+ All Categories
Home > Documents > Unidad II Cinematica de Cuerpo Rígido Beer_dinamica_8e_presentaciones_c15

Unidad II Cinematica de Cuerpo Rígido Beer_dinamica_8e_presentaciones_c15

Date post: 03-Jun-2018
Category:
Upload: kennethwilfredovegaoviedo
View: 221 times
Download: 0 times
Share this document with a friend

of 64

Transcript
  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    1/64

    VECTOR MECHANICS FOR ENGINEERS:

    DYNAMICS

    Eighth Edition

    Ferdinand P. Beer

    E. Russell Johnston, Jr.

    Lecture Notes:

    J. Walt Oler

    Texas Tech University

    CHAPTER

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    15Cinemtica de

    Cuerpo rigido

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    2/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 2

    ContenidosIntroduccin

    Translacin

    Rotacin alrededor de un eje fijo: Velocidad

    Rotacin alrededor de un eje fijo:

    Aceleracin

    Rotacin alrededor de un eje fijo: Placa

    representativa

    Ecuaciones que definen la rotacin de uncuerpo rgido alrededor de un eje fijo

    Problema resuelto 5.1

    Movimiento plano General

    Velocidad absoluta y relativa en el

    movimiento plano general

    Problema resuelto 15.2

    Problema resuelto 15.3

    Centro de rotacin instantneo en el

    movimiento plano

    Problema resuelto 15.4

    Problema resuelto 15.5

    Aceleracin absoluta y relativa en el

    movimiento plano

    Analisis del movimiento plano en trminos de

    un parmetro

    Problema resuelto 15.6

    Problema resuelto 15.7

    Problema resuelto 15.8

    Razn de cambio con respecto a un sistema dereferencia en rotacin.

    Aceleracin de coriolis

    Problema resuelto 15.9

    Problema resuelto 15.10

    Movimiento alrededor de un punto fijo

    Movimiento general.

    Problema resuelto 15.11

    Movimiento tridimensional. Aceleracin de

    Coriolis

    Sistema de referencia en movimiento general.

    Problema resuelto 15.15

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    3/64

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    4/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 4

    Traslacin Considere un cuerpo rgido en traslacin:

    - La direccin de toda lnea recta dentro de

    un cuerpo es constante,

    - Toda partcula que constituyen el cuerpo

    se mueven a lo largo de lneas paralela.

    Para dos partculas en el cuerpo,

    ABAB rrr

    Diferenciando con respecto al tiempo,

    AB

    AABAB

    vv

    rrrr

    Las partculas tienen la misma velocidad.

    AB

    AABAB

    aa

    rrrr

    Diferenciando con respecto al tiempo,

    Las particulas tienen la misma aceleracin.EE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    5/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 5

    Rotacin Alrededor de un eje fijo. Velocidad

    Considere rotacin de un cuerpo rgido

    alrededor de un eje fijoAA

    Vector Velocidad de la partculaP

    tangente a la trayectoria de magnitud

    dtrdv

    dtdsv

    sinsinlim

    sin

    0

    rt

    rdt

    dsv

    rBPs

    t

    locityangular vekk

    rdt

    rdv

    El mismo resultado se obtiene de

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    6/64

    EE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    7/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 7

    Rotacin alrededor de un eje fijo. Placa representativa Considere el movimiento de una placa

    representativa en un plano perpendicular al eje

    de rotacin.

    La Velocidad de un puntoPde la placa es,

    rv

    rkrv

    La Acceleration de un puntoPde la placa,

    rrk

    rra

    2

    Resolviendo la aceleracin en componentes

    tangencial y componentes normal,

    22

    rara

    rarka

    nn

    tt

    EE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    8/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 8

    Definiendo la ecuacin de rotacin de un cuerpo rgido

    Alrededor de un eje fijo

    El Movimiento de un cuerpo rgido rotandoalrededor de un eje fijo esta especificado por el tipo

    de aceleracin angular.

    dd

    dtd

    dtd

    ddt

    dt

    d

    2

    2

    or Recordando

    Rotacin uniforme, = 0:

    t 0

    Rotacin uniformemente acelerado, = constant:

    02

    0

    2

    2

    21

    00

    0

    2

    tt

    t

    V M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    9/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 9

    Sample Problem 5.1

    Cable Chas a constant acceleration of 9

    in/s2and an initial velocity of 12 in/s,

    both directed to the right.

