+ All Categories
Home > Documents > Two-photon Precision Spectroscopy of H 2 +

Two-photon Precision Spectroscopy of H 2 +

Date post: 19-Mar-2016
Category:
Upload: miron
View: 44 times
Download: 1 times
Share this document with a friend
Description:
Two-photon Precision Spectroscopy of H 2 +. Jean-Philippe Karr Albane Douillet Vu-Quang Tran, PhD Laurent Hilico. Vladimir Korobov. Rachidi Osseni, post doc Jofre Pedregosa, post doc Franck Bielsa, PhD Tristan Valenzuela, post doc. outline. Motivations Experimental status - PowerPoint PPT Presentation
23
Two-photon Precision Spectroscopy of H 2 + Jean-Philippe Karr Albane Douillet Vu-Quang Tran, PhD Laurent Hilico Rachidi Osseni, post doc Jofre Pedregosa, post doc Franck Bielsa, PhD Tristan Valenzuela, post doc Vladimir Korobov
Transcript
Page 1: Two-photon Precision Spectroscopy of H 2 +

Two-photon Precision

Spectroscopy of H2+

Jean-Philippe KarrAlbane DouilletVu-Quang Tran, PhDLaurent Hilico

Rachidi Osseni, post docJofre Pedregosa, post docFranck Bielsa, PhDTristan Valenzuela, post doc

Vladimir Korobov

Page 2: Two-photon Precision Spectroscopy of H 2 +

outline

• Motivations

• Experimental status

• Theoretical progress

Page 3: Two-photon Precision Spectroscopy of H 2 +

mp/me measurement Why ?

• Fundamental constant determination

• e- g-2 measurement, G. Gabrielse 2008

mp/me codata 1836.152 672 45 (75) 4.1 10-10

91010122 1024.1101.410.2106.62 b

b

Re

p

p

R

mh

mm

mm

cR

Fine structure constant = 1/137,03…

• h/MRb measurement, F. Biraben 2010

h/mRb : 7. 10-10 → 4.2 10-10

mx/my < 10-10 → 3.5 10-10

-1

Page 4: Two-photon Precision Spectroscopy of H 2 +

• Fundamental constant time-variations

• QED test on simple molecules

yearmmmm

ep

ep /10/

)/( 16

HD+, H2+ Ultra narrow lines

Low polarisabilityLow linear Zeeman effect

mp/me measurement Why ?

Astrophysics and spectroscopy H2, HD, NH3, CO, HCO+, HCN …

red shifts analysis t ~ 1010 years

SF6spectroscopy year/106.58.3 14

Laboratory physics

Proposals on CaH+, MgH+, SrH+, …, GeBr+

at 10-16

Page 5: Two-photon Precision Spectroscopy of H 2 +

mP and me in atomic units are determined separatelythrough RF measurements in Penning traps.

Larmor to cyclotron frequency ratio Electron mass

eC

L

mCmg )(

51

2

512

Accuracy

Proton mass : cyclotron frequencies, using 12C4+.

R.S. Van Dyck, Jr. et al., in Trapped Charged Particles and Fundamental PhysicsAIP Conf. Proc. 457, pp. 101-110 (1999).

mp = 1.007 276 466 812 (90)

me = 0.000 548 579 909 46 (22)

4.1 10-10

4.0 10-10

8.9 10-11

Mp/me = 1836.152 672 45 (75)

Codata 2011

mp/me measurement How ?

C, O, Si

Page 6: Two-photon Precision Spectroscopy of H 2 +

9.2 µm

248 nm

• Doppler-free Two-photon spectroscopy

• 2+1’ REMPD

• Trapped ions

• High precision calculations

Method

Internuclear distance (atomic unit)

Ener

gy (a

tom

ic u

nits

)mp/me Direct optical determination by

H2+ spectroscopy

p+

p+

e-

R e

p

mm

/1

2

e

p

e

p

mmmm

32.6 THz ( 9.1 µm ) (1091 cm-1) ~1600 Hz

...1010 1510

expected

Page 7: Two-photon Precision Spectroscopy of H 2 +

What do we know on H2+ ?

Carrington group, Southampton

Lundeen group, H2 Rydberg states

Jefferts group,Hyperfineor Zeeman

spectroscopy

v

L

from R.E. Moss, Molecular Physics, 80, 1541 1993.

Project challenges state selected H2

+ ion production

H2+ trapping

REMPD lasers High precision calculations

exp mp/me

Page 8: Two-photon Precision Spectroscopy of H 2 +

Two-photon transition probabilities

v=0 → v=1 transitions

2P'v,v

f

2430

'v,v Q4I)1(ca4

2

r

2'v,v

P 'vzEH

1zvQ

How to choose v→v’ ?

9.1 µm

Page 9: Two-photon Precision Spectroscopy of H 2 +

Two-photon transition probabilitiesHow to choose L→L’ ?

