+ All Categories
Home > Documents > Understanding the Distribution and Behavior of Si Isotopes in the Ocean Christina L. De La Rocha...

Understanding the Distribution and Behavior of Si Isotopes in the Ocean Christina L. De La Rocha...

Date post: 16-Dec-2015
Category:
Upload: macie-herford
View: 213 times
Download: 1 times
Share this document with a friend
27
Understanding the Distribution and Behavior of Si Isotopes in the Ocean Christina L. De La Rocha Alfred Wegener Institute
Transcript

Understanding the Distribution and Behavior of Si Isotopes in

the Ocean

Christina L. De La RochaAlfred Wegener Institute

Diatoms

diatom frustulemade from opal

akaamorphous, hydrated silica

SiO2.nH2O

Fragilariopsis kerguelensis

10 m

photo from G. Cortese

Diatoms MatterThey carry out:

>75% of the new production in coastal, high nutrient environments

~ half of all marine primary production

~ 20% of all primary production occurring on Earth each year

and much of the production in the Southern Ocean

The Silica Cyclein Tmol y-1

6

weathering

silica production 240

dissolution

river input

120

dissolution91

upwelling

115

sedimentation29

dissolution23

net burial 6-7

weathering

0.4

hydrothermal

0.5 numbers fromTréguer et al., 1995DeMaster 2002Elderfield and Schultz, 1996

eolian deposition

0.5

Questions

• Can dissolved Si (DSi) utilization by diatoms be reconstructed from Si isotopes?

– What is the distribution and behavior of Si isotopes in the modern ocean and how has it been in the past?

– Do sediments faithfully record an annually integrated nutrient utilization signal from surface waters?

Notation

Silicon has 3 stable isotopes:

28Si 29Si 30Si 92.23% 4.67 % 3.10%

Silicon isotope ratio variations are expressed in permil:

where RSAM and RSTD are the 30Si/28Si ratio in a sample and standard, respectively.

330 10xR

RRSi

STD

STDSAM

Fractionation of Si Isotopes During Opal Biomineralization

30Siopal - 30SiSi(OH)4

Marine Diatoms

Skeletonema costatum –1.0 ± 0.4 ‰

Thalassiosira weissflogii –1.3 ± 0.4 ‰–1.5 ± 0.2 ‰

Thalassiosira sp. –0.9 ± 0.3 ‰

data from De La Rocha et al., 1998; Milligan et al., 2004

Rayleigh Distillation of Isotopes

F(fraction of DSi remaining)

0.00.20.40.60.81.0

30S

i (‰

)

0

2

4

6

8

Si(OH)4

BSi

accumulating BSi

30Si vs Depth30Si (‰)

0 1 2 3

Dep

th (

m)

0

1000

2000

3000

4000

5000

30Si (‰)

0 1 2 3

Dep

th (

m)

0

1000

2000

3000

4000

5000

data from De La Rocha et al., 2000; Varela et al., 2004; Cardinal et al., 2005

blues = Pacific

central and coastal N Pac

Antarctic (Pac Sector)

Pacific subantarctic

pink/purple = Atlantic

BATS and coastal N Atl

Atlantic subantarctic

Fractionation of Si IsotopesField Samples- Monterey Bay

ln[DSi]

3.0 3.1 3.2 3.3 3.4 3.5

30S

i (‰

)1.0

1.2

1.4

1.6

1.8

2.0y = -1.09x + 5.0

r2 = 0.89

from De La Rocha et al., 2000

30Si (‰)

1.0 1.2 1.4 1.6 1.8

Dep

th (

m)

0

20

40

60

80

100

DSi (M)

20 24 28 32 36

Dep

th (

m)

0

20

40

60

80

100

Fractionation of Si Isotopes: Southern Ocean

from Varela et al., 2004

Silic

ic a

cid

(M

)

0

20

40

60

Latitude (oS)

55606570

30 Si

(‰)

1.5

2.0

2.5

3.0

30Si in Southern Ocean Sediments

data from De La Rocha et al., 1998Brzezinski et al., 2002

30 S

i (‰

)

0.4

0.8

1.2

1.6

Age (kyr)

0 20 40 60 80 100 120

15 N

bulk

(‰

)

1

2

3

4

5

1 2 3-5

Regional Variabilitybut why?