    Determine (a)the number of revolutions

    of the pulley in 2 s, (b) the velocity and

    change in position of the loadBafter 2 s,

    and (c)the acceleration of the pointDon

    the rim of the inner pulley at t= 0.

    SOLUTION:

    Due to the action of the cable, thetangential velocity and acceleration of

    Dare equal to the velocity and

    acceleration of C. Calculate the initial

    angular velocity and acceleration.

    Apply the relations for uniformlyaccelerated rotation to determine the

    velocity and angular position of the

    pulley after 2 s.

    Evaluate the initial tangential and

    normal acceleration components ofD.

    V t M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    10/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 10

    Sample Problem 5.1SOLUTION:

    The tangential velocity and acceleration ofDare equal to the

    velocity and acceleration of C.

    srad4

    3

    12

    sin.12

    00

    00

    00

    r

    v

    rv

    vv

    D

    D

    CD

    2srad3

    3

    9

    sin.9

    r

    a

    ra

    aa

    tD

    tD

    CtD

    Apply the relations for uniformly accelerated rotation to

    determine velocity and angular position of pulley after 2 s.

    srad10s2srad3srad4 20 t

    rad14

    s2srad3s2srad4 22

    2

    12

    2

    10

    tt

    revsofnumberrad2

    rev1rad14

    N rev23.2N

    rad14in.5

    srad10in.5

    ry

    rv

    B

    B

    in.70

    sin.50

    B

    B

    y

    v

    V t M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    11/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 11

    Sample Problem 5.1 Evaluate the initial tangential and normal acceleration

    components ofD.

    sin.9CtD aa

    2220 sin48srad4in.3 DnD ra

    22 sin.48sin.9 nDtD aa

    Magnitude and direction of the total acceleration,

    22

    22

    489

    nDtDD aaa

    2sin.8.48Da

    9

    48

    tan

    tD

    nD

    a

    a

    4.79

    V t M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    12/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 12

    Movimiento Plano General

    Movimiento plano generalno es ni rotacin ni

    traslacin.

    El movimiento plano general puede considerares

    como la suma de traslacin y rotacin.

    El desplazamiento de partculasAandBaA2y

    B2pueden ser divida en dos partes:

    - traslacin deA2and

    - rotacin de alrededor deA2

    aB2

    1B

    1B

    V t M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    13/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 13

    Velocidad Absoluta y Relativa en el movimiento Plano

    Cualquier movimiento plano puede ser reemplazado por una

    traslacin mediante el movimiento de un punto de referencia

    arbitrario A y una rotacin simultaneo alrededor de A.

    ABAB vvv

    rvrkv ABABAB

    ABAB rkvv

    V t M h i f E i D iEE

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    14/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 14

    Velocidad Absoluta y Relativa en el movimiento Plano

    Asumiendo que la velocidad vAdel extremoAes conocida, se propone determinar

    la velocidad vBdel extremoBy la velocidad angular en termino de vA, l, and .

    La direccin de vB

    y vB/A

    son conocidos. Completando el diagrama velocidad.

    tan

    tan

    AB

    A

    B

    vv

    v

    v

    cos

    cos

    l

    v

    l

    v

    v

    v

    A

    A

    AB

    A

    V t M h i f E i D iE

    E

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    15/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 15

    Velocidad Absoluta y Relativa en el Movimiento plano

    Seleccionando el puntoBcomo el punto de referencia y resolviendo para la

    velocidad vAen el extremoAy la velocidad angular lleva a una velocidad

    equivalente en el triangulo.

    vA/Btiene la misma magnitud pero sentido opuesto al de vB/A. El sentido de la

    velocidad relativa depende del punto de referencia escogido.

