+ All Categories
Home > Documents > Ultrafast dynamics in multiferroics HoMnO3 revealed by fs … · 2016. 2. 19. · Ultrafast...

Ultrafast dynamics in multiferroics HoMnO3 revealed by fs … · 2016. 2. 19. · Ultrafast...

Date post: 04-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
33
Ultrafast dynamics in multiferroics HoMnO 3 revealed by fs spectroscopy Chih Wei Luo (羅志偉)
Transcript
  • Ultrafast dynamics in multiferroics HoMnO3 revealed

    by fs spectroscopy

    Chih Wei Luo (羅志偉)

  • Outline

    Introduction of femtosecond (fs) laser pulses

    Ultrafast dynamics in multiferroics HoMnO3Summary I

    High-Tc superconductor YBa2Cu3O7 nanodots

    Summary II

  • What is the ultrashort pulse?

    ~10-6 s

    ~10-9 s

    ~10-12 s~10-15 s

    Introduction of fs laser pulses

  • Timescales

    1 minute10 fs light

    pulse Age of universe

    Time (seconds)

    Computer clock cycle

    Camera flash

    Age of pyramids

    One month

    Human existence

    10-15 10-12 10-9 10-6 10-3 100 103 106 109 1012 1015 1018

    1 femtosecond 1 picosecond

    a pulse : 1 minute ~ 1 minute : age of universe

    Introduction of fs laser pulses

  • Which one is true?

    1 / 1 min

    1 / 0.5 min

    1 / 1 sec

    Idea from 石訓全

    Introduction of fs laser pulses

  • Ultrafast camera!!

    Introduction of fs laser pulses

  • The possibility for nuclear fusion!

    Introduction of fs laser pulses

    Short pulse = intense peak power100 mJ, 100 fs = 1 TW1018 W/cm2 @ φ = 10 μm (1010 V/cm)

    Institute of Laser EngineeringOsaka University

    LegendLegend

    AmplifierAmplifier

    MiraMira

    SeedSeed

    VerdiVerdiPumpPump

    EvolutionEvolutionPumpPump

    Short pulse, low energy

    Long pulse, high energy

    Short pulse, high energy

    LegendLegend

    AmplifierAmplifier

    MiraMira

    SeedSeed

    VerdiVerdiPumpPump

    VerdiVerdiPumpPump

    EvolutionEvolutionPumpPump

    EvolutionEvolutionEvolutionEvolutionPumpPump

    Short pulse, low energy

    Long pulse, high energy

    Short pulse, high energy

  • The shorter pulse duration, the more papers!

    1950 1960 1970 1980 1990 2000 201010-18

    10-15

    10-12

    10-9

    intra-cavity pulse compression

    XUV excitation pulse

    Colliding pulse mode-locking

    Passive mode-locking

    Active mode-locking

    Puls

    e du

    ratio

    n (s

    ec.)

    Year

    First laser (Ruby)

    1980 1983 1986 1989 1992 1995 1998 2001 2004 20070

    500

    1000

    1500

    2000

    Femtosecond in Web of Science

    No.

    of P

    ublic

    atio

    ns

    Year

    Prof. Ahmed Zewail

    The 1999 Nobel Prize in Chemistry

    Prof. Theodor W. Hänsch

    The 2005 Nobel Prize in Physics

    The evolution of pulse width

    Introduction of fs laser pulses

  • Multiferroic

    Ultrafast dynamics in HoMnO3

    Ferromagnets (ferroelectrics) form a subset of magnetically (electrically) polarizablematerials such as paramagnets and antiferromagnets (paraelectrics and antiferroelectrics)

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). 

  • Multiferroic ReMnO3

    Ultrafast dynamics in HoMnO3

    Hexagonal structure      v.s.      Orthorhombic structure

    Seongsu Lee, et al Nature 451,805 (2008) S. Satpathy, et al PRL 76 ,960 (1996)

    W. Prellier, et al, JPCM 17, 803 (2005) 

  • Hexagonal HoMnO3

    Ultrafast dynamics in HoMnO3

    TC= 875 K Pz= 5.6 μC cm‐2

    TN= 76 K TSR= 33 K THo= 5 K

    Coexistence between FE and AFM 

    MnO5 bipyramids form a layered structure on a‐b plane. 

