+ All Categories
Home > Documents > UD 40x40x40.pdf

UD 40x40x40.pdf

Date post: 02-Mar-2018
Category:
Upload: cintabumi
View: 215 times
Download: 0 times
Share this document with a friend

of 62

Transcript
  • 7/26/2019 UD 40x40x40.pdf

    1/62

    SUMMARY OF STRUCTURAL CALCULATION OF 1-BARREL BOX CULVERT

    1 Design Dimensions and Bar Arrangements Class I Road (BM100)

    Type of box culvert B0,4 x H0,4

    Clear width m 0,40

    Clear height m 0,40

    Height of fillet m 0,15

    Thickness Side wall cm 20,0

    Top slab cm 20,0

    Bottom slab cm 20,0

    Cover of reinforcement bar (between concrete surface and center of reinforcement bar)

    Side wall Outside cm 6,0

    Inside cm 6,0

    Top slab Upper cm 6,0Lower cm 6,0

    Bottom slab Lower cm 6,0

    Upper cm 6,0

    Bar arrangement (dia - spacing per uni t length of 1.0 m)

    Side wall Lower outside Tensile bar mm 12@150

    Distribution bar mm 12@250

    Middle inside Tensile bar mm 12@250

    Distribution bar mm 12@250

    Upper outside Tensile bar mm 12@150

    Distribution bar mm 12@250

    Top slab Upper edge Tensile bar mm 12@150

    Distribution bar mm 12@250

    Lower middle Tensile bar mm 12@150Distribution bar mm 12@250

    Bottom slab Lower edge Tensile bar mm 12@150

    Distribution bar mm 12@250

    Upper middle Tensile bar mm 12@150

    Distribution bar mm 12@250

    Fillet Upper edge Fillet bar mm 12@250

    Lower edge Fillet bar mm 12@250

    2 Design Parameters

    Unit Weight Reinforced Concrete c= 2,4 tf/m3

    Backfill soil (wet) s= 1,8 tf/m3

    (submerged) s'= 1,0 tf/m3

    Live Load Class of road Class I (BM100)

    Truck load at rear wheel P= 10,0 tf

    Impact coefficien (for Class I to IV road Ci= 0,3 (D4.0m)

    Pedestrian load (for Class V roads) 0 tf/m2

    Concrete Design Strength ck= 175 kgf/cm2

    (K175) Allowable Compressive Stress ca= 70 kgf/cm2

    Allowable Shearing Stress a= 5,5 kgf/cm2

    Reinforcement Bar Allowable Tensile Stress sa= 2.100 kgf/cm2

    (U24, deformed bar) Yielding Point of Reinforcement Bar sy= 3.000 kgf/cm2

    Young's Modulus Ratio n= 24

    Coefficient of static earth pressure Ka= 0,5

    1 / 1 U-Ditch 400x400.xls/Summary

  • 7/26/2019 UD 40x40x40.pdf

    2/62

    STRUCTURAL CALCULATION OF BOX CULVERT Type: B0,40m x H0,40m Class I Road

    Soil Cover Depth: 0,4 m

    1 Dimensions and ParametersBasic Parameters

    Ka: Coefficient of static earth pressure 0,5

    w: Unit weight of water (t/m3) 1,00 t/m3

    d: Unit weight of soil (dry) (t/m3) 1,80 t/m3

    s: Unit weight of soil (saturated) (t/m3) 2,00 t /m3

    c: Unit weight of reinforced concrete (t/m3) 2,40 t/m3ck: Concrete Design Strength 175 kgf/m2

    ca Allowable Stress of Concrete 70 kgf/m2

    sa: Allowable Stress of Reinforcement Bar 2100 kgf/m2

    a: Allowable Stress of Shearing (Concrete) 5,5 kgf/m2

    sy: Yielding Point of Reinforcement Bar 3000 kgf/m2

    n: Young's Modulus Ratio 24

    Fa: Safety factor against uplift 1,2

    Basic Dimensions

    H: Internal Height of Box Culvert 0,40 m

    B: Internal Width of Box Culvert 0,40 m

    Hf: Fillet Height 0,15 m

    t1: Thickness of Side Wall 0,20 m (> 0.25m)

    t2: Thickness of Top Slab 0,20 m (> 0.25m)

    t3: Thickness of Invert (Bottom Slab) 0,20 m (> 0.25m)

    BT: Gross Width of Box Culvert 0,80 m

    HT: Gross Height of Box Culvert 0,80 m

    D: Covering Depth 0,41 mGwd: Underground Water Depth for Case 1, 2 0,41 m (= D)

    hiw: Internal Water Depth for Case 1, 2 0,00 m

    for Case 3, 4 0,40 m

    Cover of R-bar Basic Conditions

    Top Slab d2 0,06 m Classification of Live load by truck Class 1

    Side Wall d1 0,06 m PTM: Truck load of Middle Tire 10,00 t

    Bottom Slab d3 0,06 m Ii: Impact coefficient (D4.0m:0, D

  • 7/26/2019 UD 40x40x40.pdf

    3/62

    Load distribution of truck tire

    (1) Middle tire's acting point: center of the top slab

    a) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 8,3030 tf/m2, B = 0,600 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    bm': width of distributed load 2D+am = 1,020 m

    b) distributed load of rear tire

    Pvtr: distributed load of rear tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    ar': length of distributed load 2D+1.75+br = 3,070 mbr': width of distributed load 2D+ar = 1,020 m

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (2) Middle tire's acting point: on the side wall

    a) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 8,3030 tf/m2, B = 0,600 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    bm': width of distributed load 2D+am = 1,020 m

    b) distributed load of rear tire

    Pvtr: distributed load of rear tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    ar': length of distributed load 2D+1.75+br = 3,070 m

    br': width of distributed load 2D+ar = 1,020 m

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (3) Rear tire's acting point: on the side wall

    a) distributed load of rear tire

    Pvtr: distributed load of rear tire 2PTR(1+Ii)/(ar'br') = 8,3030 tf/m2, B = 0,600 m

    ar': length of distributed load 2D+1.75+br = 3,070 m

    br': width of distributed load 2D+ar = 1,020 m

    b) distributed load of middle tire

    Pvtm: distributed load of middle tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    '' ,

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (4) Combination of load distribution of track tire

    Case.L1: Pvt1 = 8,3030 tf/m2, B = 0,600 m Combination for Case.L2 (2) (2) (3) (3)Pvt2 = 0,0000 tf/m2, B = 0,000 m a) + b) a) + c) a) + b) a) + c)

    Case.L2: Pvt1 = 8,3030 tf/m2, B = 0,600 m Distributed load total 8,3030 8,3030 8,3030 8,3030

    Pvt2 = 0,0000 tf/m2, B = 0,000 m Select the combination case of 8,3030 tf/m2,

    for Case.L2, which is the largest load to the top slab.

    In case of covering depth (D) is over 3.0m, uniform load of 1.0 tf/m2 is applied on the top slab of culvert instead of live load calculated above.

    Distribution load by pedestrian load

    Pvt1 = 0,000 tf/m2

    2 Stability Analysis Against Uplift

    Analysis is made considering empty inside of box culvert.Fs=Vd/U > Fa Fs= 2,8913 > 1,2 ok

    where, Vd: Total dead weight (t/m) Vd= 1,850 tf/m

    U: Total uplift (t.m)

    U=BT*HT*w U= 0,640 tf/m

    Ws: Weight of covering soil Ws = BT*{(D-Gwd)*(sw)+Gwd*d} = 0,590 tf/m

    Wc: Self weight of box culvert Wc = (HT*BT-H*B+2*Hf^2)*c = 1,260 tf/m

    Fa: Safety factor against uplift Fa= 1,2

    2 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    4/62

    3 Load calculation

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*gd*Gwd P3= 0,3690

    P4=Ka*gs*(D1-Gwd) P4= 0,1000

    P5=gw*(D1-Gwd) P5= 0,1000

    Ph1= 4,7205

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*Gwd P3= 0,3690

    P4=Ka*s*(D1+H0-Gwd) P4= 0,7000

    P5=w*(D1+H0-Gwd) P5= 0,7000Ph2= 5,9205

    4) self weight of side wall

    Acting Load (tf/m)

    Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,0000 hiw: internal water depth 0,00 m

    Up=-U/B0 U= -1,0667

    Q= 10,0743

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,300 m

    side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 3,1923 - 0,2887 0,9217

    side wall (right) - -3,1923 - 0,2887 -0,9217

    internal water 0,0000 - 0,3000 - 0,0000

    uplift -0,6400 - 0,3000 - -0,1920

    total 6,0446 1,8134

    6) load against invert

    Acting Load (tf/m2)Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300

    Ws 0,6400

    Pq= 10,4110

    3 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    5/62

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*gd*Gwd P3= 0,3690

    P4=Ka*gs*(D1-Gwd) P4= 0,1000

    P5=gw*(D1-Gwd) P5= 0,1000

    Ph1= 4,7205

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*Gwd P3= 0,3690

    P4=Ka*s*(D1+H0-Gwd) P4= 0,7000

    P5=w*(D1+H0-Gwd) P5= 0,7000

    Ph2= 5,9205

    4) self weight of side wall

    Acting Load (tf/m)

    Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    v v = ,

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,0000 hiw: internal water depth 0,00 m

    Up=-U/B0 U= -1,0667

    Q= 10,0743

    summary of resistance moment

    Item V H x y M(tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m

    side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 3,1923 - 0,2887 0,9217

    side wall (right) - -3,1923 - 0,2887 -0,9217

    internal water 0,0000 - 0,3000 - 0,0000

    uplift -0,6400 - 0,3000 - -0,1920

    total 6,0446 1,8134

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030Pvt2 0,0000

    Wtop 0,7300

    Ws 0,6400

    total Pq= 10,4110

    4 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    6/62

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=D*d Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*d*D1 P3= 0,4590

    WP=-w*0 P4= 0,0000

    Ph1= 4,6105

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*(D1+H0) P3= 0,9990

    WP=-w*H P4= -0,4000

    Ph2= 4,7505

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    v v = ,

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,1917 hiw: internal water depth 0,400 m

    Up=0 U= 0,0000

    Q= 11,3327

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 2,8083 - 0,2985 0,8383

    side wall (right) - -2,8083 - 0,2985 -0,8383

    internal water 0,1150 - 0,3000 - 0,0345

    uplift 0,0000 - 0,3000 - 0,0000

    total 6,7996 2,0399

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300Ws 0,6400

    total Pq= 10,4110

    5 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    7/62

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=D*d Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*d*D1 P3= 0,4590

    WP=-w*0 P4= 0,0000

    Ph1= 4,6105

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*(D1+H0) P3= 0,9990

    WP=-w*H P4= -0,4000

    Ph2= 4,7505

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    v v = ,

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,1917 hiw: internal water depth 0,400 m

    Up=0 U= 0,0000

    Q= 11,3327

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 2,8083 - 0,2985 0,8383

    side wall (right) - -2,8083 - 0,2985 -0,8383

    internal water 0,1150 - 0,3000 - 0,0345

    uplift 0,0000 - 0,3000 - 0,0000

    total 6,7996 2,0399

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300Ws 0,6400

    total Pq= 10,4110

    Summary of Load Calculation

    Item Pv1 Ph1 Ph2 Pq Wsw q1

    Case (tf/m2) (tf/m2) (tf/m2) (tf/m2) (tf/m) (tf/m2)

    Case.1 9,7710 4,7205 5,9205 10,4110 0,1920 10,0743

    Case.2 9,7710 4,7205 5,9205 10,4110 0,1920 10,0743

    Case.3 9,7710 4,6105 4,7505 10,4110 0,1920 11,3327

    Case.4 9,7710 4,6105 4,7505 10,4110 0,1920 11,3327

    6 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    8/62

    4 Analysis of Plane Frame

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 4,720 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 5,920 tf/m2

    Pv1 Vertical Pressure(1) on top slab 9,771 tf/m

    2

    Pv2 Vertical Pressure(2) on top slab 0,000 tf/m2

    Pq Reaction to bottom slab 10,411 tf/m2

    a Distance from joint B to far end of Pv2 0,600 m

    b Distance from joint B to near end of Pv2 0,000 m

    H0 Height of plane frame 0,600 m

    B0 Width of plane frame 0,600 m

    t1 Thickness of side wall 0,200 m

    t2 Thickness of top slab 0,200 m

    t3 Thickness of invert (bottom slab) 0,200 m

    CAB= CDC= (2Ph1+3Ph2)H02/60 = 0,16321 tf m

    CBA= CCD= (3Ph1+2Ph2)H02/60 = 0,15601 tf m

    CBC= CCB= Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2 = 0,29313 tf m

    CDA= CAD= PqB02/12 = 0,31233 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1,0

    k2 = H0t23/(B0t1

    3) = 1,0000

    k3 = H0t33/(B0t1

    3) = 1,0000

    2(k1+k3) k1 0 k3 -3k1 A CAB- CAD

    k1 2(k1+k2) k2 0 -3k1 B CBC- CBA

    0 2 2(k1+k2 k1 -3k1 = C - C

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    k3 0 k1 2(k1+k3) -3k1 D CDA- CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    A= -D B= -C R =0

    2k1+k3 k1 A

    k1 2k1+k2 B

    3,0000 1,0 A1,0 3,0000 B

    By solving above equation, the result is led as shown below.

    A = -0,07306 C = -0,07006

    B = 0,07006 D = 0,07306

    =CAB- CAD

    CBC- CBA

    =-0,14911493

    0,13711493

    1 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    9/62

    MAB= k1(2A+B) - CAB = -0,2393 tf m

    MBA= k1(2B+A)+CBA = 0,2231 tf m

    MBC= k2(2B+C) - CBC = -0,2231 tf m

    MCB = k2(2C+B)+CCB = 0,2231 tf m

    MCD= k1(2C+D) - CCD = -0,2231 tf m

    MDC=k1 (2D+ C)+CDC = 0,2393 tf m

    MDA= k3(2D+A) - CDA = -0,2393 tf m

    MAD= k3(2A+D)+CAD = 0,2393 tf m

    2) Calculation of Design Force

    2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 5,920 tf/m2

    w2 Load at end B 4,720 tf/m2

    MAB Bending moment at end A -0,2393 tf m

    MBA Bending moment at end B 0,2231 tf m

    L Length of member (=H0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SAB= (2w1+w2)L/6 - (MAB+MBA)/L= 1,683 tf

    SBA= SAB- L(w1+w2)/2 = -1,509 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,104 tf

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    = ,

    Sx2 = -0,109 tf

    c) Bending Moment

    MA = MAB = -0,239 tf m

    MB = -MBA

    = -0,223 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB- w1x - (w2 - w1)x2/(2L)

    = 1,6831 -5,9205 x + 1,0000 x2 , x = 5,621

    0,299

    Bending moment at x 0,2994 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = 0,008 tf m

    2 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    10/62

    2-2) Top Slab

    a) Shearing Force at joint

    w1 Uniform load 9,771 tf/m2

    w2 Uniform load 0,000 tf/m2

    a Distance from end B to near end of 0,000 m

    b Length of uniform load w2 0,600 m

    MBC Bending moment at end B -0,2231 tf m

    MCB Bending moment at end C 0,2231 tf m

    L Length of member (=Bo) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SBC= (w1L+w2b)/2-(MBC+MCB)/L = 2,931 tf

    SCB= SBC-w1L - w2b = -2,931 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC- w1x - w2(x-a) in case of 0,000 m

  • 7/26/2019 UD 40x40x40.pdf

    11/62

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,109 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,104 tf

    c) Bending Moment

    MC = MCD = -0,223 tf m

    MD = -MDC = -0,239 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD- w1x - (w2 - w1)x2/(2L)

    = 1,5091 -4,7205 x -1,0000 x2 , x = -5,021

    0,301

    Bending moment at x 0,3006 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = 0,00825 tf m

    2-4) Bottom Slab

    a) Shearing Force at joint

    w1 Reaction at end D 10,411 tf/m2

    w2 Reaction at end A 10,411 tf/m2

    MDA Bending moment at end B -0,23927 tf m

    MAD Bending moment at end C 0,23927 tf m

    L Length of member (=B0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SDA= (2w1+w2)L/6 - (MDA+MAD)/L

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    = 3,123 tf

    SAD= SDA- L(w1+w2)/2 = -3,123 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,208 tf (ii) In case of x2 = 0,320 m

    Sx2 = -0,208 tf

    c) Bending Moment

    MD = MDA = -0,239 tf m

    MA = -MAD = -0,239 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA- w1x - (w2 - w1)x2/(2L)

    = 3,1233 -10,4110 x , x = 0,300

    Bending moment at x 0,3000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0,229 tf m

    4 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    12/62

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 4,720 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 5,920 tf/m2

    Pv1 Vertical Pressure(1) on top slab 9,771 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0,000 tf/m2

    Pq Reaction to bottom slab 10,411 tf/m2

    a Distance from joint B to far end of Pv2 0,600 mb Distance from joint B to near end of Pv2 0,000 m

    H0 Height of plane frame 0,600 m

    B0 Width of plane frame 0,600 m

    t1 Thickness of side wall 0,200 m

    t2 Thickness of top slab 0,200 m

    t3 Thickness of invert (bottom slab) 0,200 m

    CAB= CDC= (2Ph1+3Ph2)H02/60 = 0,16321 tf m

    CBA= CCD= (3Ph1+2Ph2)H02/60 = 0,15601 tf m

    CBC= CCB= Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2= 0,29313 tf m

    CDA= CAD= PqB02/12 = 0,31233 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1,0

    k2 = H0t23/(B0t13) = 1,00000

    k3 = H0t33/(B0t1

    3) = 1,00000

    2(k1+k3) k1 0 k3 -3k1 A CAB- CAD

    k1 2(k1+k2) k2 0 -3k1 B CBC- CBA

    0 k2 2(k1+k2) k1 -3k1 C = CCD- CCB

    k3 0 k1 2(k1+k3) -3k1 D CDA- CDC

    k1 k1 k1 k1 -4k1 R 0

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    As load has bilateral symmetry, the equation shown below is formed.

