+ All Categories
Home > Documents > UCIMicrogridWhitePaper FINAL 071713

UCIMicrogridWhitePaper FINAL 071713

Date post: 13-May-2017
Category:
Upload: navidelec
View: 214 times
Download: 0 times
Share this document with a friend
13
UCI Microgrid The University of California, Irvine (UCI) is relatively young with the first graduating class in 1966. Today, UCI is rated first among the 100 best universities less than 50 years old in the nation, and acclaimed internationally for its academic strength in energy and environmental topics as well as its operational record in energy efficiency. As a cornerstone of one of the youngest, largest, and most prestigious planned communities in the country (the City of Irvine), UCI was established on sprawling undeveloped acreage on the bluffs bounding the Pacific Ocean. This allowed the campus to be methodically and systematically designed from scratch with a large, circular central park encircled by a onemile underground utility tunnel loop connected to central energy and information infrastructure. The UCI Microgrid was integral to this modern design along with a modern district heating and cooling system. Today, the UCI Microgrid serves a community of more than 30,000 people and encompasses a wide array of building types (residential, office, research, classroom), transportation options (automobiles, buses, sharedcars, bicycles), and a wide array of distributed energy resources. Through an array of prior and current research programs, the UCI Advanced Power and Energy Program (APEP) has teamed and worked with the UCI Administration and Facilities Management (FM) to integrate key microgrid hardware, software, and simulation assets into the UCI Microgrid. Figure 1 University of California, Irvine Microgrid As shown in Figure 1, the UCI Microgrid is a test bed that (1) is served by Southern California Edison (SCE) through the UCI Substation which steps down voltage from 66kV to 12kV using two 15 MVA transformers, (2) encompasses ten 12kV circuits, (3) includes more than 1 MW of solar power, (4) is served by a 19MW natural gas fired combined cycle plant, (5) incorporates centralized chilling including one of the largest thermal energy storage tanks in the country (4.5 million gallons/60,000 tonhours),
Transcript
Page 1: UCIMicrogridWhitePaper FINAL 071713

UCIMicrogridThe University of California, Irvine (UCI) is relatively young with the first graduating class in 1966.  Today, 

UCI is rated first among the 100 best universities less than 50 years old in the nation, and acclaimed 

internationally for its academic strength in energy and environmental topics as well as its operational 

record in energy efficiency. 

As a cornerstone of one of the youngest, largest, and most prestigious planned communities in the 

country (the City of Irvine), UCI was established on sprawling undeveloped acreage on the bluffs 

bounding the Pacific Ocean.   This allowed the campus to be methodically and systematically designed 

from scratch with a large, circular central park encircled by a one‐mile underground utility tunnel loop 

connected to central energy and information infrastructure.  The UCI Microgrid was integral to this 

modern design along with a modern district heating and cooling system.  Today, the UCI Microgrid 

serves a community of more than 30,000 people and encompasses a wide array of building types 

(residential, office, research, classroom), transportation options (automobiles, buses, shared‐cars, 

bicycles), and a wide array of distributed energy resources.  Through an array of prior and current 

research programs, the UCI Advanced Power and Energy Program (APEP) has teamed and worked with 

the UCI Administration and Facilities Management (FM) to integrate key microgrid hardware, software, 

and simulation assets into the UCI Microgrid.  

 

Figure 1 University of California, Irvine Microgrid 

As shown in Figure 1, the UCI Microgrid is a test bed that (1) is served by Southern California Edison 

(SCE) through the UCI Substation which steps down voltage from 66kV to 12kV using two 15 MVA 

transformers, (2) encompasses ten 12kV circuits, (3) includes more than 1 MW of solar power, (4) is 

served by a 19MW natural gas fired combined cycle plant, (5) incorporates centralized chilling including 

one of the largest thermal energy storage tanks in the country (4.5 million gallons/60,000 ton‐hours), 

Page 2: UCIMicrogridWhitePaper FINAL 071713

and (6) serves all major buildings with district heating and cooling. The UCI Microgrid also contains a 

unique set of distributed energy resources that is unparalleled in the world including: (1) electric vehicle 

charging at multiple parking locations, (2) integrated fuel cell absorption chilling, (3) hydrogen fueling for 

fuel cell vehicles, (4) two‐axis tracking concentrated solar photovoltaic systems, (5) advanced building 

energy efficiency measures, (6) advanced building monitoring and control, and (7) advanced power, 

power quality, and thermal metering.   

