+ All Categories
Home > Documents > UltraUltra--Cold Quantum Gases Cold Quantum Gases for ...Ultra-cold Matter Apparatus Apparatus v1.0:...

UltraUltra--Cold Quantum Gases Cold Quantum Gases for ...Ultra-cold Matter Apparatus Apparatus v1.0:...

Date post: 10-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
70
Ultra Ultra-Cold Quantum Gases Cold Quantum Gases for Many for Many-Body Physics and Interferometry Body Physics and Interferometry Seth A. M. Aubin Dept. of Physics, College of William and Mary May 5, 2008 AMO Seminar University of Virginia
Transcript
  • UltraUltra--Cold Quantum GasesCold Quantum Gases

    for Manyfor Many--Body Physics and InterferometryBody Physics and Interferometry

    Seth A. M. Aubin

    Dept. of Physics, College of William and Mary

    May 5, 2008

    AMO Seminar

    University of Virginia

  • OutlineOutline

    � Ultra-cold Matter Apparatus���� Apparatus v1.0: The Thywissen U. of T. machine.

    ���� Apparatus v2.0: The W&M machine.

    � Future physics plans Path APath APath A� Future physics plans���� Near termNear term: Fermion interferometry .

    ���� Longer termLonger term: Ultra-cold molecules.

    ♦♦♦♦ Superfluid polar molecules

    Path A

    Path A

    Path A

    Path A

    Path A

    Path A

  • Thywissen Lab BECThywissen Lab BEC--DFG machineDFG machine

    @ U. of Toronto@ U. of Toronto

    � Produces a BEC of 87Rb and DFG of 40K.

    � Atom chip technology.

    � Cycle time: 5-10 s for BEC, 20-40 s for DFG.

    � Produces a BEC of 87Rb and DFG of 40K.

    � Atom chip technology.

    � Cycle time: 5-10 s for BEC, 20-40 s for DFG.� Cycle time: 5-10 s for BEC, 20-40 s for DFG.

    � NBEC = 104-105, NDFG = 4x104.

    � Simple design: - Conventional dual species MOT

    - Single vacuum chamber

    - Atom chip micro-magnetic trap

    - RF evaporation for 87Rb.

    - Sympathetic cooling of 40K with 87Rb.

    � Cycle time: 5-10 s for BEC, 20-40 s for DFG.

    � NBEC = 104-105, NDFG = 4x104.

    � Simple design: - Conventional dual species MOT

    - Single vacuum chamber

    - Atom chip micro-magnetic trap

    - RF evaporation for 87Rb.

    - Sympathetic cooling of 40K with 87Rb.

  • dual species MOT

    109 87Rb atoms

    107 40K atoms

    dual species MOT

    109 87Rb atoms

    107 40K atoms107 40K atoms107 40K atoms

  • dual species chip B-trap

    87Rb: 2×107 atoms, psd < 10-6.40K: 2×105 atoms, psd < 10-8.

    (psd = phase space density)

    dual species chip B-trap

    87Rb: 2×107 atoms, psd < 10-6.40K: 2×105 atoms, psd < 10-8.

    (psd = phase space density)

  • LightLight--Induced Atom Desorption (LIAD)Induced Atom Desorption (LIAD)

    Conflicting pressure requirements:• Large Alkali partial pressure → large MOT.• UHV vacuum → long magnetic trap lifetime.

    Conflicting pressure requirements:• Large Alkali partial pressure → large MOT.• UHV vacuum → long magnetic trap lifetime.

    Solution: Use LIAD to control pressure dynamically !

    � 405nm LEDs (power=600 mW) in a pyrex cell.

  • MicroMicro--magnetic Trapsmagnetic Traps

    Advantages of “atom” chips:

    � Very tight confinement .

    � Fast evaporation time.

    � photo-lithographic production.

    Iz

    � photo-lithographic production.

    � Integration of complex trapping potentials.

    � Integration of RF, microwave and optical elements.

    � Reduced vacuum requirement.