    A= -D B= -C R =0

    2k1+k3 k1 A

    k1 2k1+k2 B

    3,0000 1,0 A1,0 3,0000 B

    By solving above equation, the result is led as shown below.

    A = -0,07306 C = -0,07006

    B = 0,07006 D = 0,07306

    =CAB- CAD

    CBC- CBA

    =-0,14911493

    0,13711493

    5 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    13/62

    MAB= k1(2A+B) - CAB = -0,2393 tf m

    MBA= k1(2B+A)+CBA = 0,2231 tf m

    MBC= k2(2B+C) - CBC = -0,2231 tf m

    MCB = k2(2C+B)+CCB = 0,2231 tf m

    MCD= k1(2C+D) - CCD = -0,2231 tf m

    MDC=k1 (2D+ C)+CDC = 0,2393 tf m

    MDA= k3(2D+A) - CDA = -0,2393 tf m

    MAD= k3(2A+D)+CAD = 0,2393 tf m

    2) Calculation of Design Force

    2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 5,920 tf/m2

    w2 Load at end B 4,720 tf/m2

    MAB Bending moment at end A -0,2393 tf m

    MBA Bending moment at end B 0,2231 tf m

    L Length of member (=H0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SAB= (2w1+w2)L/6 - (MAB+MBA)/L

    = 1,6831 tf SBA= SAB- L(w1+w2)/2 = -1,5091 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,104 tf

    (ii) In case of x2 = 0,32 m

    = -

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    ,

    c) Bending Moment

    MA = MAB = -0,239 tf m

    MB = -MBA = -0,223 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB- w1x - (w2 - w1)x2/(2L)

    = 1,6831 -5,9205 x + 1,0000 x2 , x = 5,621

    0,299

    Bending moment at x 0,2994 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = 0,008 tf m

    6 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    14/62

    2-2) Top Slab

    a) Shearing Force at joint

    w1 Uniform load 9,771 tf/m2

    w2 Uniform load 0,000 tf/m2

    a Distance from end B to near end of 0,000 m

    b Length of uniform load w2 0,600 m

    MBC

    Bending moment at end B -0,2231 tf m

    MCB Bending moment at end C 0,2231 tf m

    L Length of member (=Bo) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SBC= (w1L+w2b)/2-(MBC+MCB)/L = 2,931 tf

    SCB= SBC-w1L - w2b = -2,931 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC- w1x - w2(x-a) in case of 0,000 m

  • 7/26/2019 UD 40x40x40.pdf

    15/62

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,109 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,104 tf

    c) Bending Moment

    MC = MCD = -0,223 tf m

    MD = -MDC = -0,239 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD- w1x - (w2 - w1)x2/(2L)

    = 1,5091 -4,7205 x -1,0000 x2 , x = -5,0211

    0,3006

    Bending moment at x 0,3006 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = 0,0083 tf m

    2-4) Bottom Slab

    a) Shearing Force at joint

    w1 Reaction at end D 10,411 tf/m2

    w2 Reaction at end A 10,411 tf/m2

    MDA Bending moment at end B -0,2393 tf m

    MAD Bending moment at end C 0,2393 tf m

    L Length of member (=B0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SDA= (2w1+w2)L/6 - (MDA+MAD)/L

    = 3,123 tf

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    SAD= SDA- L(w1+w2)/2 = -3,123 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,208 tf

    (ii) In case of x2 = 0,320 mSx2 = -0,208 tf

    c) Bending Moment

    MD = MDA = -0,239 tf m

    MA = -MAD = -0,239 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA- w1x - (w2 - w1)x2/(2L)

    = 3,1233 -10,4110 x , x = 0,3000

    Bending moment at x 0,3000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0,229 tf m

    8 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    16/62

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 4,610 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 4,750 tf/m2

    Pv1 Vertical Pressure(1) on top slab 9,771 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0,000 tf/m2

    Pq Reaction to bottom slab 10,411 tf/m2

    a Distance from joint B to far end of Pv2 0,600 mb Distance from joint B to near end of Pv2 0,000 m

    H0 Height of plane frame 0,600 m

    B0 Width of plane frame 0,600 m

    t1 Thickness of side wall 0,200 m

    t2 Thickness of top slab 0,200 m

    t3 Thickness of invert (bottom slab) 0,200 m

    CAB= CDC= (2Ph1+3Ph2)H02/60 = 0,14083 tf m

    CBA= CCD= (3Ph1+2Ph2)H02/60 = 0,13999 tf m

    CBC= CCB= Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2= 0,29313 tf m

    CDA= CAD= PqB02/12 = 0,31233 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1,0

    k2 = H0t23/(B0t13) = 1,00000

    k3 = H0t33/(B0t1

    3) = 1,00000

    2(k1+k3) k1 0 k3 -3k1 A CAB- CAD

    k1 2(k1+k2) k2 0 -3k1 B CBC- CBA

    0 k2 2(k1+k2) k1 -3k1 C = CCD- CCB

    k3 0 k1 2(k1+k3) -3k1 D CDA- CDC

    k1 k1 k1 k1 -4k1 R 0

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    As load has bilateral symmetry, the equation shown below is formed.

    A= -D B= -C R =0

    2k1+k3 k1 A

    k1 2k1+k2 B

    3,0000 1,0 A

    1,0 3,0000 B

    By solving above equation, the result is led as shown below.

    A = -0,08345 C = -0,07886

    B = 0,07886 D = 0,08345

    =CAB- CAD

    CBC- CBA

    =-0,17149493

    0,15313493

    9 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    17/62

    MAB= k1(2A+B) - CAB = -0,22888 tf m

    MBA= k1(2B+A)+CBA = 0,21427 tf m

    MBC= k2(2B+C) - CBC = -0,21427 tf m

    MCB = k2(2C+B)+CCB = 0,21427 tf m

    MCD= k1(2C+D) - CCD = -0,21427 tf m

    MDC=k1 (2D+ C)+CDC = 0,22888 tf m

    MDA= k3(2D+A) - CDA = -0,22888 tf m

    MAD= k3(2A+D)+CAD = 0,22888 tf m

    2) Calculation of Design Force

    2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 4,750 tf/m2

    w2 Load at end B 4,610 tf/m2

    MAB Bending moment at end A -0,2289 tf m

    MBA Bending moment at end B 0,2143 tf m

    L Length of member (=H0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SAB= (2w1+w2)L/6 - (MAB+MBA)/L

    = 1,435 tf SBA= SAB- L(w1+w2)/2 = -1,373 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,115 tf

    (ii) In case of x2 = 0,320 m

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    x = - ,

    c) Bending Moment

    MA = MAB = -0,229 tf m

    MB = -MBA = -0,214 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB- w1x - (w2 - w1)x2/(2L)

    = 1,4355 -4,7505 x + 0,1167 x2 , x = 40,414

    0,304

    Bending moment at x 0,3045 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = -0,011 tf m

    10 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    18/62

    2-2) Top Slab

    a) Shearing Force at joint

    w1 Uniform load 9,771 tf/m2

    w2 Uniform load 0,000 tf/m2

    a Distance from end B to near end of 0,000 m

    b Length of uniform load w2 0,600 m

    MBC

    Bending moment at end B -0,214 tf m

    MCB Bending moment at end C 0,214 tf m

    L Length of member (=Bo) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SBC= (w1L+w2b)/2-(MBC+MCB)/L = 2,931 tf

    SCB= SBC-w1L - w2b = -2,931 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC- w1x - w2(x-a) in case of 0,000 m

  • 7/26/2019 UD 40x40x40.pdf

    19/62

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,073 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,115 tf

    c) Bending Moment

    MC = MCD = -0,214 tf m

    MD = -MDC = -0,229 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD- w1x - (w2 - w1)x2/(2L)

    = 1,3728 -4,6105 x -0,1167 x2 , x = -39,81

    0,296

    Bending moment at x 0,2955 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = -0,011 tf m