    B. Lorenz, et al PRB 71 ,014438 (2005)

  • Magnetoelectric coupling effect on hexagonal HoMnO3

    Ultrafast dynamics in HoMnO3

    Dielectric constant Heat capacity Lattice constant

    B. Lorenz, et al PRL 92 ,087204 (2004)

    B. Lorenz, et al PRB 71 ,014438 (2005)

    C. Dela Cruz, et al PRB 71 ,060407R (2005)

  • Optical properties of hexagonal HoMnO3

    Ultrafast dynamics in HoMnO3

    Transmittance and reflectance measurements were performed using a Fourier transform spectrometer in a frequency range from 10 to 45000 cm-1 (1.2 meV to 5.6 eV)

    1.7 eV absorption peak comes from d→d transitions.

    ~0.15 eV blueshift as decreasing temperature.

    Associate with the magnetic phase transition.

    A. B. Souchkov, et al PRL 91 ,027203 (2003)

    e1g

    e2g

    a1g

  • Optical properties of hexagonal HoMnO3

    Ultrafast dynamics in HoMnO3

    Woo Seok Choi, et al PRB 78 ,054440 (2008)

    TN

    Rare‐earth : Gd、Tb、Dy、Ho

  • Crystal structure and magnetic property

    Ultrafast dynamics in HoMnO3

    Out of plane : c‐axisIn plane : ab‐axis

    10 20 30 40 50 60

    HM

    O(0

    06)

    HM

    O(0

    04)

    Inte

    nsity

    (arb

    . uni

    ts)

    2θ (degree)

    HM

    O(0

    02)

    TN= 76 K TSR= 33 K THo= 5 K

    0 20 40 60 80 100

    2.0x10-6

    4.0x10-6

    6.0x10-6

    8.0x10-6

    1.0x10-5

    1.2x10-5

    0 50 100 150 200 250 300

    1/χ

    (Oe/

    emu)

    Temperature (K)

    Curie-Weiss Law

    TSRχ

    (em

    u/O

    e)

    Temperature (K)

    ZFC 100 OeH//c-axis

    THo

  • Pump-probe and optical spectroscopy

    Ultrafast dynamics in HoMnO3

    700 720 740 760 780 800 820 840 860 880

    Nor

    mal

    ize

    Inte

    ntsi

    ty (a

    rb. u

    nits

    )

    Wavelength (nm)

    740nm 755nm 770nm 785nm 800nm 815nm

    Tunable photon energy from 1.52 to 1.69 eV

  • Temperature-dependent transient reflectivity change (ΔR/R)

    Ultrafast dynamics in HoMnO3

    0 20 40 60 80

    T=60K

    T=67K

    T=71K

    T=80K

    T=100K

    T=140K

    T=180K

    T=220K

    T=290K

    Δ

    R/R

    (arb

    . uni

    ts)

    Delay Time (ps)

    0 20 40 60 80

    T=210K

    T=170K

    T=150K

    T=140K

    T=120K

    T=100K

    T=60K

    T=250K

    x3

    ΔR

    /R (a

    rb. u

    nits

    )

    Delay Time (ps)

    x3

    T=290K

    0 20 40 60 80

    T=250K

    T=210K

    T=190K

    T=170K

    T=130K

    T=110K

    T=95K

    T=85K

    ΔR

    /R (a

    rb. u

    nits

    )

    Delay Time (ps)

    T=290K

    Wavelength : 800 nm Wavelength : 770 nm Wavelength : 740 nm

  • Oscillation component

    Ultrafast dynamics in HoMnO3

    0 10 20 30 40 50

    800nm 740nm

    ΔR

    /R (a

    rb. u

    nits

    )

    Delay time (ps)

    T=290K

    Strain Pulse Model )sin2/( 22 θυλτ −≅ nsoundprobeosc

    D. Lim, et al APL 83 ,4800 (2003)

    LuMnO3

  • Ultrafast dynamics in HoMnO3Charge transfer from e2g to a1g by pump pulses

    223 rzd

    levels3Mn3 d+

    )(),( 22 xyyxd

    E

    Pump energy :1.52 eVP

    ump energy

    Pum

    p energy

    T=290K

    T=140K

    Room temperature Low temperature

    Woo Seok Choi, et al PRB 78 ,054440 (2008)Observed the blueshift of energy gap !