  • A More Complicated Trapping GeometryA More Complicated Trapping Geometry

    300 300 µµmm

    100 100 µµmm

    Wire characteristics:Wire characteristics:height = 3 height = 3 µµmmwidth = 5 width = 5 µµmmcurrent = 0.5 Acurrent = 0.5 A

    Wire characteristics:Wire characteristics:height = 3 height = 3 µµmmwidth = 5 width = 5 µµmmcurrent = 0.5 Acurrent = 0.5 A

    2 reservoirs coupled by a quasi-1D “quantum wire”

    xy

    z

    500 500 µµmm

  • A More Complicated Trapping GeometryA More Complicated Trapping Geometry

    “end cap” wiresWire characteristics:Wire characteristics:

    height = 3 height = 3 µµmmwidth = 5 width = 5 µµmmcurrent = 0.5 Acurrent = 0.5 A

    Wire characteristics:Wire characteristics:height = 3 height = 3 µµmmwidth = 5 width = 5 µµmmcurrent = 0.5 Acurrent = 0.5 A

    2 reservoirs coupled by a quasi-1D “quantum wire”

    xy

    z

  • A More Complicated Trapping GeometryA More Complicated Trapping Geometry

    constant potential

    xy

    z

    constant potential energy surface

    (x-z zoom)

    K. Das, S. Aubin, and T. OpatrnyQuantum pumping with ultracold atoms (in writing)

    K. Das, S. Aubin, and T. OpatrnyQuantum pumping with ultracold atoms (in writing)

  • MicroMicro--Magnetic Trap DifficultiesMagnetic Trap Difficulties

    Technology:� Electroplated gold wires on a silicon substrate.

    � Manufactured by J. Estève (Aspect/Orsay).

    Technology:� Electroplated gold wires on a silicon substrate.

    � Manufactured by J. Estève (Aspect/Orsay).

    Trap Potential: Z-wire trap Iz

    Z-trap current

    Iz

    RF for evaporation

    defects

    Evaporated Ag and Au (B. Cieslak and S. Myrskog)

  • T=19 T=19 µµµµµµµµKK

    ( )kTrUrn )(exp)( 31 −≈ Λ

    Magnetic Dimple Trap: Extra CompressionMagnetic Dimple Trap: Extra Compression

    T=7 T=7 µµKK

    faxial boosted by two (to 26 Hz)

  • BoseBose--Einstein Condensation of Einstein Condensation of 8787RbRb

    BECthermalatomsmagnetictrapping

    evap.coolingMOT

    10-13 110-6 105

    PSD

    1.095.3ln(N)

    ln(PSD) ±=d

    d

    Evaporation Efficiency

  • 8787Rb BECRb [email protected] MHz:

    N = 7.3x105, T>Tc

    [email protected] MHz:

    N = 6.4x105, T~Tc

    [email protected] MHz:

    N=1.4x105, T

  • 8787Rb BECRb [email protected] MHz:

    N = 7.3x105, T>Tc

    [email protected] MHz:

    N = 6.4x105, T~Tc

    [email protected] MHz:

    N=1.4x105, T

  • Fermions: Sympathetic CoolingFermions: Sympathetic Cooling

    Problem:

    Cold identical fermions do not interact due to Pauli Exclusion Principle.

    →→→→ No rethermalization.

    →→→→ No evaporative cooling.

    Problem:

    Cold identical fermions do not interact due to Pauli Exclusion Principle.

    →→→→ No rethermalization.

    →→→→ No evaporative cooling.→→→→ No evaporative cooling.→→→→ No evaporative cooling.

    Solution: add non-identical particles

    →→→→ Pauli exclusion principle does not apply.

    Solution: add non-identical particles

    →→→→ Pauli exclusion principle does not apply.