The following section presents more details of the major hardware assets of the UCI Microgrid. Each of 

these assets has been inventoried, characterized and modeled.  The subsequent section introduces the 

UCI Microgrid model development and verification via comparison to data acquired by conventional 

metering deployed throughout the microgrid, and advanced high‐resolution and high‐response metering 

at over 100 key locations. 

UCIMicrogridHardwareAssets

SubstationandCampusCircuitsThe electric service for the UCI campus has already experienced a history of change and steady growth 

that defines its present characteristics. The early campus was served directly from two SCE 12 kV circuits 

that entered the UCI central plant. Each of these two circuits separated into sub‐circuits that fed the 

portion of campus around the central plant. A third SCE 12 kV circuit fed the East Substation, which was 

located on the opposite side of campus. This third line also connected to a bus bar that energized more 

sub‐circuits to serve the east side of campus. 

In 1990, the UCI Substation was built to accept a SCE 66 kV service directly and step the voltage down to 

12 kV locally and thereby displace three legacy circuits.  Most buildings in the main UCI campus are still 

served by infrastructure derivative of these three main circuits. The primary feed for the UCI Substation 

is an SCE 66 kV line with a single billing meter. The two UCI Substation transformers, which cannot be 

paralleled, each serve 5 circuits and a capacitor bank. The 12 kV side of the two transformers are 

connected with a tie‐line switch. At present, the two capacitor banks at the UCI Substation are 

disconnected due to a resonance issue that occurred when the 19MW combined cycle plant was 

installed. The turbines associated with the plant generate reactive power to augment this need. 

The history and vision of the UCI electric service have already led to a power system that is flexible for 

modifications. The emphasis on reliability for campus buildings has led most building transformers to 

have two circuit sources that can easily shift load. The circuits themselves are reconfigurable through 

existing switches that were installed to meet various stages of the campus growth. In addition, the utility 

tunnel provides convenient access to re‐conductor critical circuits for increased capacity or to use high 

speed hard‐wired fiber optic communications strategies in the future. At present, most 12 kV circuit 

feeders have available capacity. There are also no exportation limitations for UCI Substation 

transformers, which would significantly increase the local capacity constraints on any distributed energy 

resources on the campus. The flexibility elsewhere in the system may improve capacity challenges on 

the distribution and substation transformers, but these locations are not inherently suited to direct 

modification. 

Page 3: UCIMicrogridWhitePaper FINAL 071713

CentralPlantThe UC Irvine Central Plant consists of 8 electric chillers, a steam turbine chiller, a thermal energy 

storage tank, boilers (used only for backup), a 13.5 MW gas turbine, a heat recovery steam generator 

(HRSG), a duct burner, and a 5.5 MW steam turbine (Figure 2). The central plant serves all the campus 

heating and cooling loads as well as the majority of the campus electric loads. The 8 electric chillers are 

capable of supplying 14,500 tons, and the steam driven chiller is capable of an additional 2,000 tons. The 

campus cooling load averages 3,100 tons (74,400 ton‐hours per day) with a peak annual demand of 

13,900 tons. The thermal energy storage tank uses a thermocline to minimize mixing. The chillers 

operate to facilitate this thermocline while also increasing efficiency by recirculating water exiting the 

chiller back to the chiller inlet until 39 F is maintained at the chilled water exit. The thermal energy 

storage tank is able to shift, on average, 65% of the chilling load during the day to the night when 

electricity prices are lower and temperatures are cooler, which results in more efficient chiller operation 

via better heat rejection through the cooling towers. The campus heating load averages 44 MMBtu/hr 

with a peak annual demand of 100 MMBtu/hr. The heating load is served entirely through recovered 

heat from the gas turbine and use of the duct burner. The HRSG can supply 52,000 lbs/hr steam without 

duct fire and 120,000 lb/hr with duct fire. The campus electric load averages 13.4 MW with a peak 

annual demand of 18.6 MW (note: this is the electric load separated from the electricity used to serve 

the campus cooling loads). The gas turbine and steam turbine supply about 85% of the electrical needs 

on the campus with the balance being served by solar resources (1%) and utility import (14%).  