    La velocidad angular de la varilla en su rotacin alrededor deBes la misma

    que su rotacin alrededor deA. La velocidad angular no depende del punto de

    referencia escogida.

    V t M h i f E i D iEi

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    16/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 16

    Sample Problem 15.2

    The double gear rolls on the

    stationary lower rack: the velocity of

    its center is 1.2 m/s.

    Determine (a)the angular velocity of

    the gear, and (b)the velocities of the

    upper rackRand pointD of the gear.

    SOLUTION:

    The displacement of the gear center in

    one revolution is equal to the outer

    circumference. Relate the translational

    and angular displacements. Differentiate

    to relate the translational and angular

    velocities.

    The velocity for any pointPon the gear

    may be written as

    Evaluate the velocities of pointsB andD.

    APAAPAP rkvvvv

    V t M h i f E i D iEi

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    17/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

    15 - 17

    Sample Problem 15.2

    x

    y

    SOLUTION:

    The displacement of the gear center in one revolution isequal to the outer circumference.

    ForxA> 0 (moves to right), < 0 (rotates clockwise).

    1

    22rx

    r

    xA

    A

    Differentiate to relate the translational and angular

    velocities.

    m0.150sm2.1

    1

    1

    rv

    rv

    A

    A

    kk srad8

    Vector Mechanics for Engineers: DynamicsEi

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    18/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsighth

    dition

    15 - 18

    Sample Problem 15.2

    For any pointPon the gear, APAAPAP rkvvvv

    Velocity of the upper rack is equal to

    velocity of pointB:

    ii

    jki

    rkvvv ABABR

    sm8.0sm2.1

    m10.0srad8sm2.1

    ivR

    sm2

    Velocity of the pointD:

    iki

    rkvv ADAD

    m150.0srad8sm2.1

    sm697.1

    sm2.1sm2.1

    D

    D

    v

    jiv

    Vector Mechanics for Engineers: DynamicsEi

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    19/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 19

    Sample Problem 15.3

    The crankABhas a constant clockwise

    angular velocity of 2000 rpm.

    For the crank position indicated,

    determine (a)the angular velocity of

    the connecting rodBD, and (b)the

    velocity of the pistonP.

    SOLUTION:

    Will determine the absolute velocity ofpointDwith

    BDBD vvv

    The velocity is obtained from the

    given crank rotation data.Bv

    The directions of the absolute velocity

    and the relative velocity are

    determined from the problem geometry.

    Dv

    BDv

    The unknowns in the vector expression

    are the velocity magnitudes

    which may be determined from the

    corresponding vector triangle.

    BDD vv and

    The angular velocity of the connecting

    rod is calculated from .BDv

    Vector Mechanics for Engineers: DynamicsEi

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    20/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 20

    Sample Problem 15.3SOLUTION:

    Will determine the absolute velocity of pointDwith

    BDBD vvv

    The velocity is obtained from the crank rotation data.Bv

    srad4.209in.3

    srad4.209rev

    rad2

    s60

    min

    min

    rev2000

    ABB

    AB

    ABv

    The velocity direction is as shown.

    The direction of the absolute velocity is horizontal.

    The direction of the relative velocity is

    perpendicular toBD. Compute the angle between thehorizontal and the connecting rod from the law of sines.

    Dv

    BDv

    95.13in.3

    sin

    in.8

    40sin

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    21/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 21

    Sample Problem 15.3

    Determine the velocity magnitudes

    from the vector triangle.

    BDD vv and

    BDBD vvv

    sin76.05

    sin.3.628

    50sin95.53sin

    BDD vv

    sin.9.495

    sft6.43sin.4.523

    BD

    D

    v

    v

    srad0.62

    in.8

    sin.9.495

    l

    v

    lv

    BDBD

    BDBD

    sft6.43 DP vv

    kBD

    srad0.62

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    22/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 22

    Centro Instantneo de Rotacin en Movimiento Plano

    El movimiento plano de las partculas en una placa

    puede ser reemplazada la traslacin de un puntoarbitrario A y su rotacin alrededor deA con una

    velocidad angular que es independiente del puntoA.