    We cool our fermionic 40K atoms sympathetically with an 87Rb BEC .We cool our fermionic 40K atoms sympathetically with an 87Rb BEC . Fermi

    Sea

    “Iceberg”BEC

  • Sympathetic CoolingSympathetic Cooling

    102

    104

    102

    104

    102

    104

    8ln(N)

    ln(PSD) ≈∆

    Cooling EfficiencyCooling Efficiency

    108

    106

    104

    102

    100105 106 107

    108

    106

    104

    102

    100105 106 107

    108

    106

    104

    102

    100105 106 107

  • Below TBelow T FF

    0.9 T0.9 T 0.35 T0.35 T0.9 TF0.9 TF 0.35 TF0.35 TF

    � For Boltzmann statistics and a harmonic trap,

    � For ultra-cold fermions, even at T=0,

    TvkTmv ∝→= 212

    21

    m

    EvEmv FFF 2

    221 =→=

  • Fermi

    Boltzmann

    Gaussian Fit

    Pauli PressurePauli Pressure

    First time on a chip !Nature Physics 2, 384 (2006).

  • Surprises with RbSurprises with Rb--KK

    cold collisionscold collisions

  • Naïve Scattering TheoryNaïve Scattering Theory

    RbRbRbRbRbRbRb vn σγ =Rb-RbRb-Rb

    Collision RatesCollision Rates

    28 RbRbaπ

    RbKRbKRbRbK vn σγ =Rb-KRb-K

    24 RbKaπ

    Sympathetic cooling 1Sympathetic cooling 1 stst try:try:� “Should just work !” -- Anonymous

    � Add 40K to 87Rb BEC � No sympathetic cooling observed !

    Sympathetic cooling 1Sympathetic cooling 1 stst try:try:� “Should just work !” -- Anonymous

    � Add 40K to 87Rb BEC � No sympathetic cooling observed !

    8 RbRbaπnm 238.5=RbRba

    4 RbKaπnm 8.10−=RbKa

    7.2≈RbRb

    RbK

    γγ

    Sympathetic cooling Sympathetic cooling should work really well !!!should work really well !!!

  • Solution: Work Harder !!!Solution: Work Harder !!!

    � Slow down evaporative ramp 2s Slow down evaporative ramp 2s �������� 6s !!!6s !!!

    � Decrease amount of Decrease amount of 8787Rb loaded !Rb loaded !

    � Added Tapered Amplifier to boost 767 nm 40K MOT power.

    � Direct absorption imaging of 40K.

    � Optical pumping of 40K.

    � Slow down evaporative ramp 2s Slow down evaporative ramp 2s �������� 6s !!!6s !!!

    � Decrease amount of Decrease amount of 8787Rb loaded !Rb loaded !

    � Added Tapered Amplifier to boost 767 nm 40K MOT power.

    � Direct absorption imaging of 40K.

    � Optical pumping of 40K.� Optical pumping of 40K.

    � More LIAD lights.

    � Alternate MOTs: 25s 40K + 3s 87Rb.

    � Dichroic waveplates for MOT power balance.

    � Decompress micro B-Trap.

    � Increase B-Trap Ioffe B-field.

    � Clean up micro B-trap turn-off.

    � Optical pumping of 40K.

    � More LIAD lights.

    � Alternate MOTs: 25s 40K + 3s 87Rb.

    � Dichroic waveplates for MOT power balance.

    � Decompress micro B-Trap.

    � Increase B-Trap Ioffe B-field.

    � Clean up micro B-trap turn-off.

  • Experiment: Experiment:

    Sympathetic cooling only worksSympathetic cooling only works

    for for slowslow evaporationevaporation

    104104104104104Evaporation 33 times slower

    than for BECEvaporation 33 times slower

    than for BEC

    10-8

    10-6

    10-4

    10-2

    100

    102

    105 106 107

    Atom Number

    Pha

    se S

    pace

    Den

    sity

    10-8

    10-6

    10-4

    10-2

    100

    102

    105 106 107

    10-8

    10-6

    10-4

    10-2

    100

    102

    10-8

    10-6

    10-4

    10-2

    100

    102

    10-8

    10-6

    10-4

    10-2

    100

    102

    105 106 107105 106 107

    Atom Number

    Pha

    se S

    pace

    Den

    sity

  • CrossCross--Section MeasurementSection Measurement

    Thermalization of 40K with 87Rb

    TK

    40( µµ µµ

    K)

  • What’s happening?What’s happening?