 

Figure 2 UC Irvine Central Plant 

RenewablePowerUCI has 893 kW of fixed panel solar photovoltaic installed on the rooftops of 12 buildings (Figure 3). This 

system is owned and operated by a third party provider with the electricity purchased by UCI through a 

Page 4: UCIMicrogridWhitePaper FINAL 071713

power purchase agreement. The capacity factor for these panels, in operation since 2008, was 0.187 in 

2012, which is reasonable given the coastal climate. The system provides 1% of the campus electrical 

needs.  An additional 2.8MW of fixed solar PV is scheduled for installation this calendar year. 

 

Figure 3 UCI Microgrid renewable power 

An additional 113 kW of concentrated solar photovoltaic with two‐axis tracking was installed in 2012 as 

part of a research project funded by the California Public Utilities Commission through the California 

Solar Initiative. This research involves collecting CPV and interconnect data to (1) support design 

improvements, (2) inform advanced inverter control studies, and (3) develop and evaluate simulation 

modeling of intermittency on primary circuits. 

Although the campus solar resources are still at a low penetration (1%), these resources are already 

causing the gas turbine to be turned down at times of low electric demand and high solar irradiation. 

Figure 4 shows UCI Microgrid data at 15 minute resolution for a weekend in May 2012. The gas turbine 

can be seen having to respond to changes in solar output. 

Page 5: UCIMicrogridWhitePaper FINAL 071713

 

Figure 4 Gas turbine responding to solar output 

EnterpriseEnergyManagementSystemAt present, APEP and the campus have partnered with MelRoK, LLC to provide an enterprise energy 

management solution capable of interfacing with UCI Microgrid modeling capabilities and allow real 

time information to inform the UCI Microgrid model (see UCI Microgrid Model and Simulation Assets 

section). This solution will consist of installing 100 advanced meters capable of delivering high resolution 

data to the UCI Microgrid model as well as sub‐metering building loads. The locations of these meters 

have been chosen based on a visibility study performed with the UCI Microgrid model. This solution will 

also incorporate existing meters already installed throughout the campus. The data from these meters 

will be presented to the UCI Facilities Management through MelRoK’s EnergiStream software. MelRoK’s 

system is equipped with Demand Response capabilities including Auto‐Demand Response. MelRoK’s 

system, in conjunction with the UCI Microgrid model, will provide the UCI Facilities Management team 

with information necessary to make decisions as more intermittent renewables are installed on the UCI 

Microgrid in addition to allowing the UCI Microgrid to operate as a smart power and demand response 

asset for the California Independent System Operator.  

ElectricVehicleChargingThe campus has installed 8 Coulomb Technologies level 2 chargers that are open for public use. The 

APEP also administers the Zero Emission VehicleNetwork Enabled Transport (ZEVNET) program (Figure 

5). This program currently involves a fleet of 77 advanced vehicles. The vehicles include battery electric 

vehicles (Scion iQ, Toyota Rav4), plug‐in hybrid vehicles (Toyota Prius Plug In), and fuel cell hybrid 

vehicles (Toyota fuel cell vehicles). Some of the vehicles in the program are used for research purposes 

only while others are used in a corporate ride‐share program. 

Page 6: UCIMicrogridWhitePaper FINAL 071713

 

Figure 5 UCI Microgrid electric vehicle charging 

HydrogenFuelingStationThe UCI Hydrogen Fueling Station serves the fueling needs of fuel cell vehicles for several major car 

manufacturers (Toyota, Honda, GM, Mercedes, Hyundai). The station is administered by APEP and is 

capable of delivering fills at 35MPa and 70 MPa (Figure 6). The hydrogen is delivered as a liquid and 

stored onsite as a liquid in a 1500 gallon insulated vessel. In 2011, the station provided over 2,500 fills 

with an average daily delivery of 22.4 kg. The station began operation in 2003 with a capacity of several 

kg per day. In 2005, the station was upgraded to a capacity of 25kg/day. Funding has been awarded to 

further increase the capacity of the station to 180kg/day by the end of the current calendar year. 