    La traslacin y rotacin de la velocidad deA son obtenida

    y que permite que la placa rote con la misma velocidad

    angular alrededor del punto C y es perpendicular a la

    velocidad deA.

    La velocidad de todas las dems partculas de una placa

    son las mismas y estn originalmente definida por la

    velocidad angular y la velocidad y traslacional deA.

    Tal como las velocidades estn involucradas . La placa

    parece rotar alrededor de un centro instantneo de

    rotacin C.

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    23/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 23

    Centro Instantneo de Rotacin en Movimiento Plano

    Si son conocidas la velocidad de dos partculasAyB,

    el centro instantneo de rotacin depende de lainterseccin de las perpendiculares de los vectores

    velocidades a travs de las partculas AyB.

    Si los vectores velocidadAyBson perpendiculares a la

    lneaAB, el centro instantneo de rotacin se encuentra

    en la interseccin de la lneaABcon la lnea que se

    junta con los extremos de los vectores velocidadAyB.

    Si los vectores velocidad son paralelos, el centro

    instantneo de rotacin es infinito y la velocidad

    angular es cero.

    Si las magnitudes de las velocidades son iguales, el

    centro instantneo de rotacin es infinito y la velocidad

    angular es cero.

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    24/64 2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    dition

    15 - 24

    Centro Instantneo de Rotacin en Movimiento Plano

    El centro instantneo de rotacin se determina por la

    interseccin de la perpendicular de los vectores velocidadAyB

    .

    cosl

    v

    AC

    v AA

    tan

    cossin

    A

    AB

    v

    l

    vlBCv

    La velocidad de todas las partculas de la varilla son las

    mismas cuando rotan alrededor de C. La partcula con centro de rotacin en la placa la velocidad

    es cero.

    La partcula coincidente con el centro de rotacin cambian

    con el tiempo y la aceleracin en el centro instantneo de

    rotacin no es cero.

    Las aceleracin de las partculas de la placa no pueden

    determinarse como si la placa simplemente rotara en C.

    El trazo en lugar del centro de rotacin del cuerpo es el

    centrodo y en el espacio el centrodo espacial.

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    25/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    ition

    15 - 25

    Sample Problem 15.4

    The double gear rolls on the

    stationary lower rack: the velocity

    of its center is 1.2 m/s.

    Determine (a)the angular velocity

    of the gear, and (b)the velocities of

    the upper rackRand pointD of the

    gear.

    SOLUTION:

    The point Cis in contact with the stationarylower rack and, instantaneously, has zero

    velocity. It must be the location of the

    instantaneous center of rotation.

    Determine the angular velocity about C

    based on the given velocity atA.

    Evaluate the velocities atBandDbased on

    their rotation about C.

    Vector Mechanics for Engineers: DynamicsEig

    Ed

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    26/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    ition

    15 - 26

    Sample Problem 15.4SOLUTION:

    The point Cis in contact with the stationary lower rack

    and, instantaneously, has zero velocity. It must be thelocation of the instantaneous center of rotation.

    Determine the angular velocity about Cbased on the

    given velocity atA.

    srad8

    m0.15

    sm2.1

    A

    AAA

    r

    vrv

    Evaluate the velocities atBandDbased on their rotation

    about C.

    srad8m25.0 BBR rvv

    ivR

    sm2

    srad8m2121.0

    m2121.02m15.0

    DD

    D

    rv

    r

    sm2.12.1sm697.1

    jiv

    v

    D

    D

    Vector Mechanics for Engineers: DynamicsEig

    Edi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    27/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    ition

    15 - 27

    Sample Problem 15.5

    The crankABhas a constant clockwise

    angular velocity of 2000 rpm.

    For the crank position indicated,

    determine (a)the angular velocity of

    the connecting rodBD, and (b)the

    velocity of the pistonP.

    SOLUTION:

    Determine the velocity atBfrom thegiven crank rotation data.

    The direction of the velocity vectors atB

    andDare known. The instantaneous

    center of rotation is at the intersection of

    the perpendiculars to the velocitiesthroughB andD.