    Rb-K Effective range theory

    Rb-K Naïve theory

    Rb-Rb cross-section

    Rb-K Effective range theory

    Rb-K Naïve theory

    Rb-Rb cross-section

  • Summary of Toronto ApparatusSummary of Toronto Apparatus

    PROs:

    � Fast cycle time: 5-10 s for BEC, 20-40 s for DFG.

    � NBEC = 104-105, NDFG = 4x104.

    � Simple design: - Conventional dual species MOT

    - Single vacuum chamber

    PROs:

    � Fast cycle time: 5-10 s for BEC, 20-40 s for DFG.

    � NBEC = 104-105, NDFG = 4x104.

    � Simple design: - Conventional dual species MOT

    - Single vacuum chamber- Single vacuum chamber

    - Atom chip micro-magnetic trap

    - RF evaporation for 87Rb.

    - Sympathetic cooling of 40K with 87Rb.

    - Single vacuum chamber

    - Atom chip micro-magnetic trap

    - RF evaporation for 87Rb.

    - Sympathetic cooling of 40K with 87Rb.

    CONs:

    � Chip B-trap lifetime is ~ 5 - 7 s (vacuum limited).

    � Depends on LIAD.

    � Good optical access, but more preferred.

    CONs:

    � Chip B-trap lifetime is ~ 5 - 7 s (vacuum limited).

    � Depends on LIAD.

    � Good optical access, but more preferred.

  • OutlineOutline

    � Ultra-cold Matter Apparatus���� Apparatus v1.0: The Thywissen U. of T. machine.

    ���� Apparatus v2.0: The W&M machine.

    � Future physics plans Path APath APath A� Future physics plans���� Near termNear term: Fermion interferometry .

    ���� Longer termLonger term: Ultra-cold molecules.

    ♦♦♦♦ Superfluid polar molecules

    Path A

    Path A

    Path A

    Path A

    Path A

    Path A

  • UltraUltra--cold AMO lab @ W & Mcold AMO lab @ W & M

    May 2007(mid-renovation)

    November 2007(renovation finished)

  • UltraUltra--cold AMO lab @ W & Mcold AMO lab @ W & M

    Lab Bench

    Lab

    Ben

    ch

    5’x10’

    optics

    5’x10’

    optics

    exterior construction block wall

    cons

    truc

    tion

    bloc

    k w

    all

    construction block wall

    18’ 2”

    36’ 4”4’

    3’x5’

    3’x5’opticstable

    Lab

    Ben

    ch +

    shel

    ves

    + c

    abin

    ets

    Lab Bench +

    shelves + cabinets

    Lab Bench

    exterior construction block wall

    construction block wall

    Lab Bench

    Lab

    Ben

    ch optics

    table

    optics

    table

    Double-door frameStud-mounted dry wall Stud-mounted dry wall

    sink

    cons

    truc

    tion

    bloc

    k w

    all

    construction block wall

    18’ 2”

    4’

    4’ 4’

    3’ 1”

    3’ 1”

    3’x5’opticstable

    table

    door

    cabinet

    cabinet

    construction block wall

    room 15room 15room B101room B101

  • W&M BECW&M BEC--DFG machineDFG machine

    … under construction… under construction

    Highlights:

    � 2 vacuum chambers for improved vacuum lifetime.

    � Dual species MOT (87Rb and 40K).

    Highlights:

    � 2 vacuum chambers for improved vacuum lifetime.

    � Dual species MOT (87Rb and 40K).� Dual species MOT (87Rb and 40K).

    � Magnetic transport à la M. Greiner (estimated time penalty: 3-4 s).

    � Chip magnetic trap for fast, efficient cooling.

    � Improved optical access for MOT and atom chip.

    � Improved B-field management at atom chip.