    2-4) Bottom Slab

    a) Shearing Force at joint

    w1 Reaction at end D 10,411 tf/m2

    w2 Reaction at end A 10,411 tf/m2

    MDA Bending moment at end B -0,229 tf mMAD Bending moment at end C 0,229 tf m

    L Length of member (=B0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SDA= (2w1+w2)L/6 - (MDA+MAD)/L

    = 3,123 tf

    SAD= SDA- L(w1+w2)/2 = -3,123 tf

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,208 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,208 tf

    c) Bending Moment

    MD = MDA = -0,229 tf m

    MA = -MAD = -0,229 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA- w1x - (w2 - w1)x2/(2L)

    = 3,1233 -10,4110 x , x = 0,300

    Bending moment at x 0,3000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0,240 tf m

    12 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    20/62

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 4,610 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 4,750 tf/m2

    Pv1 Vertical Pressure(1) on top slab 9,771 tf/m2

    Pv2 Vertical Pressure(2) on top slab 0,000 tf/m2

    Pq Reaction to bottom slab 10,411 tf/m2

    a Distance from joint B to far end of Pv2 0,600 m

    b Distance from joint B to near end of Pv2 0,000 m

    H0 Height of plane frame 0,600 m

    B0 Width of plane frame 0,600 m

    t1 Thickness of side wall 0,200 m

    t2 Thickness of top slab 0,200 m

    t3 Thickness of invert (bottom slab) 0,200 m

    CAB= CDC= (2Ph1+3Ph2)H02/60 = 0,14083 tf m

    CBA= CCD= (3Ph1+2Ph2)H02/60 = 0,13999 tf m

    CBC= CCB= Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2= 0,29313 tf m

    CDA= CAD= PqB02/12 = 0,31233 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1,0

    k2 = H0t23/(B0t1

    3) = 1,00000

    k3 = H0t33/(B0t1

    3) = 1,00000

    2(k1+k3) k1 0 k3 -3k1 A CAB- CAD

    k1 2(k1+k2) k2 0 -3k1 B CBC- CBA

    0 k2 2(k1+k2) k1 -3k1 C = CCD- CCB

    k3 0 k1 2(k1+k3) -3k1 D CDA- CDC

    k1 k1 k1 k1 -4k1 R 0

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    As load has bilateral symmetry, the equation shown below is formed.

    A= -D B= -C R =0

    2k1+k3 k1 A

    k1 2k1+k2 B

    3,0000 1,0 A

    1,0 3,0000 B

    By solving above equation, the result is led as shown below.

    A = -0,08345 C = -0,07886

    B = 0,07886 D = 0,08345

    =CAB- CAD

    CBC- CBA

    =-0,17149493

    0,15313493

    13 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    21/62

    MAB= k1(2A+B) - CAB = -0,22888 tf m

    MBA= k1(2B+A)+CBA = 0,21427 tf m

    MBC= k2(2B+C) - CBC = -0,21427 tf m

    MCB = k2(2C+B)+CCB = 0,21427 tf m

    MCD= k1(2C+D) - CCD = -0,21427 tf m

    MDC=k1 (2D+ C)+CDC = 0,22888 tf m

    MDA= k3(2D+A) - CDA = -0,22888 tf m

    MAD= k3(2A+D)+CAD = 0,22888 tf m

    2) Calculation of Design Force

    2-1) Side Wall in left

    a) Shearing Force at joint

    w1 Load at end A 4,750 tf/m2

    w2 Load at end B 4,610 tf/m2

    MAB Bending moment at end A -0,229 tf m

    MBA Bending moment at end B 0,214 tf m

    L Length of member (=H0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SAB= (2w1+w2)L/6 - (MAB+MBA)/L

    = 1,435 tf

    SBA= SAB- L(w1+w2)/2 = -1,373 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SAB- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,115 tf

    =

    w1

    w2

    A

    B

    Lx

    MAB

    MBA

    ,

    Sx2 = -0,073 tf

    c) Bending Moment

    MA = MAB = -0,229 tf m

    MB = -MBA = -0,214 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SAB- w1x - (w2 - w1)x2/(2L)

    = 1,4355 -4,7505 x + 0,1167 x2 , x = 40,414

    0,304

    Bending moment at x 0,3045 m is;

    Mmax = SABx - w1x2/2 - (w2-w1)x

    3/(6L) + MAB = -0,011 tf m

    14 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    22/62

    2-2) Top Slab

    a) Shearing Force at joint

    w1 Uniform load 9,771 tf/m2

    w2 Uniform load 0,000 tf/m2

    a Distance from end B to near end of 0,000 m

    b Length of uniform load w2 0,600 m

    MBC

    Bending moment at end B -0,214 tf m

    MCB Bending moment at end C 0,214 tf m

    L Length of member (=Bo) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SBC= (w1L+w2b)/2-(MBC+MCB)/L = 2,931 tf

    SCB= SBC-w1L - w2b = -2,931 tf

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SBC- w1x - w2(x-a) in case of 0,000 m

  • 7/26/2019 UD 40x40x40.pdf

    23/62

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SCD- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,0727 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,1145 tf

    c) Bending MomentMC = MCD = -0,214 tf m

    MD = -MDC = -0,229 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SCD- w1x - (w2 - w1)x2/(2L)

    = 1,3728 -4,6105 x -0,1167 x2 , x = -39,8

    0,296

    Bending moment at x 0,2955 m is;

    Mmax = SCDx - w1x2/2 - (w2-w1)x

    3/(6L) + MCD = -0,011 tf m

    2-4) Bottom Slab

    a) Shearing Force at joint

    w1 Reaction at end D 10,411 tf/m2

    w2 Reaction at end A 10,411 tf/m2

    MDA Bending moment at end B -0,229 tf mMAD Bending moment at end C 0,229 tf m

    L Length of member (=B0) 0,600 m

    ch Protective covering height 0,060 m

    t Thickness of member (height) 0,200 m

    d Effective height of member 0,140 m

    SDA= (2w1+w2)L/6 - (MDA+MAD)/L

    = 3,123 tf

    SAD= SDA- L(w1+w2)/2 = -3,123 tf

    L

    x

    D

    MDA

    w1w2

    A

    MAD

    b) Shearing Force at 2d point from joint

    Shearing force at the point with a distance of 2d from joint is calculated by following equation.

    Sx = SDA- w1x - (w2 - w1)x2/(2L)

    (i) In case of x1 = 0,280 m

    Sx1 = 0,208 tf

    (ii) In case of x2 = 0,320 m

    Sx2 = -0,208 tf

    c) Bending Moment

    MD = MDA = -0,229 tf m

    MA = -MAD = -0,229 tf m

    The maximum bending moment occurs at the point of that shearing force equal to zero.

    Sx = 0 = SDA- w1x - (w2 - w1)x2/(2L)

    = 3,1233 -10,4110 x , x = 0,300

    Bending moment at x 0,3000 m is;

    Mmax = SDAx - w1x2/2 - (w2-w1)x

    3/(6L) + MDA = 0,240 tf m

    16 / 16 U-Ditch 400x400.xls/MSN

  • 7/26/2019 UD 40x40x40.pdf

    24/62

    Summary of Internal forces

    M N

    (tfm) (tf) at joint at 2d

    Side wall A -0,239 3,123 1,683 0,104 (left) Case.1 Middle 0,008 3,027 0,000 -

    B -0,223 2,931 -1,509 -0,109

    A -0,239 3,123 1,683 0,104

    Case.2 Middle 0,008 3,027 0,000 -

    B -0,223 2,931 -1,509 -0,109

    A -0,229 3,123 1,435 0,115

    Case.3 Middle -0,011 3,026 0,000 -

    B -0,214 2,931 -1,373 -0,073

    A -0,229 3,123 1,435 0,115

    Case.4 Middle -0,011 3,026 0,000 -

    B -0,214 2,931 -1,373 -0,073

    Top slab B -0,223 1,509 2,931 0,195

    Case.1 Middle 0,217 1,509 0,000 -

    C -0,223 1,509 -2,931 -0,195

    B -0,223 1,509 2,931 0,195

    Case.2 Middle 0,217 1,509 0,000 -

    C -0,223 1,509 -2,931 -0,195

    B -0,214 1,373 2,931 0,195

    Case.3 Middle 0,225 1,373 0,000 -

    C -0,214 1,373 -2,931 -0,195

    B -0,214 1,373 2,931 0,195

    Case.4 Middle 0,225 1,373 0,000 -

    C -0,214 1,373 -2,931 -0,195

    Side wall C -0,223 2,931 1,509 0,109

    (right) Case.1 Middle 0,008 3,027 0,000 -

    D -0,239 3,123 -1,683 -0,104

    C -0,223 2,931 1,509 0,109

    Case.2 Middle 0,008 3,027 0,000 -

    D -0,239 3,123 -1,683 -0,104

    C -0,214 2,931 1,373 0,073

    Case.3 Middle -0,011 3,026 0,000 -

    D -0,229 3,123 -1,435 -0,115

    C -0,214 2,931 1,373 0,073

    Case.4 Middle -0,011 3,026 0,000 -

    D -0,229 3,123 -1,435 -0,115

    Invert D -0,239 1,683 3,123 0,208

    Case.1 Middle 0,229 1,683 0,000 -

    A -0,239 1,683 -3,123 -0,208D -0,239 1,683 3,123 0,208

    Case.2 Middle 0,229 1,683 0,000 -

    A -0,239 1,683 -3,123 -0,208

    D -0,229 1,435 3,123 0,208

    Case.3 Middle 0,240 1,435 0,000 -

    A -0,229 1,435 -3,123 -0,208

    D -0,229 1,435 3,123 0,208

    Case.4 Middle 0,240 1,435 0,000 -

    A -0,229 1,435 -3,123 -0,208

    S (tf)Member Case

    Check

    Point

    1 / 1 U-Ditch 400x400.xls/Sum MSN

  • 7/26/2019 UD 40x40x40.pdf

    25/62

    5 Calculation of Required Reinforcement Bar5-1 Calculation of Required Reinforcement Bar

    1) At Joint "A"of side wall

    Case.1

    M= 0,2393 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,1233 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,6831 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1038 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,66 cm

