.

signsign /OO

• Statistical errors scale exponentially with the inverse of temperatures and the size of samples.

• Finite size scaling and low temperature physics inaccessible.

Page 31: Two dimensional staggered current phase

31

The T (time-reversal) invariant decomposition.

• Applicable in a wide class of multi-band and high models at any doping level and lattice geometry.

• Need a general criterion independent of factorizibility of fermion determinants.

A general criterion: symmetry principle

Reference: C. Wu and S. C. Zhang, Phys. Rev. B 71, 155115(2005); C. Capponi, C. Wu, and S. C. Zhang, Phys. Rev. B 70, 220505(R) (2004). C. Wu and S. C. Zhang, Phys. Rev. Lett. 91, 186402 (2003).

Page 32: Two dimensional staggered current phase

32

• Eigenvalues of I+B appear in complex conjugate pairs (l, l*).

• If l is real, then it is doubly degenerate.

T-invariant decompositionCW and S. C. Zhang, PRB 71, 155115 (2005); E. Koonin et. al., Phys. Rep. 278 1, (1997)

0)())(()det( **22

*11 nnBI

• Theorem: If there exists an anti-unitary transformation T

IIKK HTTHHTTHT 112 ,,1

for any H-S field configuration, then

0)det( BI

• T may not be the physical time reversal operator.

Generalized Kramer’s degeneracy

• I+B may not be Hermitian, and even not be diagonalizable.

Page 33: Two dimensional staggered current phase

33

The sign problem in spin 1/2 Hubbard model

• U<0: H-S decoupling in the density channel.

T-invariant decomposition absence of the sign problem

STSTnTnT

11 ,

• U>0: H-S decoupling in the spin channel.

Generally speaking, the sign problem appears.

• The factorizibility of fermion determinants is not required.

Validity at any doping level and lattice geometry.

Application in multi-band, high spin models.

Page 34: Two dimensional staggered current phase

34

Distribution of eigenvalues

Page 35: Two dimensional staggered current phase

35.

T=Time-reversal*flip two layers

JVUgJ

VUgJVUg

ingingining

inintchddcctH

c

i icAF

icurtbond

iibondjij

ijiSZH

4

334,

44,

4

34

)2)(()()}()({

)()(}.{

2222

//

• Absence of the sign problem at g, g’, gc>0, .

)()(2

1 iiiiAF ddccin

)()(2 iiiii

curt cddcin

)()(2

1 iiiibond dccdin )()( iiii ddccin

c

d

• T-invariant operators: total density, total density;

bond AF, bond current.

Page 36: Two dimensional staggered current phase

36

Summary

• The 2D staggered ground state current phase in a bi-layer model.

• Spin-orbit coupling induced ferromagnetism in the DDW phase in La2-xBaxCu2O4.

• T-invariant decomposition and the sign problem in quantum Monte Carlo simulations.


Recommended