    � Dual species MOT (87Rb and 40K).

    � Magnetic transport à la M. Greiner (estimated time penalty: 3-4 s).

    � Chip magnetic trap for fast, efficient cooling.

    � Improved optical access for MOT and atom chip.

    � Improved B-field management at atom chip.

  • Apparatus DesignApparatus Design

    MOTChamber

    AtomChip

    MOTChamber

    AtomChip

    TurboTurbo

    Transport PathTransport Path

    IonPumps

    TurboPumpRGA

    Bellowsand

    shutterIon

    Pumps

    TurboPumpRGA

    Bellowsand

    shutter

  • Apparatus … continuedApparatus … continuedMOT

    Chamber

    Transport Path

    AtomChip

    MOTChamber

    Transport Path

    AtomChip

    [B. Cieszlak and S. Myrskog, U. of Toronto]

    [M. Greiner et al. , Phys. Rev. A 63, 031401 (2001)]

  • Magnetic Transport DesignMagnetic Transport DesignDesign Requirements:Design Requirements:

    1. Move atoms fast, but with low heating

    2. Transport atoms reliably

    3. Good optical access

    4. Eddy current minimization

    5. ∇∇∇∇B ≥ 120 Gauss/cm

    Atom Chip

    6. Shape of trap remains constant

    Outer Diameter = 13.5 cmInner Diameter = 7.5 cmCoil Separation = 7 cm

    Current = 120 AVoltage = 6.3 V

    Power Supply = HP 6571A-J03Support structure = Cool Polymers D5108

    (10 W/m.K)

    MOT

  • Laser System DesignLaser System Design

    MOT lasers RF electronicsfor acousto-opticsfor acousto-optics

    VortexMaster Laser

    Sat. spec. lock

    Injection lockeddiode laser

    Frequency shifting AOM

    Power control AOM

    Shutter switchyard

    Tapered amplifier

    Experiment

    Probe light

    MOT light

  • OutlineOutline

    � Ultra-cold Matter Apparatus���� Apparatus v1.0: The Thywissen U. of T. machine.

    ���� Apparatus v2.0: The W&M machine.

    � Future physics plans Path APath APath A� Future physics plans���� Near termNear term: Fermion interferometry .

    ���� Longer termLonger term: Ultra-cold molecules.

    ♦♦♦♦ Superfluid polar molecules

    Path A

    Path A

    Path A

    Path A

    Path A

    Path A

  • Boson vs. Fermion InterferometryBoson vs. Fermion Interferometry

    Bose-Einstein condensatesBose-Einstein condensatesPhotons (bosons) ���� 87Rb (bosons)

    � Laser has all photons in same “spatial mode”/state.

    � BEC has all atoms in the same trap ground state.

    DifficultyDifficulty

    Identical bosonic atoms interact through collisions.

    � Good for evaporative cooling.

    Identical bosonic atoms interact through collisions.

    � Good for evaporative cooling.DifficultyDifficulty � Good for evaporative cooling.

    � Bad for phase stability: interaction potential energy depends on density -- ∆φ∆φ∆φ∆φAB is unstable.

    � Good for evaporative cooling.

    � Bad for phase stability: interaction potential energy depends on density -- ∆φ∆φ∆φ∆φAB is unstable.

    Degenerate fermionsDegenerate fermionsDegenerate fermionsDegenerate fermions

    � Ultra-cold identical fermions don’t interact.

    � ∆φ∆φ∆φ∆φAB is independent of density !!!

    � Small/minor reduction in energy resolution since ∆∆∆∆E ~ EF .

    � Equivalent to white light interferometry.

    EF

  • RF beamsplitterRF beamsplitter

    How do you beamsplit ultra-cold atoms ?How do you beamsplit ultra-cold atoms ?