    Determine the angular velocity about the

    center of rotation based on the velocity

    atB.

    Calculate the velocity atDbased on its

    rotation about the instantaneous center

    of rotation.

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    28/64

    Vector Mechanics for Engineers: DynamicsEig

    Edi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    29/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsghth

    tion

    15 - 29

    Aceleracin Absoluta y Relativa en Movimiento Plano

    La aceleracin absoluta de una partcula en la placa,

    ABAB aaa

    La aceleracin relativa asociada con la rotacin alrededor deAincluye las componentes tangencial y normal,

    ABa

    ABnAB

    ABtAB

    ra

    rka

    2

    2

    ra

    ra

    nAB

    tAB

    Vector Mechanics for Engineers: DynamicsEig

    Edi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    30/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 30

    Aceleracin Absoluta y Relativa en Movimiento Plano

    dadodetermine

    ,and AA va

    .and

    Ba

    tABnABA

    ABAB

    aaa

    aaa

    El vector resultante del sentido y de las

    magnitudes relativas denABA

    aa andAa

    Debe conocerse tambin la velocidad angular .

    Vector Mechanics for Engineers: DynamicsEig

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    31/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 31

    Aceleracin Absoluta y Relativa en Movimiento Plano

    xcomponentes: cossin0 2 llaA

    ycomponentes: sincos2

    llaB

    Resolviendo para aB y.

    Escribiendo en trminos de ecuacin de dos

    componentes,ABAB aaa

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    32/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 32

    Anlisis de Movimiento Plano en Trminos de un Parametro

    En algunos casos, este es una ventaja para determinar

    la velocidad y aceleracin absoluta directamente deun mecanismo.

    sinlxA coslyB

    cos

    cos

    l

    l

    xv AA

    sin

    sin

    l

    l

    yv BB

    cossincossin

    2

    2

    llll

    xa AA

    sincossincos

    2

    2

    llll

    ya BB

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    33/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 33

    Sample Problem 15.6

    The center of the double gear has a

    velocity and acceleration to the right of

    1.2 m/s and 3 m/s2, respectively. The

    lower rack is stationary.

    Determine (a) the angular acceleration

    of the gear, and (b)the acceleration of

    pointsB, C, andD.

    SOLUTION:

    The expression of the gear position as a

    function of is differentiated twice to

    define the relationship between the

    translational and angular accelerations.

    The acceleration of each point on thegear is obtained by adding the

    acceleration of the gear center and the

    relative accelerations with respect to the

    center. The latter includes normal and

    tangential acceleration components.

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    34/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 34

    Sample Problem 15.6SOLUTION:

    The expression of the gear position as a function of

    is differentiated twice to define the relationshipbetween the translational and angular accelerations.

    11

    1

    rrv

    rx

    A

    A

    srad8m0.150sm2.1

    1 r

    vA

    11 rraA

    m150.0

    sm3 2

    1 r

    aA

    kk 2srad20

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    35/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthtion

    15 - 35

    Sample Problem 15.6

    jiijjki

    rrka

    aaaaaa

    ABABA

    nABtABAABAB

    222

    222

    2

    sm40.6sm2sm3m100.0srad8m100.0srad20sm3

    222 sm12.8sm40.6m5 BB ajisa

    The acceleration of each point

    is obtained by adding the

    acceleration of the gear centerand the relative accelerations

    with respect to the center.

    The latter includes normal and

    tangential acceleration

    components.

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    36/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthion

    15 - 36

    Sample Problem 15.6

    jii

    jjki

    rrkaaaa ACACAACAC

    222

    222

    2

    sm60.9sm3sm3

    m150.0srad8m150.0srad20sm3

    jac 2sm60.9

    iji

    iiki

    rrkaaaa ADADAADAD

    222

    222

    2

    sm60.9sm3sm3

    m150.0srad8m150.0srad20sm3

    222 sm95.12sm3m6.12 DD

    ajisa

    Vector Mechanics for Engineers: DynamicsEigh

    Edit

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    37/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthion

    15 - 37

    Sample Problem 15.7

    CrankAGof the engine system has a

    constant clockwise angular velocity of

    2000 rpm.