Depth (mbsl)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

30 S

i (‰

)

0.5

1.0

1.5

Depth (mbsl)

0 2 4 6 8 10

Depth (mbsl)

0.0 0.5 1.0 1.5 2.0

RC 13-269Atlantic Sector

E 50-11Indian Sector

E 11-94Indian Sector

data from De La Rocha et al., 1998

Potential Influences on Signal (Other Than Silicic Acid Utilization)

• secular variation in whole ocean 30Si

• regional/temporal variability in 30Si upwelled to euphotic zone

• sediments that do not integrate equally over entire growing season (e.g. bias towards resting spores, more robustly silicified diatoms, etc)

Si Isotope Budget

Inputs T mol y-1 30Si (‰)

river 5.6 +0.3 to +3.4

hydrothermal 0.5 0.3

low-T basalt weathering

0.4 0.3

eolian 0.5 0.3

total 7.0 ?

Outputs

biogenic opal 6.5 to 7.4 –3.7 to +2.0

The Silica Cyclein Tmol y-1

6

weathering

silica production 240

dissolution

river input

120

dissolution91

upwelling

115

sedimentation29

dissolution23

net burial 6-7

weathering

0.4

hydrothermal

0.5 numbers fromTréguer et al., 1995DeMaster 2002Elderfield and Schultz, 1996

eolian deposition

0.5

Si Isotope Budget

Inputs T mol y-1 30Si (‰)

river 5.6 +0.3 to +3.4

hydrothermal 0.5 0.3

low-T basalt weathering

0.4 0.3

eolian 0.5 0.3

total 7.0 ?

Outputs

biogenic opal 6.5 to 7.4 –3.7 to +2.0

Inputs T mol y-1 30Si (‰)

river 5.6 +1.4

hydrothermal 0.5 0.3

low-T basalt weathering

0.4 0.3

eolian 0.5 0.3

total 7.0 +1.2

Outputs

biogenic opal 6.5 to 7.4 +1.2

Examination With Simple 2-box Model

S u rfa c e

D e e p

In p u t

D o w n w e llin g

P ro d u c tio n

D isso lu tio n

D isso lu tio n

S e d im e n ta tio n

U p w e llin g

S u rfa c e

D e e p

F Rin in

W C Re x s u r f s u rf

B S i Rp ro d B S i

R B S iB S i /2 p ro d

D iss Rd e ep B S i

F Ro B S i

W C Re x d e e p d e e p

A B

from De La Rocha and Bickle, 2005

Impact of Changing Riverine Si Flux

[Si(

OH

) 4]

( M

)

0

30

60

90

120

150

180

30 S

i (

‰)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (kyr)

0 20 40 60 80 100

Pro

duct

ion

(Tm

ol S

i y-1

)

0

100

200

300

400

500

Time (kyr)

0 20 40 60 80 100

A

B

C

D

E

F

2.5x modern 0.5x modern

Regional Variabilitybut why?

Depth (mbsl)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

30 S

i (‰

)

0.5

1.0

1.5

Depth (mbsl)

0 2 4 6 8 10

Depth (mbsl)

0.0 0.5 1.0 1.5 2.0

RC 13-269Atlantic Sector

E 50-11Indian Sector

E 11-94Indian Sector

data from De La Rocha et al., 1998

30Si vs Depth30Si (‰)

0 1 2 3

Dep

th (

m)

0

1000

2000

3000

4000

5000

data from De La Rocha et al., 2000; Varela et al., 2004; Cardinal et al., 2005

blues = Pacific

central and coastal N Pac

Antarctic (Pac Sector)

Pacific subantarctic

pink/purple = Atlantic

BATS and coastal N Atl

Atlantic subantarctic

Modeled Mixed Layer 30Si

Wischmeyer et al., 2003

Rayleigh Distillation of Isotopes

F(fraction of DSi remaining)

0.00.20.40.60.81.0

30S

i (‰

)

0

2

4

6

8

Si(OH)4

BSi

accumulating BSi

Modeled Mixed Layer 30Si

Wischmeyer et al., 2003

30Si vs DSi

DSi (M)

0 25 50 75 100 125 150 175

30 Si

(‰

)

0

1

2

3

blues = Pacific

central and coastal N Pac

Antarctic (Pac Sector)

Pacific subantarctic

pink/purple = Atlantic

BATS and coastal N Atl

Atlantic subantarctic

data from De La Rocha et al., 2000; Varela et al., 2004; Cardinal et al., 2005

SO Surface Waters- Model vs Reality

DSi (M)

0 25 50 75 100 125 150

model- Wischmeyer et al., 2003 data- Varela et al., 2004; Cardinal et al., 2005

OutlookSuggested areas of attack (samples + modeling)• mapping of 30Si at high spatial resolution

• especially upper water column• relative to trace elements (Fe), N isotopes

• comparing data with models of Si isotopic composition of ocean, sediments

• do we understand all the processes controlling 30Si?

• investigating links between species composition and isotopic composition of sediments

• improving methods for isolating diatoms from sediments


Recommended