    Energy

    xhωωωω

  • RF beamsplitterRF beamsplitter

    Energy

    How do you beamsplit ultra-cold atoms ?How do you beamsplit ultra-cold atoms ?

    xhωωωω

  • RF beamsplitterRF beamsplitter

    Energy

    How do you beamsplit ultra-cold atoms ?How do you beamsplit ultra-cold atoms ?

    xhωωωω

  • RF beamsplitterRF beamsplitter

    Energy

    How do you beamsplit ultra-cold atoms ?How do you beamsplit ultra-cold atoms ?

    hΩrabi =hΩrabi =Position of well is

    determined by ωωωωωωωωPosition of well is

    determined by ωωωωωωωω

    xhωωωω

    hΩrabi =Atom-RF couplinghΩrabi =Atom-RF coupling

    determined by ωωωωωωωωdetermined by ωωωωωωωω

  • ImplementationImplementation

    figure from Schumm et al., Nature Physics 1, 57 (2005).

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • RF splitting of ultraRF splitting of ultra--cold cold 8787RbRb

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

    Scan the RF magnetic field from 1.6 MHz to a final value

    BRF ~ 1 Gauss

  • Interferometry ExperimentInterferometry Experiment

    Fringe spacingFringe spacing = (h ⋅ TOF)/(mass ⋅ splitting)

  • K40 probe (Rb87 present but unseen):

    Rb87 probe (K40 present but unseen):

    SpeciesSpecies--dependent Potentialsdependent Potentials

    K40 +Rb87 probes (both species visible but apparent O.D. about 50% smaller than actual):

    Atomic Physics 20, 241-249 (2006).

  • The problem with fermions (I)The problem with fermions (I)

    BEC beamsplitting

    DFG beamsplitting

    ( )Nright

    i

    leftatomeatom ϕψ +=

    ( )( )( )

    right

    i

    left

    right

    i

    leftright

    i

    left

    NeN

    ee

    N 11...

    ...1100

    1

    10

    −+−

    ++=−ϕ

    ϕϕψ

    ϕ0 = ϕ1 = … = ϕN-1 � interference fringes!

    ϕ0 ≠ ϕ1 ≠ … ≠ ϕN-1 � interference washed out!

  • The problem with fermions (II)The problem with fermions (II)

    Beamsplitting process must not depend on external state of atoms.Beamsplitting process must not depend on external state of atoms.

    ( )( ) ( )right

    i

    leftright

    i

    leftright

    i

    leftNeNee N 11...1100 110 −+−++= −ϕϕϕψ

    ϕ0 = ϕ1 = … = ϕ9 � interference fringes! ϕ0 ≠ ϕ1 ≠ … ≠ ϕ9 � interference washed out!

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

    atomic density

    position (µµµµm)200 400-200-400

  • Fermion Beamsplitters (I)Fermion Beamsplitters (I)Free space beamsplitter:

    � Bragg pulse beamsplitter

    Trapped fermion beamsplitters:

    Idea: spin-dependent potentialIdea: spin-dependent potential

    ↓+↑ ↑↓

    Opposite spins experience same potential, but shifted in opposite directions

  • Fermion Beamsplitters (II)Fermion Beamsplitters (II)

    MagnetoMagneto--optical beamsplitteroptical beamsplitter

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF 2/7,2/9 +== FmF2/7,2/7 +== FmF 2/7,2/7 +== FmF

    Potential(µK)

    2/7,2/9 +== FmF 2/7,2/9 +== FmF2/7,2/7 +== FmF 2/7,2/7 +== FmF

    Potential(µK)

    2/9,2/9 +== FmF 2/,2/9 +== FmF2/9,2/9 −== FmF 2/,2/ == FmF

    Potential(µK)

    Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)Horizontalposition

    (meters)

    dB/dx = 25 Gauss/cm Laser power = 2.5 W @ 1064 nmElliptic waist = 20 µm × 160 µmSplitting = 30 µµµµm

    dB/dx = 25 Gauss/cm Laser power = 2.5 W @ 1064 nmElliptic waist = 20 µm × 160 µmSplitting = 30 µµµµm

    Other possibilites:Other possibilites: adiabatic microwave potentials, spin-dependent lattices.