Page 7: UCIMicrogridWhitePaper FINAL 071713

 

Figure 6 UCI hydrogen fueling station 

AdvancedBuildingLevelCombinedCoolingHeatingandPowerThe campus, with the support of APEP, also plans to install a 300kW molten carbonate fuel cell (MCFC) 

manufactured by FuelCell Energy to provide electricity to the Multi‐Purpose Science and Technology 

building (Figure 7). The fuel cell will also be integrated with an absorption chiller (AC) and heat recovery 

unit to supply cooling and heating to the building as well. A thermal energy storage (TES) tank will also 

be used to store chilled water for later use when the absorption chiller is providing more cooling than 

needed by the building (e.g., at night). This installation will also have a control room where interested 

parties can observe system operation. This will serve to educate the building industry, government 

agencies, and others on the benefits of advanced combined cooling heating and power systems.  

EnergyEfficiencyandDemandResponseUCI currently participates in the Better Buildings Challenge through the Office of Energy Efficiency and 

Renewable Energy in the Department of Energy. The program was launched in December 2011 by 

President Obama. The challenge is to reduce the energy consumed across the campus by 20% by 2020. 

The program works to match participants with solution providers to enable this challenge to be met. 

Thus far, UCI has not only met targets but reduced energy use by 10% despite adding one million square 

feet. The Natural Sciences II building has also served as a showcase for the Better Buildings Challenge as 

a result of the Smart Labs Initiative instituted there. UCI also participates in demand response programs 

through, EnerNOC, a registered demand response provider for Southern California Edison. The campus 

has nominated 700kW of demand response so far. This is achieved in various ways involving the steam 

Page 8: UCIMicrogridWhitePaper FINAL 071713

turbine, HRSG, chiller plant, and thermal energy storage tank. UCI also has plans to implement demand 

response at the building level using MelRoK’s technology. 

 

 

Figure 7 UCI advanced building level CCHP system using a high temperature fuel cell, absorption chiller, and thermal energy storage tank 

UCIMicrogridModelandSimulationAssetsAPEP has collaborated with a company that develops electrical transient analysis software, ETAP 

(Electrical Transient and Analysis Program), to develop a model of the UCI Microgrid and thereby 

establish a simulation platform for understanding and managing the effects of high penetrations of 

localized renewables in the community. The UCI Microgrid model was developed using connectivity 

information (e.g., line impedance, transformer nameplate) provided by UCI FM and calibrated using the 

campus energy management and monitoring system. Figure 8 shows the comparison of simulation 

results from the APEP UCI Microgrid models to measured data. Figure 8 also shows the evolution of the 

microgrid modeling capabilities. The model was originally developed in Matlab Simulink, but later a 

transition was made to the ETAP software for faster computation and better simulation results, as 

shown in Figure 8.  The model is capable of simulating steady‐state and dynamic phenomena as well as 

temporal events such as PV generation and capacitor switching.  Steady‐state qualities of interest are 

real/reactive power flow and the voltage profile across the radial circuits.  Dynamic phenomena include 

power quality (third harmonic distortion and flicker), frequency stability and transients (faults and 

voltage sags/swells).  Calibrating the campus model to measured data ensures the model accurately 

simulates the system impedance and losses; once calibrated, the model is capable of exploring the 

Page 9: UCIMicrogridWhitePaper FINAL 071713

effects of future technology such as increased renewable generation, and advanced inverter controls, 

and energy storage.  

 

Figure 8    Examples of APEP Microgrid Model Performance 

The UCI Microgrid model will also import real time information from the MelRoK system to inform the 

model for more accurate predictions. It is envisioned that the UCI Microgrid model will be used to 

manage high penetration of intermittent renewables by allowing the UCI FM to evaluate management 

options in real time to enable them to have better control of the UCI Microgrid. The UCI Microgrid 

model user interface is shown in Figure 9. 