    For the crank position shown,

    determine the angular acceleration of

    the connecting rodBDand the

    acceleration of pointD.

    SOLUTION:

    The angular acceleration of theconnecting rodBDand the acceleration

    of pointDwill be determined from

    nBDtBDBBDBD aaaaaa

    The acceleration ofBis determined fromthe given rotation speed ofAB.

    The directions of the accelerations

    are

    determined from the geometry.nBDtBDD

    aaa

    and,,

    Component equations for acceleration

    of pointDare solved simultaneously for

    acceleration ofDand angular

    acceleration of the connecting rod.

    Vector Mechanics for Engineers: DynamicsEigh

    Editi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    38/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthion

    15 - 38

    Sample Problem 15.7

    The acceleration ofBis determined from the given rotation

    speed ofAB.

    SOLUTION:

    The angular acceleration of the connecting rodBDand

    the acceleration of pointDwill be determined from

    nBDtBDBBDBD aaaaaa

    221232

    AB

    sft962,10srad4.209ft

    0

    constantsrad209.4rpm2000

    ABB

    AB

    ra

    jiaB

    40sin40cossft962,10 2

    Vector Mechanics for Engineers: DynamicsEigh

    Editi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    39/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshthion

    15 - 39

    Sample Problem 15.7

    The directions of the accelerations are

    determined from the geometry.nBDtBDD

    aaa

    and,,

    From Sample Problem 15.3, BD= 62.0 rad/s, = 13.95o.

    221282 sft2563srad0.62ft BDnBD

    BDa

    jia nBD

    95.13sin95.13cossft2563 2

    BDBDBDtBD BDa 667.0ft128

    The direction of (aD/B)tis known but the sense is not known,

    jia BDt

    BD

    05.76cos05.76sin667.0

    iaa DD

    Vector Mechanics for Engineers: DynamicsEigh

    Editi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    40/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 40

    Sample Problem 15.7

    nBDtBDBBDBD aaaaaa

    Component equations for acceleration of pointDare solved

    simultaneously.

    xcomponents:

    95.13sin667.095.13cos256340cos962,10 BDDa

    95.13cos667.095.13sin256340sin962,100 BD

    y components:

    iak

    D

    BD

    2

    2

    sft9290

    srad9940

    Vector Mechanics for Engineers: DynamicsEigh

    Editi

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    41/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 41

    Sample Problem 15.8

    In the position shown, crankABhas a

    constant angular velocity 1= 20 rad/s

    counterclockwise.

    Determine the angular velocities and

    angular accelerations of the connecting

    rodBDand crankDE.

    SOLUTION:

    The angular velocities are determined by

    simultaneously solving the component

    equations for

    BDBD vvv

    The angular accelerations are determined

    by simultaneously solving the component

    equations for

    BDBD aaa

    Vector Mechanics for Engineers: DynamicsEight

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    42/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 42

    Sample Problem 15.8SOLUTION:

    The angular velocities are determined by simultaneously

    solving the component equations for

    BDBD vvv

    ji

    jikrv

    DEDE

    DEDDED

    1717

    1717

    ji

    jikrv BABB

    160280

    14820

    ji

    jikrv

    BDBD

    BDBDBDBD

    123

    312

    BDDE 328017 xcomponents:

    BDDE 1216017 ycomponents:

    kk DEBD

    srad29.11srad33.29

    Vector Mechanics for Engineers: DynamicsEight

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    43/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 43

    Sample Problem 15.8 The angular accelerations are determined by

    simultaneously solving the component equations for

    BDBD aaa

    jiji

    jijik

    rra

    DEDE

    DE

    DDEDDED

    217021701717

    171729.111717 2

    2

    ji

    jirra BABBABB

    56003200

    148200 22

    jiji

    jijik

    rra

    DBDB

    DB

    DBBDDBBDBD

    2580320,10123

    31233.29312 2

    2

    xcomponents: 690,15317 BDDE

    y components: 60101217 BDDE

    kkDEBD

    22 srad809srad645

    Vector Mechanics for Engineers: DynamicsEight

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    44/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 44

    Rapidez de cambio con respecto a un Sistema de Rotacion

    Sistema fijo OXYZ.