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm

    T0=140 K

  • Ultrafast dynamics in HoMnO3Charge transfer from e2g to a1g by pump pulses

    Observed the blueshift of energy gap !

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm 800nm

    levels3Mn3 d+ Pump energy :1.55 eVRoom temperature Low temperature

    223 rzd

    )(),( 22 xyyxd

    E

    Pum

    p energy

    Pum

    p energy

    T=290K

    T=140K

  • Ultrafast dynamics in HoMnO3Charge transfer from e2g to a1g by pump pulses

    Observed the blueshift of energy gap !

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm 800nm

    T0=117 K

    levels3Mn3 d+ Pump energy :1.55 eVRoom temperature Low temperature

    223 rzd

    )(),( 22 xyyxd

    E

    Pum

    p energy

    Pum

    p energy

    T=290K

    T=117K

    T=140K

  • Ultrafast dynamics in HoMnO3Charge transfer from e2g to a1g by pump pulses

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm 800nm 785nm 770nm 755nm 740nmT0

    levels3Mn3 d+ Pump energy :1.68 eVRoom temperature Low temperature

    T=63K

    Pum

    p energy

    223 rzd

    EP

    ump energy

    T=290K

    )(),( 22 xyyxd

    40 60 80 100 120 140 160 1800.00

    0.04

    0.08

    0.12

    0.16

    0.20

    Temperature (K)

    Slop

    e

    40 60 80 100 120 140 160 1801.481.501.521.541.561.581.601.621.641.661.681.701.72

    Temperature (K)

    AFM

    Ener

    gy g

    ap E

    dd (e

    V)

    0 20 40 60 80 100

    2.0x10-6

    4.0x10-6

    6.0x10-6

    8.0x10-6

    1.0x10-5

    1.2x10-5

    0 50 100 150 200 250 300

    1/χ

    (Oe/

    emu)

    Temperature (K)

    Curie-Weiss Law

    TSR

    χ (e

    mu/

    Oe)

    Temperature (K)

    ZFC 100 OeH//c-axis

    THo

  • Ultrafast dynamics in HoMnO3Charge transfer from e2g to a1g by pump pulses

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm 800nm 785nm 770nm 755nm 740nmT0

    levels3Mn3 d+ Pump energy :1.68 eVRoom temperature Low temperature

    40 60 80 100 120 140 160 1800.00

    0.04

    0.08

    0.12

    0.16

    0.20

    Temperature (K)

    Slop

    e

    40 60 80 100 120 140 160 1801.481.501.521.541.561.581.601.621.641.661.681.701.72

    Temperature (K)

    AFM

    Ener

    gy g

    ap E

    dd (e

    V)

    T=63K

    Pum

    p energy

    223 rzd

    EP

    ump energy

    T=290K

    )(),( 22 xyyxd

    −T=63K

    Pum

    p energy

    )(),( 22 xyyxd

    Extra‐blueshift comes from long‐range AFM ordering!!

  • Ultrafast dynamics in HoMnO3Demagnetization dynamics

    0 20 40 60 80

    0 100 200 300 400 500 600

    75K

    180K

    290K

    ΔR

    /R (a

    rb. u

    nits

    )

    Delay time (ps)

    Te Tl Tsτm

    T=75K

    T=180K

    Delay time (ps)

    T=290K

    τmτc75 K

    60 90 120 150 180 210 240

    1

    2

    3

    4

    5

    6

    7

    τ m

    Temperature (K)

    800nm 785nm 770nm 755nm 740nm

  • Summary

    The oscillation due to the strain pulse was clearly observed in ΔR/R by fs spectroscopy.