    Solving the formula shown below, c 20,727 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +125,68 c^2 -975,55 c -42680,20

    s = nc/(nc+sa) = 0,1915

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    Case.2

    M= 0,2393 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,1233 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,6831 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1038 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,66 cm

    Solving the formula shown below, c 20,727 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +125,68 c^2 -975,55 c -42680,20

    s = nc/(nc+sa) = 0,1915

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    Case.3

    M= 0,2289 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,1233 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,4355 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1145 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,33 cm

    Solving the formula shown below, c 20,389 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    d

    h d

    0 = c^3 +125,83 c^2 -947,7 c -41462,03

    s = nc/(nc+sa) = 0,1890

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    Case.4

    M= 0,2289 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,1233 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,4355 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1145 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,33 cm

    Solving the formula shown below, c 20,389 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +125,83 c^2 -947,7 c -41462,03

    s = nc/(nc+sa) = 0,1890

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    The maximum requirement of reinforcement bar is 0,0000 cm2 in Case1 from above calculation.

    Case. 1 2 3 4

    Requirement 0,0000 0,0000 0,0000 0,0000 (cm2)

    2) At Joint "B"of side wall

    Case.1

    M= 0,2231 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 2,9313 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)S0= 1,5091 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1090 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,61 cm

    Solving the formula shown below, c 19,943 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,04 c^2 -911,58 c -39881,76

    s = nc/(nc+sa) = 0,1856

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    Case.2

    M= 0,2231 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 2,9313 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,5091 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1090 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,61 cm

    Solving the formula shown below, c 19,943 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,04 c^2 -911,58 c -39881,76

    s = nc/(nc+sa) = 0,1856

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    d

    h d

    1 / 5 U-Ditch 400x400.xls/R-bar req

  • 7/26/2019 UD 40x40x40.pdf

    26/62

    Case.3

    M= 0,2143 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 2,9313 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,3728 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,0727 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,31 cm

    Solving the formula shown below, c 19,648 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,18 c^2 -888 c -38849,92s = nc/(nc+sa) = 0,1834

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    Case.4

    M= 0,2143 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 2,9313 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 1,3728 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,0727 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 7,31 cm

    Solving the formula shown below, c 19,648 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,18 c^2 -888 c -38849,92

    s = nc/(nc+sa) = 0,1834

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2

    The maximum requirement of reinforcement bar is 0,0000 cm2 in Case1 from above calculation.

    Case. 1 2 3 4Requirement 0,0000 0,0000 0,0000 0,0000 (cm2)

    3) At Joint "B"of top slab

    Case.1

    M= 0,2231 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,5091 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 2,9313 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1954 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14 78 cm ,

    Solving the formula shown below, c 17,985 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,91 c^2 -759,21 c -33215,43

    s = nc/(nc+sa) = 0,1705

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3035 cm2

    Case.2

    M= 0,2231tf

    mca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,5091 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 2,9313 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1954 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14,78 cm

    Solving the formula shown below, c 17,985 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,91 c^2 -759,21 c -33215,43

    s = nc/(nc+sa) = 0,1705

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3035 cm2

    Case.3

    M= 0,2143 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,3728 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 2,9313 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1954 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 15,61 cm

    Solving the formula shown below,

    c 17,472 kgf/cm2 ( 0 kgf/cm2) o.k. c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +127,13 c^2 -721,02 c -31544,46

    s = nc/(nc+sa) = 0,1664

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3156 cm2

    Case.4

    M= 0,2143 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,3728 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 2,9313 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,1954 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 15,61 cm

    Solving the formula shown below, c 17,472 kgf/cm2 ( 5,1E-07 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +127,13 c^2 -721,02 c -31544,46

    s = nc/(nc+sa) = 0,1664

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3156 cm2

    The maximum requirement of reinforcement bar is 0,3156 cm2 in Case3 from above calculation.

    Case. 1 2 3 4

    Requirement 0,3035 0,3035 0,3156 0,3156 (cm2)

    d

    h d

    2 / 5 U-Ditch 400x400.xls/R-bar req

  • 7/26/2019 UD 40x40x40.pdf

    27/62

    4) At Joint "A"of invert

    Case.1

    M= 0,2393 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,6831 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 3,1233 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,2082 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14,22 cm

    Solving the formula shown below, c 18,799 kgf/cm2 ( 4,7E-08 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 +126,56 c^2 -821,25 c -35929,50

    s = nc/(nc+sa) = 0,1768

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3067 cm2

    Case.2

    M= 0,2393 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,6831 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 3,1233 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,2082 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14,22 cm

    Solving the formula shown below, c 18,799 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,56 c^2 -821,25 c -35929,50

    s = nc/(nc+sa) = 0,1768

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3067 cm2

    Case.3

    M= 0,2289 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,4355 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 3,1233 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,2082 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 15,94 cm

    Solving the formula shown below, c 18,087 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,87 c^2 -766,87 c -33550,47

    s = nc/(nc+sa) = 0,1713

    * -

    d

    h d

    - ,

    Case.4

    M= 0,2289 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,4355 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    S0= 3,1233 tf n = 24 d' = 6 cm (protective covering depth)

    S2d= 0,2082 tf c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 15,94 cmSolving the formula shown below, c 18,087 kgf/cm2 ( 1,7E-07 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,87 c^2 -766,87 c -33550,47

    s = nc/(nc+sa) = 0,1713

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3492 cm2

    The maximum requirement of reinforcement bar is 0,3492 cm2 in Case3 from above calculation.

    Case. 1 2 3 4

    Requirement 0,3067 0,3067 0,3492 0,3492 (cm2)

    5) At Middle of side wall

    Case.1

    M= 0,0083 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,0275 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 0,27 cm

    Solving the formula shown below, c 11,6723 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +129,27 c^2 -346,47 c -15158,20

    s = nc/(nc+sa) = 0,1177

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2 Tensile is on inside of member

    Case.2

    M= 0,0083 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,0275 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 0,27 cm

    Solving the formula shown below, c 11,672 kgf/cm2 ( 0,0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +129,27 c^2 -346,47 c -15158,20

    s = nc/(nc+sa) = 0,1177Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2 Tensile is on inside of member

    d

    h d

    3 / 5 U-Ditch 400x400.xls/R-bar req

  • 7/26/2019 UD 40x40x40.pdf

    28/62

    Case.3

    M= 0,0109 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,0259 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 0,36 cm

    Solving the formula shown below, c 11,798 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +129,23 c^2 -353,41 c -15461,54s = nc/(nc+sa) = 0,1188

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2 Tensile is on outside of member

    Case.4

    M= 0,0109 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 3,0259 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 0,36 cm

    Solving the formula shown below, c 11,798 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +129,23 c^2 -353,41 c -15461,54

    s = nc/(nc+sa) = 0,1188

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,0000 cm2 Tensile is on outside of member

    The maximum requirement of reinforcement bar is 0,0000 cm2 in Case1 from above calculation.