IrvineSmartGridDemonstrationThe UCI Microgrid presents unique opportunities to study microgrids in itself, but the UCI Microgrid has 

the added benefit of being served from same substation (the SCE MacArthur Substation) that anchors 

the DOE Irvine Smart Grid Demonstration (ISGD) project (Figure 10).  ISGD, led by SCE, encompasses two 

smart 12 kV primary circuits and a host of smart grid technologies installed from residences on the 

secondary circuits to energy storage alternatives on both the secondary and primary circuits, to 

synchrophasors throughout the Western Electric Coordinating Council (the “Western Grid”). This 

presents further opportunities to test the use of microgrids in the smart grid future using the UCI 

Microgrid. 

 

Page 10: UCIMicrogridWhitePaper FINAL 071713

 

 

Figure 9   ETAP UCI Microgrid model user interface 

Page 11: UCIMicrogridWhitePaper FINAL 071713

 

Figure 10 Irvine Smart Grid Demonstration 

SummaryThe UCI Microgrid represents a special opportunity for testing how microgrids operate internally as well 

as how they interface with the rest of the future smart grid. The relationship between APEP and UCI FM 

has enabled the UCI microgrid to become a test bed for different technologies through the development 

of the UCI Microgrid model, deployment of advanced metering, and various pilot projects. In addition, 

the same substation that serves the UCI Microgrid also serves the Irvine Smart Grid Demonstration 

project allowing the UCI Microgrid to be tested in the context of smart grid features. The history of the 

UCI microgrid is also fundamental to its capability as a test bed. The original design and evolution of the 

campus provide an attractive platform to support a flexible and robust platform for the deployment and 

evaluation of the various technologies and circuit configurations emerging in the microgrid future. 

Page 12: UCIMicrogridWhitePaper FINAL 071713

Table 1 lists the major attributes deployed today on the UCI Microgrid. 

 

 

Contact for Information: 

Brendan P. Shaffer 

[email protected]    

Page 13: UCIMicrogridWhitePaper FINAL 071713

Table 1 UCI Microgrid Attributes 

Attributes  Description 

Substation 69kV to 12kV using two 15 MVA transformers. ISGD syncrophasors at 

MacArthur Substation. 

Cogeneration Plant 13.5 MW natural gas fired gas turbine. Heat Recovery Steam Generator 

with Duct Burner. 6 MW steam turbine. 

Enterprise Energy 

Management System 

MelRok, LLC EnergiStream system. Capable of sub‐metering building 

loads and interfacing with UCI Microgrid model to provide real time 

data. 

Central District 

Heating/Cooling 

Maintains 5 million square feet of conditioned space as well as high 

temperature water to make steam for laboratory use, domestic hot 

water, and industrial hot water 

Thermal Energy Storage  4.5 MM gallons. 65% load shifting on average. 60,000 ton‐hours of 

chilling storage when fully charged. 

Electric Vehicle Charging  5 smart chargers on campus. 15 BEVs deployed. 10 PHEVs deployed. 

Renewable Power 

Fixed PV on 11 campus rooftops for 895kW total. 113 kW dual axis 

tracking concentrated PV.  2.8 MW additional fixed PV planned for 

2013. 

Energy Efficiency 

Building Retrofits. 10% load reduction despite adding one million 

square feet. UCI has received national recognition for its energy 

efficiency work on laboratories. 

Hydrogen Fueling Station  Capable of delivering 180 kg‐H2/day. Can fill at 350 bar and 700 bar. 

Advanced Building Level 

Combined Cooling Heating 

and Power 

300 kW Molten Carbonate Fuel Cell (FuelCell Energy) integrated with 

40 ton absorption chiller (Yazaki) and thermal energy storage tank to 

serve needs of Multi‐Purpose Science and Technology Building 

Demand Response Nomination of 700 kW through EnerNOC. Multiple strategies using the 

TES tank, chillers, HRSG and steam turbine. 

UCI Microgrid Model Developed in the Electrical Transient and Analysis Program (ETAP). Will 

provide information to the UCI FM when operating the microgrid. 

 


Recommended