    A distinct blueshift of the Mn3+ d-d optical transition comes from the appearance of AFM long-range ordering.

    The demagnetization time (τm) in a few psscale and its recovering time (τc) in a few 100 ps scale were shown in the ΔR/R.

    0 10 20 30 40 50

    800nm 740nm

    ΔR

    /R (a

    rb. u

    nits

    )

    Delay time (ps)

    T=290K

    0 50 100 150 200 250 300

    -0.2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    am

    plitu

    de o

    f ΔR

    /R

    Temperature (K)

    815nm 800nm 785nm 770nm 755nm 740nmT0

    0 20 40 60 80

    Te Tl Tsτm

    T=75K

    T=180K

    Delay time (ps)

    T=290K

    τm 75 K

  • YBCO nanodotsSample reparation:

    Vacuum Pumps

    VacuumGauges

    Excimer Laser

    Lens

    YP

    Heater

    Vacuum ChamberO2

    (001) YBa2Cu3O7 (YBCO) / (100) LaAlO3

    10 20 30 40 50 60 700

    100

    200

    300

    400

    YBC

    O(0

    03)

    YBC

    O(0

    06)

    YBC

    O(0

    07)

    LAO

    (200

    )

    YBC

    O(0

    05)

    YBC

    O(0

    04)

    LAO

    (100

    )

    YBC

    O(0

    02)

    YBC

    O(0

    01)

    inte

    nsity

    (a. u

    .)

    2θ (degrees)

    XRD

    SEM

    50 100 150 200 2500

    5

    10

    15

    Res

    ista

    nce

    (Ω)

    Temperature (K)

    Tc = 90.1 K

  • YBCO nanodotsExperimental setup: (spot size~110 μm)

    fs Laser

    光路徑光路徑

    LaAlO3

    YBCO19.6 cm

  • YBCO nanodotsResults – surface morphology

    Fluence = 0 J/cm2

    Fluence = 0.21 J/cm2

    Fluence = 0.26 J/cm2 Fluence = 0.53 J/cm2

    Fluence = 0.32 J/cm2

    C. W. Luo, C. C. Lee, et al., Optics Express 16, 20610 (2008)

  • YBCO nanodotsResults – structure

    Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

    Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

    Fluence = 0.53 J/cm2

    XRD signals of YBCO thin films at various laser fluences.

  • YBCO nanodotsResults – superconductivity

    Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

    Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

    Fluence = 0.53 J/cm2

  • YBCO nanodotsResults – composition

    Fluence = 0 J/cm2 Fluence = 0.21 J/cm2

    Fluence = 0.26 J/cm2 Fluence = 0.32 J/cm2

    Fluence = 0.53 J/cm2

    3000 K > 1897 K (Ba)

    3700 K > 3345 K (Y)

    EDS spectra show the composition of area 1 and area 2.

    314-

    1-3-6

    m 101.14 KmJ 102.86 /

    mJ 0.1

    ×=×==Δ

    VCCVWTW

  • Summary

    The surface microstructure of YBCO thin films can be manipulated by properly controlling the fluence of the irradiating femtosecond laser.

    A ripple pattern was clearly observed on the surface of one YBCO thin film.

    The (001)-YBCO film turns into nanodot arraywith the superconductivity remains almost intact.

    Serve as a new way of engineering the material surfaces into nanometer scale structures.B. K. Nayak, et al., Appl. Phys. A 90, 399 (2008)Formation of nano-textured conical microstructures in titanium metal surface

  • Students: H. C. Shih, C. C. Lee, H. I. Wang, W. T. Tang

    Solid State Lab: K. H. Wu, J. Y. Juang, J.-Y. Lin, T. M. Uen

    NSRRC: J. M. Chen, J. M. Lee

    Acknowledgements

    Thank you

    for your attention!!


Recommended