    Sistema Oxyz rotando

    alrededor del eje fijoOA

    con una velocidad angular

    La funcin del vector

    vara en direccin y

    magnitud.

    tQ

    kQjQiQQ zyxOxyz

    Con respecto al sistema fijo OXYZ ,

    kQjQiQkQjQiQQ zyxzyxOXYZ

    Rapidez de

    cambio con respecto al sistema de rotacin. Oxyzzyx QkQjQiQ

    Si donde esta fijo dentro de Oxyz

    entonces esto es equivalente a la velocidad de unpunto en un cuerpo rgido Oxyzy

    OXYZQ

    QkQjQiQ zyx

    Q

    Con respecto al sistema de rotacin Oxyz

    kQjQiQQ zyx

    Con respecto al sistema fijo OXYZ ,

    QQQ OxyzOXYZ

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    45/64

    Vector Mechanics for Engineers: DynamicsEight

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    46/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicsthon

    15 - 46

    Coriolis Acceleration

    FPP

    OxyP

    vv

    rrv

    Absolute acceleration for the particlePis

    OxyOXYP r

    dt

    drra

    OxyOxyP rrrra

    2

    OxyOxyOxy

    OxyOXY

    rrrdt

    d

    rrr

    but,

    OxyP

    P

    ra

    rra

    F

    Utilizing the conceptual pointPon the slab,

    Absolute acceleration for the particlePbecomes

    22

    2

    F

    F

    F

    POxyc

    cPP

    OxyPPP

    vra

    aaa

    raaa

    Coriolis acceleration

    Vector Mechanics for Engineers: DynamicsEight

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    47/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    Vector Mechanics for Engineers: Dynamicshon

    15 - 47

    Coriolis Acceleration Consider a collarPwhich is made to slide at constant

    relative velocity ualong rod OB. The rod is rotating at

    a constant angular velocity . The pointAon the rodcorresponds to the instantaneous position ofP.

    cPAP aaaa

    F

    Absolute acceleration of the collar is

    0 OxyP ra

    F

    uavacPc

    22 F

    The absolute acceleration consists of the radial and

    tangential vectors shown

    2rarra AA

    where

    Vector Mechanics for Engineers: DynamicsEighth

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    48/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    ecto ec a cs o g ee s y a cshon

    15 - 48

    Coriolis Acceleration

    uvvtt

    uvvt

    A

    A

    ,at

    ,at

    Change in velocity over tis represented by the

    sum of three vectors

    TTTTRRv

    2rarra AA

    recall,

    is due to change in direction of the velocity of

    pointA on the rod,

    AAtt arrtvt

    TT

    2

    00 limlim

    TT

    result from combined effects of

    relative motion ofPand rotation of the rod

    TTRR and

    uuu

    t

    r

    tu

    t

    TT

    t

    RR

    tt

    2

    limlim00

    uavacPc

    22 F

    recall,

    Vector Mechanics for Engineers: DynamicsEighth

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    49/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhon

    15 - 49

    Sample Problem 15.9

    Disk D of the Geneva mechanism rotates

    with constant counterclockwise angular

    velocity D= 10 rad/s.

    At the instant when = 150o, determine

    (a) the angular velocity of disk S, and (b)

    the velocity of pinPrelative to disk S.

    SOLUTION:

    The absolute velocity of the pointPmay be written as

    sPPP vvv

    Magnitude and direction of velocity

    of pinP are calculated from the

    radius and angular velocity of diskD.Pv

    Direction of velocity of pointP on

    Scoinciding withPis perpendicular to

    radius OP.

    Pv

    Direction of velocity of Pwithrespect to Sis parallel to the slot.

    sPv

    Solve the vector triangle for the

    angular velocity of Sand relative

    velocity ofP.