  • Long Term Future:Long Term Future:

    Novel ManyNovel Many--Body PhysicsBody Physics

    with Polar Moleculeswith Polar Molecules

  • OddOdd--wave Cooper Pairingwave Cooper Pairing

    BCS superconductors/superfluidsThe Cooper pair consists of S-wave pairing of spin ↑and spin ↓ particles (S=0, L=0).

    High-Tc superconductorsThe pairing mechanism is D-wave in nature.

    Superfluid 3He[Figure from K. Madison, UBC]

    Superfluid HeCooper pair has P-wave orbital angular momentum.

    Superfluid ultra-cold degenerate Fermi GasThe pairing mechanism is S-wave in nature.

    [Figure from K. Madison, UBC]

    Ultra-cold Polar Molecular GasesPredictions:Predictions: �� Superfluidity with oddSuperfluidity with odd--wave Cooper pairing.wave Cooper pairing.

    �� FerroFerro--electric (super?)fluid.electric (super?)fluid.

    [ M. A. Baranov et al., PRA 66, 013606 (2002) ]

    M. Zwierlein et al.,Nature 435, 1047 (2005)

    [ M. Iskin et al., PRL 99, 110402 (2007) ]

  • Fermionic Superfluid KRbFermionic Superfluid KRb

    o

    22

    2

    A 22502 −=−=

    hπmd

    ad

    Following the treatment of M. A. Baranov et al., PRA 66, 013606 (2002)

    0ea 3.0=dElectric dipole moment of the ground state of KRb is [Kotochigova et al. PRA 68, 022501 (2003)]

    For 104 fermionic 40K87Rb molecules in a trap with fr = 500 Hz and fz = 30 Hz, we get

    n = 3 x 1013 molecules/cm3

    TF = 0.6 µK

    TTcc/T/TFF = 0.8 = 0.8 �� TTcc = 0.5 = 0.5 µµKK

    −=

    dFF

    c

    apT

    T

    2exp44.1

    hπTc = critical temperature for superfluidity

  • How do you getHow do you get

    UltraUltra--Cold KRb?Cold KRb?

    Feshbach ResonanceFeshbach Resonance� weakly bound KRb

    in a3Σ+ potential+

    PhotoPhoto --associationassociationPhotoPhoto --associationassociation� stimulated transition

    to the ground state.(STIRAP)

    S. Kotochigova et al.,Eur. Phys. J. D 31, 189–194 (2004).

    Advantages of ultraAdvantages of ultra--cold atoms:cold atoms:1. Small cloud size

    � focused laser & high Rabi frequencies.

    2. Feshbach molecule is already made� just need to reduce binding energy.

    Advantages of ultraAdvantages of ultra--cold atoms:cold atoms:1. Small cloud size

    � focused laser & high Rabi frequencies.

    2. Feshbach molecule is already made� just need to reduce binding energy.

  • STIRAP to KRb ground statesSTIRAP to KRb ground states

    STIRAP pathsexcited a3Σ+ � ground state X1Σ+

    Intermediate level: 21ΣΣΣΣ+ + 13ΠΠΠΠ+

    1190 nm & 795 nmW. C. Stwalley, EPJD 31, 221 (2004).

    1321 nm & 866 nmM. Tschernek et al., PRA 75, 055401 (2007).

    1575 nm & 950 nm1575 nm & 950 nmS. Kotochigova et al., EPJD 31, 189 (2004).

    Intermediate level: 23ΣΣΣΣ+ + 11ΠΠΠΠ+

    870 nm & 640 nmSage et al., PRL 94, 203001 (2005).

    STIRAP pathexcited a3Σ+ � ground state a3Σ+

    Intermediate level: 23ΠΠΠΠ+

    746 nm & 732 nmR. Beuc et al., J. Phys. B 39, S1191 (2006).

    a3Σ+ X1Σ+

    [figure adapted from R. Beuc et al., J. Phys. B 39, S1191 (2006).]

  • How do you lock the STIRAP lasers?How do you lock the STIRAP lasers?

