+ All Categories
Home > Documents > Uncertainty analysis in groundwater modelling projects · 2020. 9. 3. · Uncertainty...

Uncertainty analysis in groundwater modelling projects · 2020. 9. 3. · Uncertainty...

Date post: 02-Mar-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
18
Uncertainty analysis in groundwater modelling projects Luk Peeters ICEWaRM webinar 19 July 2018 DEEP EARTH IMAGING FUTURE SCIENCE PLATFORM
Transcript

Uncertainty analysis in groundwater modelling projectsLuk PeetersICEWaRM webinar 19 July 2018

DEEP EARTH IMAGING FUTURE SCIENCE PLATFORM

Groundwater model: probability of event

• Probability expresses belief, confidence in results

• 95% probability drawdown is less than 2m“If I run this model 100 times with different parameter combinations that are consistent with the observations and system knowledge, there will be 5 model runs in which drawdown is larger than 2m”

UA GW model projects | Luk Peeters2 |

Groundwater management

• Decision making under uncertainty• future event we want / want not to happen• risk = f( probability, consequence )

• Example 1:• event: 2m drawdown at (x,y)• consequence: bore runs dry• acceptable probability: 20%

• Example 2:• event: 2m drawdown at (x,y)• consequence: GDE disappears• acceptable probability: 1%

UA GW model projects | Luk Peeters3 |

ProbabilityCo

nseq

uenc

e1 5 20

bore

GDE

OK

not OK

Probability of event: groundwater model

• 95% probability drawdown < 2m“If I run this model 100 times with different parameter combinations that are consistent with the observations and system knowledge, there will be 5 model runs in which drawdown is larger than 2m”

• Choice 1:• What is event?• What is consequence?• What is acceptable probability?

• Choice 2: • Which parameters?

• Choice 3: • How did you chose values?

• Choice 4: • What is consistent with obs?

UA GW model projects | Luk Peeters4 |

Example 1: BA Clarence-Moreton

• Event:• Drawdown in water table

aquifer from CSG > 2m• Consequence:

• Reduced yield in existing bores

• Acceptable probability:• 5%

UA GW model projects | Luk Peeters5 |

Cui, T., Peeters, L., Pagendam, D., Pickett, T., Jin, H., Crosbie, R. S., … Gilfedder, M. (2018). Emulator-enabled approximate Bayesian computation (ABC) and uncertainty analysis for computationally expensive groundwater models. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.07.005

• 95th perc drawdown watertable

Model development

UA GW model projects | Luk Peeters6 |

Model

Geo

met

ryPr

oper

ties

Boun

dary

Cond

ition

s

HistoricalObservations

ProfessionalJudgement

QUANTITATIVE UNCERTAINTY ANALYSIS

QUALITATIVE UNCERTAINTY ANALYSIS

Peeters, L. J. M. (2017). Assumption Hunting in Groundwater Modeling: Find Assumptions Before They Find You. Groundwater, 55(5), 665–669. https://doi.org/10.1111/gwat.12565

Predictionof event

Uncertainty quantification approaches

1. Scenario analysis with subjective probability

• predefined perturbations of parameters• # model runs < # parameters

2. Deterministic modelling with linear uncertainty quantification

• model behaves linear close to calibrated values• normal with mean equal to calibrated value• >2 model runs per parameter

3. Stochastic with Bayesian uncertainty quantification

• ensemble of parameter values• >10 model runs per parameter

7 |

NU

MB

ER

OF

MO

DE

LR

UN

S

FL

EX

IBIL

ITY

TR

AN

SP

AR

EN

CY

UA GW model projects | Luk Peeters

SU

BJ

EC

TIV

EM

OD

EL

CH

OIC

ES

P+10

%

P-10

%

𝜎𝜎

𝜇𝜇

How complex to make your model and UA?

Stag

e of

inve

stig

atio

nEa

rlyLa

te

Cons

erva

tism

Com

plex

ity

Site

-spe

cific

dat

a

Probability of event

Risk

Little dataSimple model & UAVery conservative

Overestimated probabilityHigh confidence

Lots of dataComplex model & UA

Less conservativeNuanced probability

High confidence

low medium high

Schwartz, F. W., Liu, G., Aggarwal, P., & Schwartz, C. M. (2017). Naïve Simplicity: The Overlooked Piece of the Complexity-Simplicity Paradigm. Groundwater. https://doi.org/10.1111/gwat.12570

8 | UA GW model projects | Luk Peeters

Example 1: BA Clarence-Moreton

• Initial AEM, • 1,000 runs, unconstrained

• 3D MODFLOW model• Emulator-based ABC MC

Presentation title | Presenter name9 |

Choice 2: which parameters to include?• Parameters important for prediction• Parameters important for historical observations