    Case. 1 2 3 4

    Requirement 0,0000 0,0000 - - (cm2)Side inside inside outside outside

    6) At Middle of top slab

    Case.1

    M= 0,2166 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,5091 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14,35 cm

    Solving the formula shown below, c 17,754 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +127,01 c^2 -741,93 c -32459,57

    s = nc/(nc+sa) = 0,1687

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,2796 cm2 Tensile is on inside of member

    Case.2

    M= 0,2166 tfm ca = 70 kgf/m2 h = 20 cm (height of member)N= 1,5091 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 14,35 cm

    Solving the formula shown below, c 17,754 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +127,01 c^2 -741,93 c -32459,57

    s = nc/(nc+sa) = 0,1687

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,2796 cm2 Tensile is on inside of member

    Case.3

    M= 0,2254 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,3728 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 16,42 cm

    Solving the formula shown below, c 17,875 kgf/cm2 ( 0 kgf/cm2) o.k. c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,96 c^2 -750,91 c -32852,27

    s = nc/(nc+sa) = 0,1696

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3570 cm2 Tensile is on inside of member

    Case.4

    M= 0,2254 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,3728 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 16,42 cm

    Solving the formula shown below, c 17,875 kgf/cm2 ( 2,5E-07 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,96 c^2 -750,91 c -32852,27

    s = nc/(nc+sa) = 0,1696

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3570 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 0,3570 cm2 in Case3 from above calculation.

    Case. 1 2 3 4

    Requirement 0,2796 0,2796 0,3570 0,3570 (cm2)

    Side inside inside inside inside

    d

    h d

    4 / 5 U-Ditch 400x400.xls/R-bar req

  • 7/26/2019 UD 40x40x40.pdf

    29/62

    7) At Middle of invert

    Case.1

    M= 0,2292 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,6831 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 13,62 cm

    Solving the formula shown below, c 18,4488 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0 0 = c^3 +126,71 c^2 -794,33 c -34751,76

    s = nc/(nc+sa) = 0,1741

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,2693 cm2 Tensile is on inside of member

    Case.2

    M= 0,2292 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,6831 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 13,62 cm

    Solving the formula shown below, c 18,449 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,71 c^2 -794,33 c -34751,76

    s = nc/(nc+sa) = 0,1741

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,2693 cm2 Tensile is on inside of member

    Case.3

    M= 0,2396 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,4355 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 16,69 cm

    Solving the formula shown below, c 18,466 kgf/cm2 ( 8,7E-08 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,7 c^2 -795,64 c -34809,07

    s = nc/(nc+sa) = 0,1743

    * -

    d

    h d

    - ,

    Case.4

    M= 0,2396 tfm ca = 70 kgf/m2 h = 20 cm (height of member)

    N= 1,4355 tf sa = 2100 kgf/m2 d = 14 cm (effective height of member)

    n = 24 d' = 6 cm (protective covering depth)

    c = 4,00 cm (distance from neutral axis)

    b = 100 cm

    e = M/N = 16,69 cmSolving the formula shown below, c 18,466 kgf/cm2 ( 0 kgf/cm2) o.k.

    c^3+{3sa/(2n) - 3N(e+c)/(bd^2)}c^2 - 6N(e+c)sac/(nbd^2) - 3N(e+c)sa^2/(n^2bd^2) = 0

    0 = c^3 +126,7 c^2 -795,64 c -34809,07

    s = nc/(nc+sa) = 0,1743

    Asreq = (c*s/2 - N/(bd))bd/sa = 0,3891 cm2 Tensile is on inside of member

    The maximum requirement of reinforcement bar is 0,3891 cm2 in Case3 from above calculation.

    Case. 1 2 3 4

    Requirement 0,2693 0,2693 0,3891 0,3891 (cm2)

    Side inside inside inside inside

    8) Summary of required reinforcement

    Required reinforcement for design is the maximum required reinforcement calculated above in 1) - 4).

    Item Side wall Side wall Top slab Invert Side wall Top slab Invert

    Point bottom top end end middle middle middle

    Side outside outside outside outside inside inside inside

    Calculation 1) 2) 3) 4) 5) 6) 7)

    Requirement 0,000 0,000 0,316 0,349 0,000 0,357 0,389 (cm2)

    5 / 5 U-Ditch 400x400.xls/R-bar req

  • 7/26/2019 UD 40x40x40.pdf

    30/62

    6 Bar Arrangement and Calculation of StressType: B0,40m x H0,40m

    bottom middle top end middle end middle

    outside inside outside outside inside outside inside

    Bending moment M kgfcm 23.927 825 22.307 21.427 22.543 22.888 23.962

    Shearing force (joint) S kgf 1.683 0 1.509 2.931 0 3.123 0Shearing force (2d) S2d kgf 115 - 109 195 - 208 -

    Axial force N kgf 3.123 3.027 2.931 1.373 1.373 1.435 1.435

    Height of member h cm 20 20 20 20 20 20 20

    Covering depth d' cm 6 6 6 6 6 6 6

    Effective height d cm 14 14 14 14 14 14 14

    Effective width b cm 100 100 100 100 100 100 100

    Effective area bd cm2 1400 1400 1400 1400 1400 1400 1400

    Young's modulus ratio n - 24 24 24 24 24 24 24

    Required R-bar Asreq cm2 0,00 0,00 0,00 0,32 0,36 0,35 0,39

    R-bar arrangement 12@150 12@250 12@150 12@150 12@150 12@150 12@150

    Reinforcement As cm2 7,54 4,52 7,54 7,54 7,54 7,54 7,54

    Perimeter of R-bar U 25,13 15,08 25,13 25,13 25,13 25,13 25,13

    M/N e cm 7,661 0,273 7,610 15,608 16,421 15,944 16,692

    Dist. from neutral axis c cm 4,00 4,00 4,00 4,00 4,00 4,00 4,00

    a' -7,0 -29,2 -7,2 16,8 19,3 17,8 20,1

    b' 126,6 27,8 126,1 212,9 221,7 216,5 224,7

    ' - - - - - - -

    Side wall Top slab Invert

    , , , , , , ,

    x 10,69 28,69 10,74 7,52 7,40 7,47 7,37

    0,000 0,001 0,000 0,000 0,000 0,000 0,000

    (check) ok ok ok ok ok ok ok

    Compressive stress c kgf/cm2 6,5 2,0 6,1 6,2 6,6 6,7 7,0

    Allowable stress ca kgf/cm2 70,0 70,0 70,0 70,0 70,0 70,0 70,0ok ok ok ok ok ok ok

    Tensile stress s kgf/cm2 48,6 0,0 44,4 128,6 140,3 139,5 150,9

    Allowable stress sa kgf/cm2 2100,0 2100,0 2100,0 2100,0 2100,0 2100,0 2100,0

    ok ok ok ok ok ok ok

    Shearing stress at joint kgf/cm2 1,20 0,00 1,08 2,09 0,00 2,23 0,00

    Allowable stress a kgf/cm2 11,00 11,00 11,00 11,00 11,00 11,00 11,00

    ok ok ok ok ok ok ok

    Shearing stress at 2d 2d kgf/cm2 0,08 - 0,08 0,14 - 0,15 -

    Allowable stress 2da kgf/cm2 5,50 - 5,50 5,50 - 5,50 -

    ok - ok ok - ok -

    Resisting Moment Mr kgfcm 235.438 199.883 235.421 235.378 235.378 235.377 235.377

    Mr for compression Mrc kgfcm 235.438 199.883 235.421 235.378 235.378 235.377 235.377 x for Mrc cm 5,884 4,897 5,862 5,685 5,685 5,692 5,692 s for Mrc kgf/cm2 2317,2 3122,5 2332,3 2457,0 2457,0 2451,9 2451,9

    Mr for tensile Mrs kgfcm 379.690 218.260 375.059 338.900 338.900 340.307 340.307

    x for Mrs cm 7,789 6,329 7,749 7,420 7,420 7,434 7,434 c for Mrs kgf/cm2 109,7 72,2 108,5 98,7 98,7 99,1 99,1

    Distribution bar (>As/6 and >Asmin) 12@250 12@250 12@250 12@250 12@250 12@250 12@250

    Reinforcement As cm2 4,52 4,52 4,52 4,52 4,52 4,52 4,52

    ok ok ok ok ok ok ok

    Reinforcement bar for fillet 12@250 12@250

    Reinforcement As cm2 4,52 4,52

    Minimum requirement of reinforcement bar As min = 4,5 cm2

    1 / 1 U-Ditch 400x400.xls/R-bar stress

  • 7/26/2019 UD 40x40x40.pdf

    31/62

    DATA PLOT PEMBESIAN

    Section of Culvert

    b1b1 b2

    h3

    h2

    h1

    Bb

    Ha

    .

    b1 = m b2 = m

    h1 = m h2 = m h3 = m d = m

    Bb = m Ha = m Fillet = m

    2. Data Pembesian

    Bottom slab : Tulangan bagi :As1 (cm ) : O 12 @ O 12 @ O 12 @

    As2 (cm ) : O 12 @ O 12 @

    Side wall : Tulangan bagi :

    As1 (cm ) : O 12 @ O 12 @ O 12 @

    As2 (cm ) : O 12 @ O 12 @

    Top slab : Tulangan bagi :