    … Or how do you make a ruler for optical frequencies?

    �� FabryFabry--Perot cavitiesPerot cavities

    � Established technology

    � Slow, piezo non-linearities make frequency determination more difficult.E. Gomez, S. Aubin, L. A. Orozco, G. D. Sprouse, E. Iskrenova-Tchoukova, and M. S. Safronova, E. Gomez, S. Aubin, L. A. Orozco, G. D. Sprouse, E. Iskrenova-Tchoukova, and M. S. Safronova, “Nuclear Magnetic Moment of 210Fr: A combined Theoretical and Experimental Approach”,Phys. Rev. Lett. 100, 172502 (2008).

    � Frequency combsFrequency combs

    � Fast and linear.

    � Femtosecond comb is ideal solution, but expensive.

    � Hybrid mode-locked diode laser are cheaper, but not as broad.

  • Recent NewsRecent NewsExternal cavity diode laser frequency comb:

    ► Actively modulate current at external cavity FSR.

    ► Look for pulses.

    Active mode-locking ?

    Next steps:Next steps: look at bandwidth of comb and pulse width

  • SummarySummary

    � Degenerate BoseBose --FermiFermi mixturemixture on a chip.

    � 4040KK-- 8787Rb crossRb cross--sectionsection measurement.

    EF

    � W&M quantum degeneracy apparatus.

    � BEC InterferometryBEC Interferometry .

    � Future: Fermion InterferometryFermion Interferometry

    � Future: Ultra-cold polar moleculespolar molecules .

  • Thywissen GroupThywissen GroupStaff/FacultyPostdocGrad StudentUndergraduate

    Colors:

    J. H. Thywissen

    S. Aubin M. H. T. Extavour

    A. StummerS. Myrskog

    L. J. LeBlanc

    D. McKay

    B. Cieslak

    T. Schumm

  • UltraUltra--cold atoms groupcold atoms group

    Aiyana Garcia(magnetic transport)

    Seth [email protected]

    Brian DeSalvo(diode laser comb)

    Work supported by Jeffress Memorial Trust and ARO DURIP equipment grant.Work supported by Jeffress Memorial Trust and ARO DURIP equipment grant.

  • The Problem with FermionsThe Problem with Fermions

    At very low temperatures, 0→×= prl rrr

    If , then two atoms must scatter as an s-wave:0→l

    Identical ultra-cold fermions do not interact

    If , then two atoms must scatter as an s-wave:0→l

    r

    eaeerrr

    rik

    sikzikz

    waves rrrr

    r

    2)( 21 +±=−=Ψ−+

    ψψψψs-wave is symmetric under exchange of particles: rrrr −→

    as = 0 for fermions

  • Fermion BeamsplittersFermion Beamsplitters

    E

    F=7/2

    7/25/2

    3/21/2

    -1/2-3/2

    -5/2-7/2

    mF

    1.3 GHz

    F=9/2

    7/25/2

    3/2

    9/2

    1/2-1/2

    -3/2-5/2

    -7/2-9/2

  • Fermion Beamsplitters (I)Fermion Beamsplitters (I)Free space beamsplitter:

    � Bragg pulse beamsplitter

    Trapped fermion beamsplitters:

    • Spin-dependent adiabatic microwave potential• Spin-dependent adiabatic microwave potential

    mF

    E

    1.3 GHz

    F=9/2

    F=7/2

    7/25/2

    3/21/2

    -1/2-3/2

    -5/2-7/2

    7/25/2

    3/2

    9/2

    1/2-1/2

    -3/2-5/2

    -7/2-9/2

    mF

    E

    1.3 GHz

    F=9/2

    F=7/2

    7/25/2

    3/21/2

    -1/2-3/2

    -5/2-7/2

    7/25/2

    3/2

    9/2

    1/2-1/2

    -3/2-5/2

    -7/2-9/2

    Atom Chip

    Bext

    Atom Chip

    BextBext

    Atom Chip

    Bext

    Atom Chip

    BextBext


Recommended