+ All Categories
Home > Documents > Ultrafast processes in molecules

Ultrafast processes in molecules

Date post: 07-Feb-2016
Category:
Upload: torin
View: 37 times
Download: 0 times
Share this document with a friend
Description:
Ultrafast processes in molecules. VIII – Methods in quantum dynamics. Mario Barbatti [email protected]. Multiply by y i at left and integrate in the electronic coordinates. Time dependent Schrödinger equation for the nuclei. Quantum dynamics. nuclear wave function. - PowerPoint PPT Presentation
Popular Tags:
26
Ultrafast processes in molecules Mario Barbatti [email protected] VIII – Methods in quantum dynamics
Transcript
Page 1: Ultrafast processes in molecules

Ultrafast processes in molecules

Mario [email protected]

VIII – Methods in quantum dynamics

Page 2: Ultrafast processes in molecules

2

sN

kkk

1

;, RrRRr kk nuclear wave function

Multiply by i at left and integrate in the electronic coordinates

Time dependent Schrödinger equation for the nuclei

sN

kkkNikiiiN T

tiET

ti

1

0

eN HT H

0),,(

tt

i RrH

Quantum dynamics

Page 3: Ultrafast processes in molecules

3

1

1

1.11 1

)(1

)1()(...,

n

j

n

jf

fjfj

ijji

f

f

fRRAt R

Expand nuclear wave function in a basis of nk functions k for each coordinate Rk:

sN

kkkNikiiiN T

tiET

ti

1

0

k

kiki

ti )()( AHΑ

Wavepacket program:http://page.mi.fu-berlin.de/burkhard/WavePacket/

Kosloff, J. Phys. Chem. 92, 2087 (1988)

Wave-packet propagation

Page 4: Ultrafast processes in molecules

4

Page 5: Ultrafast processes in molecules

5

Multiconfiguration time-dependent Hartree (MCTDH) method

1

1

1.11 1

)(1

)1()(... ,,)(,

n

j

n

jf

fjj

ijji

f

f

fftRtRtAt R

Variational method leads to equations of motion for A and .

Heidelberg MCDTH program:http://www.pci.uni-heidelberg.de/tc/usr/mctdh/

Meyer and Worth, Theor. Chem. Acc. 109, 251 (2003)

Conventional: 1 – 4 degrees of freedomMCTDH: 4 -12 degrees of freedom

Page 6: Ultrafast processes in molecules

6

UV absorption spectrum of pyrazine (24 degrees of freedom!)

MCTDH Exp.

Raab, et al. J. Chem. Phys. 110, 936 (1999)

tii etdtI 01

Page 7: Ultrafast processes in molecules

7

Multiple spawning dynamics

tN

m

Nim

im

im

im

tiimi

i atim PRRgetct

1

3

1

,,;;

R

im

im

im

im

imi

mim

im

im RRPiRRPRRg

24/1

exp2

,,;

Nuclear wavefunction is expanded in a Gaussian basis set centered at the classical trajectory PR,

Note that the number of gaussian functions (Ni) depends on time.

Ben-Nun, Quenneville, Martínez, J. Phys. Chem. A 104, 5161 (2000)

Page 8: Ultrafast processes in molecules

8

Multiple spawning dynamics

tN

m

Nim

im

im

im

tiimi

i atim PRRgetct

1

3

1

,,;;

R

sN

kkeikkNikiN HTT

ti

1

0

0NT ijjn

im

ijmn ggS with and

ij

jijiiiiiiii

iidtd CCSSC 1

Page 9: Ultrafast processes in molecules

9

Multiple spawning dynamics

The non-adiabatic coupling within Hij is computed and monitored along the trajectory.

When it become larger than some pre-define threshold, new gaussian functions are created (spawned).