    As1 (cm ) : O 12 @ O 12 @ O 12 @

    As2 (cm ) : O 12 @ O 12 @

    3. Tulangan Miring (fillet) :

    Bottom slab : O 12 @Top slab : O 12 @

    4. Nama Bangunan : Culvert Type 2 (0,4 m x 0,4 m)

    Lokasi : Kantor Bupati

    0,200 0,400

    0,200 0,400 0,200 0,06

    150 150 250

    150 150

    0,800 0,800 0,15

    Tumpuan Lapangan

    250

    250 150

    Tumpuan Lapangan

    Tumpuan Lapangan

    150 250

    250250

    150 150 250

    150 150

    1 / 2 U-Ditch 400x400.xls/PlotRebar

  • 7/26/2019 UD 40x40x40.pdf

    32/62

    SUMMARY OF STRUCTURAL CALCULATION OF 1-BARREL BOX CULVERT

    1 Design Dimensions and Bar Arrangements Class I Road (BM100)

    Type of box culvert B0,4 x H0,4

    Clear width m 0,40

    Clear height m 0,40

    Height of fillet m 0,15

    Thickness Side wall cm 20,0

    Top slab cm 20,0

    Bottom slab cm 20,0

    Cover of reinforcement bar (between concrete surface and center of reinforcement bar)

    Side wall Outside cm 6,0

    Inside cm 6,0

    Top slab Upper cm 6,0

    Lower cm 6,0

    Bottom slab Lower cm 6,0Upper cm 6,0

    Bar arrangement (dia - spacing per unit length of 1.0 m)

    Side wall Lower outside Tensile bar mm 12@150

    Distribution bar mm 12@250

    Middle inside Tensile bar mm 12@250

    Distribution bar mm 12@250

    Upper outside Tensile bar mm 12@150

    Distribution bar mm 12@250

    Top slab Upper edge Tensile bar mm 12@150

    Distribution bar mm 12@250

    Lower middle Tensile bar mm 12@150

    Distribution bar mm 12@250

    Bottom slab Lower edge Tensile bar mm 12@150Distribution bar mm 12@250

    Upper middle Tensile bar mm 12@150

    Distribution bar mm 12@250

    Fillet Upper edge Fillet bar mm 12@250

    Lower edge Fillet bar mm 12@250

    2 Design Parameters

    Unit Weight Reinforced Concrete c= 2,4 tf/m3

    Backfill soil (wet) s= 1,8 tf/m3

    (submerged) s'= 1,0 tf/m3

    Live Load Class of road Class I (BM100)

    Truck load at rear wheel P= 10,0 tf Impact coefficient (for Class I to IV road Ci= 0,3 (D4.0m)

    Pedestrian load (for Class V roads) 0 tf/m2

    Concrete Design Strength ck= 175 kgf/cm2

    (K175) Allowable Compressive Stress ca= 70 kgf/cm2

    Allowable Shearing Stress a= 5,5 kgf/cm2

    Reinforcement Bar Allowable Tensile Stress sa= 2.100 kgf/cm2

    (U24, deformed bar) Yielding Point of Reinforcement Bar sy= 3.000 kgf/cm2

    Young's Modulus Ratio n= 24

    Coefficient of static earth pressure Ka= 0,5

    1 / 1 U-Ditch 400x400.xls/Summary

  • 7/26/2019 UD 40x40x40.pdf

    33/62

    STRUCTURAL CALCULATION OF BOX CULVERT Type: B0,40m x H0,40m Class I Road

    Soil Cover Depth: 0,4 m

    1 Dimensions and ParametersBasic Parameters

    Ka: Coefficient of static earth pressure 0,5

    w: Unit weight of water (t/m3) 1,00 t/m3

    d: Unit weight of soil (dry) (t/m3) 1,80 t/m3

    s: Unit weight of soil (saturated) (t/m3) 2,00 t /m3

    c: Unit weight of reinforced concrete (t/m3) 2,40 t/m3ck: Concrete Design Strength 175 kgf/m2

    ca Allowable Stress of Concrete 70 kgf/m2

    sa: Allowable Stress of Reinforcement Bar 2100 kgf/m2

    a: Allowable Stress of Shearing (Concrete) 5,5 kgf/m2

    sy: Yielding Point of Reinforcement Bar 3000 kgf/m2

    n: Young's Modulus Ratio 24

    Fa: Safety factor against uplift 1,2

    Basic Dimensions

    H: Internal Height of Box Culvert 0,40 m

    B: Internal Width of Box Culvert 0,40 m

    Hf: Fillet Height 0,15 m

    t1: Thickness of Side Wall 0,20 m (> 0.25m)

    t2: Thickness of Top Slab 0,20 m (> 0.25m)

    t3: Thickness of Invert (Bottom Slab) 0,20 m (> 0.25m)

    BT: Gross Width of Box Culvert 0,80 m

    HT: Gross Height of Box Culvert 0,80 m

    D: Covering Depth 0,41 mGwd: Underground Water Depth for Case 1, 2 0,41 m (= D)

    hiw: Internal Water Depth for Case 1, 2 0,00 m

    for Case 3, 4 0,40 m

    Cover of R-bar Basic Conditions

    Top Slab d2 0,06 m Classification of Live load by truck Class 1

    Side Wall d1 0,06 m PTM: Truck load of Middle Tire 10,00 t

    Bottom Slab d3 0,06 m Ii: Impact coefficient (D4.0m:0, D

  • 7/26/2019 UD 40x40x40.pdf

    34/62

    Load distribution of truck tire

    (1) Middle tire's acting point: center of the top slab

    a) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 8,3030 tf/m2, B = 0,600 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    bm': width of distributed load 2D+am = 1,020 m

    b) distributed load of rear tire

    Pvtr: distributed load of rear tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    ar': length of distributed load 2D+1.75+br = 3,070 mbr': width of distributed load 2D+ar = 1,020 m

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (2) Middle tire's acting point: on the side wall

    a) distributed load of middle tire

    Pvtm: distributed load of middle tire 2PTM(1+Ii)/(am'bm') = 8,3030 tf/m2, B = 0,600 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    bm': width of distributed load 2D+am = 1,020 m

    b) distributed load of rear tire

    Pvtr: distributed load of rear tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    ar': length of distributed load 2D+1.75+br = 3,070 m

    br': width of distributed load 2D+ar = 1,020 m

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (3) Rear tire's acting point: on the side wall

    a) distributed load of rear tire

    Pvtr: distributed load of rear tire 2PTR(1+Ii)/(ar'br') = 8,3030 tf/m2, B = 0,600 m

    ar': length of distributed load 2D+1.75+br = 3,070 m

    br': width of distributed load 2D+ar = 1,020 m

    b) distributed load of middle tire

    Pvtm: distributed load of middle tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    am': length of distributed load 2D+1.75+bm = 3,070 m

    '' ,

    c) distributed load of front tire

    Pvtf: distributed load of front tire not reach to top slab 0,0000 tf/m2, B = 0,000 m

    af': length of distributed load 2D+1.75+bf = 3,070 m

    bf': width of distributed load 2D+af = 1,020 m

    (4) Combination of load distribution of track tire

    Case.L1: Pvt1 = 8,3030 tf/m2, B = 0,600 m Combination for Case.L2 (2) (2) (3) (3)Pvt2 = 0,0000 tf/m2, B = 0,000 m a) + b) a) + c) a) + b) a) + c)

    Case.L2: Pvt1 = 8,3030 tf/m2, B = 0,600 m Distributed load total 8,3030 8,3030 8,3030 8,3030

    Pvt2 = 0,0000 tf/m2, B = 0,000 m Select the combination case of 8,3030 tf/m2,

    for Case.L2, which is the largest load to the top slab.

    In case of covering depth (D) is over 3.0m, uniform load of 1.0 tf/m2 is applied on the top slab of culvert instead of live load calculated above.