UA GW model projects | Luk Peeters10 |

Geo

met

ryPr

oper

ties

Boun

dary

Cond

ition

s

Haitjema, H. (2006). The role of hand calculations in ground water flow modeling. Ground Water, 44(6), 786–791. http://dx.doi.org/10.1111/j.1745-6584.2006.00189.x

FirstPrinciples

FormalSensitivityAnalysis

Choice 3: Prior parameter values / ranges

• Initial value or range of parameters• Strong influence on

calibration/inference• Especially important for parameters

not constrained by data• Scenario:

• subjective values (e.g. +/- 10%) • Linear:

• normal (mean, standard dev)• Stochastic:

• empirical• preference for analytic distributions

(normal, Weibull, beta, etc.)

11 | UA GW model projects | Luk Peeters

Example: Aquitard Kv Gunnedah Basin (NSW)

12 |

Turnadge, C., Mallants, D., & Peeters L (2017). Sensitivity and uncertainty analysis of a regional-scale groundwater flow system stressed by coal seam gas extraction. CSIRO Land and Water, Adelaide. http://www.environment.gov.au/water/publications/sensitivity-and-uncertainty-analysis-regional-scale-groundwater-flow

X 50

UA GW model projects | Luk Peeters

Spatially uniform, wide range of Kv Spatially heterogeneous, wide range of Kv

Conservative Less conservative

Triangular log distribution Normal distribution with spatial covariance

Choice 4: What is consistent with data?• Good model fit:

• mismatch ≈ observation uncertainty• Observation uncertainty:

• measurement accuracy• space & time resolution

• Differencing of data (White et al. 2014)

• Scenario:• goodness-of-fit (RMSE)• professional judgement

• Linear:• minimise SE• observation weight ~ (obs unc)-1

• Stochastic:• sampling based on SE likelihood function• observation weight ~ (obs unc)-1

• Approximate Bayesian Computation / Evidential Belief Learning

13 |

h (m

asl)

time (days)

UA GW model projects | Luk Peeters

White, J. T., Doherty, J. E., & Hughes, J. D. (2014). Quantifying the predictive consequences of model error with linear subspace analysis. Water Resources Research. https://doi.org/10.1002/2013WR014767

Should all observations be treated equal?

14 |

h1h2

UA GW model projects | Luk Peeters

Choice 5: How to present all this?

15 |

Peeters, L. J. M., Crosbie, R. S., Henderson, B. L., Holland, K., Lewis, S., Post, D. A., & Schmidt, R. K. (2018). The importance of being uncertain. Water E-Journal, 3(2), 10. https://doi.org/10.21139/wej.2018.018

UA GW model projects | Luk Peeters

Choice 5: How to present all this?

• No one size fits all• combine maps, tables, graphs, text

• Calibrated language • e.g. IPCC

• Reduce cognitive strain• make easy to understand• … of the 1,000 models evaluated, less

than 50 showed …• Framing

• 99% likelihood you will survive• 1% likelihood you will die

16 | UA GW model projects | Luk Peeters

Take home messages

• Define event, consequence and acceptable probability

• 3 main UA approaches: scenario, linear, stochastic• Combine qualitative and quantitative uncertainty analysis• Common choices to document and justify

• Which parameters to include• Prior parameter values and ranges• What is deemed an acceptable model• How to present results

• Continued and intense engagement of all stakeholders

17 | UA GW model projects | Luk Peeters

[email protected] https://research.csiro.au/dei/people/lpeeters/

DEEP EARTH IMAGING FUTURE SCIENCE PLATFORM

Recommended texts:PESTDoherty, J., (2015). Calibration and Uncertainty Analysis for Complex Environmental Models. Watermark Numerical Computing, Brisbane, Australia. ISBN: 978-0-9943786-0-6.

CommunicationCorner, A., Lewandowsky, S., Phillips, M. and Roberts, O. (2015) The Uncertainty Handbook. Bristol: University of Bristol. https://climateoutreach.org/resources/uncertainty-handbook/

DREAMVrugt, J. A. (2016). Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environmental Modelling & Software, 75, 273–316. https://doi.org/10.1016/j.envsoft.2015.08.013

Sensitivity AnalysisPianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., & Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling & Software, 79, 214–232. https://doi.org/http://dx.doi.org/10.1016/j.envsoft.2016.02.008

General uncertaintyScheidt, C., Li, L., & Caers, J. (2018). Quantifying Uncertainty in Subsurface Systems. Wiley. https://www.ebook.de/de/product/30603670/quantifying_uncertainty_in_subsurface_systems.html


Recommended