Page 10: Ultrafast processes in molecules

10

Multiple spawning dynamics

jk

JNiMijiNijiij TETH

hH 2

Saddle point approximation

Rff jiji

Page 11: Ultrafast processes in molecules

11

S1 S0

Page 13: Ultrafast processes in molecules

13

sN

kkkNikiiiN T

tiET

ti

1

0

Global nature of the nuclear wavefunction

R’R

E

tt’

E1 ''1 tR

kt

1 ttE '1 R

12 M

Page 14: Ultrafast processes in molecules

14

sN

kkkiii t

iEt

i1

0

Global nature of the nuclear wavefunction

R’R

E

tt’

E1 ''1 tR

kt

1 ttE '1 R

02

2 iMiN MT

Page 15: Ultrafast processes in molecules

15

Within this approximation, the nuclear wavefunction is local: it does not depend on the wavefunction values at other positions of the

space

This opens two possibilities:1) On-the-fly approaches (global PESs are no more needed)

2) Classical independent trajectories approximations

However, because of the non-adiabatic coupling between different electronic states, the problem cannot be reduced to the Newton’s

equations

We use, therefore, Mixed Quantum-Classical Dynamics approaches (MQCD)

Page 16: Ultrafast processes in molecules

16

Ehrenfest (Average Field) Dynamics

tHt eNc RF

With

sN

k

ckk ttt

1

;Rr

i which solves: 0 ie EH (adiabatic basis)

Weighted average over all gradients

Meyer and Miller, J. Chem. Phys. 70, 3214 (1979)

s

c

N

kkk

c Et1

2RRRF

Prove!

0 kNRemember we assumed

Page 17: Ultrafast processes in molecules

17

t

E

0)0( 20

1)0( 21

0 tci

5.0)( 21 CIt

5.0)( 20 CIt

8.0)( 20

2.0)( 21

Average surface

Page 18: Ultrafast processes in molecules

18

s*

ns*

cs

Energy

N-H dissociation

10 fs

*

Ehrenfest dynamics fails for dissociation

Page 19: Ultrafast processes in molecules

19

0 2 4 6 8 10 12 14

-224.85

-224.80

-224.75

-224.70

-224.65

s*

cs

Ene

rgy

(au)

Time (fs)

cs

s*

0.43

0.57

In this case, Ehrenfest dynamics would predict the dissociation on a

surface that is ~half/half S0 and

S1, which does not correspond to the

truth.

Landau-Zener predicts the populations at t = ∞

ss

212

** 2expH

PtHH 2211

vF12 1

Page 20: Ultrafast processes in molecules

20

The problem with the Ehrenfest dynamics is the lack of decoherence.

The non-diagonal terms should quickly go to zero because of the coupling among the several degrees of freedom.

The approximation i(R(t)) ~ i(t) does not describe this behavior adequately.

Ad hoc corrections may be imposed.

Zhu, Jasper and Truhlar, J. Chem. Phys. 120, 5543 (2004)

Decoherence

2

10*1

1*0

20

Page 21: Ultrafast processes in molecules

21

Surface hopping dynamics

iNc ERF

Tully, J. Chem. Phys. 93, 1061 (1990)

Dynamics runs always on a single surface (diabatic or adiabatic).

Every time step a stochastic algorithm decides based on the non-adiabatic transition probabilities on which surface the molecule will stay.

The wavepacket information is recovered repeating the procedure for a large number of independent trajectories.

Because the dynamics runs on a single surface, the decoherence problem is largely reduced (but not eliminated).

Page 22: Ultrafast processes in molecules

22

t

E

0)0( 20

1)0( 21

0 tci

5.0)( 21 CIt

5.0)( 20 CIt

8.0)( 20

2.0)( 21

Page 23: Ultrafast processes in molecules

23

Tully, Faraday Discuss. 110, 407 (1998).

Burant and Tully, JCP 112, 6097 (2000)

wave-packet

surface-hopping (adiabatic)mean-field

Landau-Zener

surface-hopping (diabatic)

Comparison between methods

Page 24: Ultrafast processes in molecules

24

Worth, hunt and Robb, JPCA 127, 621 (2003).

Oscillation patterns are not necessarily quantum interferences

Butatriene cation

Barbatti, Granucci, Persico, Lischka, CPL 401, 276 (2005).

Ethylene

Page 25: Ultrafast processes in molecules

25

1

1

1.11 1

)(1

)1()(... ,,)(,

n

j

n

jf

fjj

ijji

f

f

fftRtRtAt R

Quantum

Classical

Multiple spawning

MQCD dynamics

Wave packet (MCTDH)

tN

m

Nim

im

im

im

tiImi

i atim PRRgetct

1

3

1

,,;;

R

2/1, c

ii tt RRR

Hierarchy of methods

Page 26: Ultrafast processes in molecules

26

Next lecture:

• Spectrum simulations• Implementation of surface hopping dynamics

[email protected]


Recommended