    Distribution load by pedestrian load

    Pvt1 = 0,000 tf/m2

    2 Stability Analysis Against Uplift

    Analysis is made considering empty inside of box culvert.Fs=Vd/U > Fa Fs= 2,8913 > 1,2 ok

    where, Vd: Total dead weight (t/m) Vd= 1,850 tf/m

    U: Total uplift (t.m)

    U=BT*HT*w U= 0,640 tf/m

    Ws: Weight of covering soil Ws = BT*{(D-Gwd)*(sw)+Gwd*d} = 0,590 tf/m

    Wc: Self weight of box culvert Wc = (HT*BT-H*B+2*Hf^2)*c = 1,260 tf/m

    Fa: Safety factor against uplift Fa= 1,2

    2 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    35/62

    3 Load calculation

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*gd*Gwd P3= 0,3690

    P4=Ka*gs*(D1-Gwd) P4= 0,1000

    P5=gw*(D1-Gwd) P5= 0,1000

    Ph1= 4,7205

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*Gwd P3= 0,3690

    P4=Ka*s*(D1+H0-Gwd) P4= 0,7000

    P5=w*(D1+H0-Gwd) P5= 0,7000Ph2= 5,9205

    4) self weight of side wall

    Acting Load (tf/m)

    Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,0000 hiw: internal water depth 0,00 m

    Up=-U/B0 U= -1,0667

    Q= 10,0743

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,300 m

    side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 3,1923 - 0,2887 0,9217

    side wall (right) - -3,1923 - 0,2887 -0,9217

    internal water 0,0000 - 0,3000 - 0,0000

    uplift -0,6400 - 0,3000 - -0,1920

    total 6,0446 1,8134

    6) load against invert

    Acting Load (tf/m2)Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300

    Ws 0,6400

    Pq= 10,4110

    3 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    36/62

    Case 2: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=Gwd*gd+(D-Gwd)*gs Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*gd*Gwd P3= 0,3690

    P4=Ka*gs*(D1-Gwd) P4= 0,1000

    P5=gw*(D1-Gwd) P5= 0,1000

    Ph1= 4,7205

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*Gwd P3= 0,3690

    P4=Ka*s*(D1+H0-Gwd) P4= 0,7000

    P5=w*(D1+H0-Gwd) P5= 0,7000

    Ph2= 5,9205

    4) self weight of side wall

    Acting Load (tf/m)

    Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    v v = ,

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,0000 hiw: internal water depth 0,00 m

    Up=-U/B0 U= -1,0667

    Q= 10,0743

    summary of resistance moment

    Item V H x y M(tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m

    side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 10,0743 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 3,1923 - 0,2887 0,9217

    side wall (right) - -3,1923 - 0,2887 -0,9217

    internal water 0,0000 - 0,3000 - 0,0000

    uplift -0,6400 - 0,3000 - -0,1920

    total 6,0446 1,8134

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030Pvt2 0,0000

    Wtop 0,7300

    Ws 0,6400

    total Pq= 10,4110

    4 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    37/62

    Case 3: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L1

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=D*d Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*d*D1 P3= 0,4590

    WP=-w*0 P4= 0,0000

    Ph1= 4,6105

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*(D1+H0) P3= 0,9990

    WP=-w*H P4= -0,4000

    Ph2= 4,7505

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    v v = ,

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,1917 hiw: internal water depth 0,400 m

    Up=0 U= 0,0000

    Q= 11,3327

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 2,8083 - 0,2985 0,8383

    side wall (right) - -2,8083 - 0,2985 -0,8383

    internal water 0,1150 - 0,3000 - 0,0345

    uplift 0,0000 - 0,3000 - 0,0000

    total 6,7996 2,0399

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300Ws 0,6400

    total Pq= 10,4110

    5 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    38/62

    Case 4: Box Culvert Inside is Full, Underground Water up to invert, Track load Case. L2

    1) vertical load against top slab

    Acting Load (tf/m2)

    Wtop= (t2*BT+Hf^2)*c/B0 Wtop= 0,7300

    Pvd=D*d Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    Pvt2 Pvt2= 0,0000

    Pv1= 9,7710

    2) horizontal load at top of side wall

    Acting Load (tf/m2) Horizontal pressure by track tire

    P1=Ka*we1 P1= 4,1515 we1= 8,3030 tf/m2

    P2=Ka*we2 P2= 0,0000 we2= 0,0000 tf/m2

    P3=Ka*d*D1 P3= 0,4590

    WP=-w*0 P4= 0,0000

    Ph1= 4,6105

    3) horizontal load at bottom of side wall

    Acting Load (tf/m2)

    P1=Ka*we1 P1= 4,1515

    P2=Ka*we2 P2= 0,0000

    P3=Ka*d*(D1+H0) P3= 0,9990

    WP=-w*H P4= -0,4000

    Ph2= 4,7505

    4) self weight of side wall

    Acting Load (tf/m)Wsw=t1*H*c Wsw= 0,1920

    5) ground reaction

    Acting Load (tf/m2)

    Wbot=(t3*BT+Hf^2)*c/B0 Wbot= 0,7300

    Wtop Wtop= 0,7300

    Ws=Wsw*2/B0 Ws= 0,6400

    Pvd Pvd= 0,7380

    Pvt1 Pvt1= 8,3030

    v v = ,

    Wiw=(hiw*B-2Hf^2)*w/B0 Wiw= 0,1917 hiw: internal water depth 0,400 m

    Up=0 U= 0,0000

    Q= 11,3327

    summary of resistance moment

    Item V H x y M

    (tf/m) (tf/m) (m) (m) (tf.m/m) acting point of resultant force

    Self weight top slab 0,4380 - 0,3000 - 0,1314 X = M/V = 0,3000 m side wall (left) 0,1920 - 0,0000 - 0,0000 e = B0/2 - X = 0,0000 m

    side wall (right) 0,1920 - 0,6000 - 0,1152

    invert 0,4380 - 0,3000 - 0,1314 ground reaction

    load on top slab Pvd 0,4428 - 0,3000 - 0,1328 q1 = V/Bo + 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt1 4,9818 - 0,3000 - 1,4945 q2 = V/Bo - 6Ve/Bo^2 = 11,3327 tf/m2

    Pvt2 0,0000 - 0,3000 - 0,0000

    soil pressure side wall (left) - 2,8083 - 0,2985 0,8383

    side wall (right) - -2,8083 - 0,2985 -0,8383

    internal water 0,1150 - 0,3000 - 0,0345

    uplift 0,0000 - 0,3000 - 0,0000

    total 6,7996 2,0399

    6) load against invert

    Acting Load (tf/m2)

    Pvd 0,7380

    Pvt1 8,3030

    Pvt2 0,0000

    Wtop 0,7300Ws 0,6400

    total Pq= 10,4110

    Summary of Load Calculation

    Item Pv1 Ph1 Ph2 Pq Wsw q1

    Case (tf/m2) (tf/m2) (tf/m2) (tf/m2) (tf/m) (tf/m2)

    Case.1 9,7710 4,7205 5,9205 10,4110 0,1920 10,0743

    Case.2 9,7710 4,7205 5,9205 10,4110 0,1920 10,0743

    Case.3 9,7710 4,6105 4,7505 10,4110 0,1920 11,3327

    Case.4 9,7710 4,6105 4,7505 10,4110 0,1920 11,3327

    6 / 6 U-Ditch 400x400.xls/Load

  • 7/26/2019 UD 40x40x40.pdf

    39/62

    4 Analysis of Plane Frame

    Case 1: Box Culvert Inside is Empty, Underground Water up to Top slab, Track load Case. L1

    1) Calculation of Load Term

    Ph1 Horizontal Pressure at top of side wall 4,720 tf/m2

    Ph2 Horizontal Pressure at bottom of side wall 5,920 tf/m2

    Pv1 Vertical Pressure(1) on top slab 9,771 tf/m

    2

    Pv2 Vertical Pressure(2) on top slab 0,000 tf/m2

    Pq Reaction to bottom slab 10,411 tf/m2

    a Distance from joint B to far end of Pv2 0,600 m

    b Distance from joint B to near end of Pv2 0,000 m

    H0 Height of plane frame 0,600 m

    B0 Width of plane frame 0,600 m

    t1 Thickness of side wall 0,200 m

    t2 Thickness of top slab 0,200 m

    t3 Thickness of invert (bottom slab) 0,200 m

    CAB= CDC= (2Ph1+3Ph2)H02/60 = 0,16321 tf m

    CBA= CCD= (3Ph1+2Ph2)H02/60 = 0,15601 tf m

    CBC= CCB= Pv1B02/12 + {(a

    2-b

    2)B0

    2/2 - 2B0(a

    3-b

    3)/3 + (a

    4-b

    4)/4}Pv2/B0

    2 = 0,29313 tf m

    CDA= CAD= PqB02/12 = 0,31233 tf m

    2) Calculation of Bending Moment at joint

    k1 = 1,0

    k2 = H0t23/(B0t1

    3) = 1,0000

    k3 = H0t33/(B0t1

    3) = 1,0000

    2(k1+k3) k1 0 k3 -3k1 A CAB- CAD

    k1 2(k1+k2) k2 0 -3k1 B CBC- CBA

    0 2 2(k1+k2 k1 -3k1 = C - C

    B

    A

    (t2)

    (t1)

    B0

    (t3)

    (t1)

    C

    H0

    D

    k3 0 k1 2(k1+k3) -3k1 D CDA- CDC

    k1 k1 k1 k1 -4k1 R 0

    As load has bilateral symmetry, the equation shown below is formed.

    A= -D B= -C R =0

    2k1+k3 k1 A

    k1 2k1+k2 B

    3,0000 1,0 A1,0 3,0000 B

    By solving above equation, the result is led as shown below.

    A = -0,07306 C = -0,07006

    B = 0,07006 D = 0,07306


Recommended