L=0, v=0 → L=0, v=1

=9.128µm

L=3, v=0 → L=3, v=1:

=9.205µm

L=2, v=0 → L=2, v=1

=9.166µm

Close to a CO2 laser emission lineQuantum Cascade Laser available

Total nuclear spin I=(-1)L

Page 10: Two-photon Precision Spectroscopy of H 2 +

2 mm

Quantum cascade laser(QCL)

248 nmKrF excimer Pulsed Laser

Hyperbolic Paul trap

Optical cavity

Experimental setup

Page 11: Two-photon Precision Spectroscopy of H 2 +

IR laser source

HITRAN

MH

z

v, L

HCOOH : formic or methanoic acid

Page 12: Two-photon Precision Spectroscopy of H 2 +

IR source

2 mm

HCOOH stabilized

CO2 laser

Quantum cascade Laser

RBW : 10 kHzVBW : 1 kHz

Band width ~ 6 MHz

QCL / CO2 beat note

< 200 Hz

O.I.

-10 -5 0 5 10-95

-90

-85

-80

-75

-70

-65

-60

Am

plitu

de [d

B]

fréquence - 550 [MHz] @ 9R42

QCL / CO2 beat note

Free QCL

5 MHz

Page 13: Two-photon Precision Spectroscopy of H 2 +

IR source

Results

• optical power 54 mW• linewidth ~ 3kHz• high finesse cavity (~1000)• Faraday optical isolator at 9.2 µm

F. Bielsa & al., Optics Letters 32, 1641-1643 (2007)

L. Hilico, Rev. Sc. Instr. 82, 096106 (2011)

2ph~0.3 s-1 polarization

2ph~0.07 s-1 + polarization

• HCOOH stabilized CO2 laser

Absolute frequency measurement

F. Bielsa & al. J. Mol. Spectrosc. 247, 41-46 (2008)LPL, Villetaneuse, France

32 708 391 980.5 (1.0) kHz

Page 14: Two-photon Precision Spectroscopy of H 2 +

U (t)

= 2 x 14 MHzDC -10 / +10 VAC 150 V

r0 = 4.2 mmz0 = 3 mm

The ion trap

Page 15: Two-photon Precision Spectroscopy of H 2 +

T=300K

Vibrational distribution Rotational distributionv=0 : 12 %v=1 : 19 %

L=2 : 12 %

Hyperfine structure J=3/2 40%J=5/2 60%

Result : 0.07 x 0.12 x 0.6 = 0.5 %

Very small !!

G. Werth & Al. Z phys D 28, (1993).

H2+ creation: electron impact

Page 16: Two-photon Precision Spectroscopy of H 2 +

)(

)(

2

2

UVnon

UVnSignal

H

H

1- ion creation (~ 500) 1,0 s2- 1 to 30 UV pulses (20 mJ) 0,3 s3- extraction, time of flight and counting

UV

1 2 3

Laser pulse number n

0.32 mJ

1.10 mJ3.25 mJ11.2 mJ34.0 mJ

114 mJ

sign

alPhotodissociation at 248 nm

1 adjustable parameterion cloud size

experiments 0.85 mmnum. simulations 0.83 mm

Page 17: Two-photon Precision Spectroscopy of H 2 +

30 pulses at 34 mJ, pv=0 - pv=1 ~ 33% 2.4 %30 pulses at 114 mJ, pv=0 - pv=1 ~ 86 % 6.2 % drawback : ion losses

L=2, J=5/2

Results

Photodissociation at 248 nm

11 3 svphotodiss• Photodissociation yield

• v=0 v=1 population difference

J.-Ph. Karr & al., Applied Phys. B (2011)

Page 18: Two-photon Precision Spectroscopy of H 2 +

Can we perform H2+ REMPD

spectroscopy ?

11 3 svphotodiss

Ion number fluctuations

12 3.0 sph

13.0 spiège

Two-photon transitionsPhotodissociationTrap losses

N

-40 -30 -20 -10 0 10 20 300,0

0,2

0,4

0,6

0,8

1,0

1,2

sign

al d

e R

EM

PD

fréquence (kHz)1 10 100

0,01

0,1

écar

t typ

e d'

Alla

n

Nombre de points

Present experimentsignal to noise ratio: 0.27

Improvements • H2+ v=0,L=2 population

• 2phSNR ~ 30

Page 19: Two-photon Precision Spectroscopy of H 2 +

Experimental developments• State selected H2

+ ion creation increase v=0 v=1 population difference

Anderson, & Al, Chem. Phys. Lett. 105, 22 (1984)

H2 : v=0, L=0, 1, 2 à 300 K

H2 X1g+, v=0, L=2

H2 Cu-, v=0, L=2

H2+ X g

+, v=0, L + e-

+ 3 h

+ h

3+1 REMPImJ

303 nm10 ns

L

V. Mac Koy

O’Halloran, J. Chem. Phys. 87, 3288 (1987)

0 0.0052 14 0.01P

hoto

-ele

ctro

n y

ield

H2+ branching ratios

v0 11 0.1

v=0 – v=1L=2, J=5/2pop. diff.

0.8 x 1 x 0.6 = 0.48

Page 20: Two-photon Precision Spectroscopy of H 2 +

Experimental developments

• A linear trap for tighter focussing

waist ÷3 2ph x 81

• H2+ sympathetic cooling by laser cooled Be+ ions

T = 300 KSecond order Doppler effect 7 kHz

T = 20 mK negligible

2

2

2cv

Page 21: Two-photon Precision Spectroscopy of H 2 +
Page 22: Two-photon Precision Spectroscopy of H 2 +
Page 23: Two-photon Precision Spectroscopy of H 2 +

Recommended