    Vector Mechanics for Engineers: DynamicsEighth

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    50/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhon

    15 - 50

    Sample Problem 15.9

    SOLUTION:

    The absolute velocity of the pointPmay be written as

    sPPP vvv

    Magnitude and direction of absolute velocity of pinP are

    calculated from radius and angular velocity of diskD.

    smm500srad10mm50 DP Rv

    Direction of velocity ofPwith respect to Sis parallel to slot.

    From the law of cosines,

    mm1.37551.030cos2 2222 rRRllRr

    From the law of cosines,

    4.42742.0

    30sinsin

    30sin

    R

    sin

    r

    6.17304.4290

    The interior angle of the vector triangle is

    Vector Mechanics for Engineers: DynamicsEighth

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    51/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhon

    15 - 51

    Sample Problem 15.9

    Direction of velocity of pointP on Scoinciding withPis

    perpendicular to radius OP. From the velocity triangle,

    mm1.37

    smm2.151

    smm2.1516.17sinsmm500sin

    ss

    PP

    r

    vv

    ks

    srad08.4

    6.17cossm500cosPsP vv

    jiv sP

    4.42sin4.42cossm477

    smm500Pv

    Vector Mechanics for Engineers: DynamicsEighth

    Editio

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    52/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhn

    15 - 52

    Sample Problem 15.10

    In the Geneva mechanism, diskD

    rotates with a constant counter-clockwise angular velocity of 10

    rad/s. At the instant when j= 150o,

    determine angular acceleration of

    disk S.

    SOLUTION:

    The absolute acceleration of the pinPmaybe expressed as

    csPPP aaaa

    The instantaneous angular velocity of Disk

    Sis determined as in Sample Problem 15.9.

    The only unknown involved in the

    acceleration equation is the instantaneous

    angular acceleration of Disk S.

    Resolve each acceleration term into the

    component parallel to the slot. Solve for

    the angular acceleration of Disk S.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    53/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhn

    15 - 53

    Sample Problem 15.10SOLUTION:

    Absolute acceleration of the pinPmay be expressed as

    csPPP aaaa

    From Sample Problem 15.9.

    jivk

    sP

    S

    4.42sin4.42cossmm477

    srad08.44.42

    Considering each term in the acceleration equation,

    jiaRa

    P

    DP

    30sin30cossmm5000

    smm5000srad10mm500

    2

    222

    jia

    jira

    jira

    aaa

    StP

    StP

    SnP

    tPnPP

    4.42cos4.42sinmm1.37

    4.42cos4.42sin

    4.42sin4.42cos2

    note: Smay be positive or negative

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    54/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhn

    15 - 54

    The relative acceleration must be parallel to

    the slot.sPa

    Sample Problem 15.10

    sPv

    The direction of the Coriolis acceleration is obtained

    by rotating the direction of the relative velocityby 90o in the sense of S.

    jiji

    jiva sPSc

    4.42cos4.42sinsmm3890

    4.42cos4.42sinsmm477srad08.42

    4.42cos4.42sin2

    2

    Equating components of the acceleration terms

    perpendicular to the slot,

    srad233

    07.17cos500038901.37

    S

    S

    kS

    srad233

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    55/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhn

    15 - 55

    Motion About a Fixed Point The most general displacement of a rigid body with a

    fixed point Ois equivalent to a rotation of the body

    about an axis through O. With the instantaneous axis of rotation and angular

    velocity the velocity of a particlePof the body is,

    rdt

    rdv

    and the acceleration of the particlePis

    .dt

    drra

    Angular velocities have magnitude and direction and

    obey parallelogram law of addition. They are vectors.

    As the vector moves within the body and in space,

    it generates a body cone and space cone which are

    tangent along the instantaneous axis of rotation.

    The angular acceleration represents the velocity of

    the tip of .

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    56/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yhn

    15 - 56

    General Motion For particlesAandBof a rigid body,

    ABAB vvv

    ParticleAis fixed within the body and motion of

    the body relative toAXYZis the motion of a

    body with a fixed point

    ABAB rvv

    Similarly, the acceleration of the particlePis

    ABABAABAB

    rra

    aaa

    Most general motion of a rigid body is equivalent to:

    - a translation in which all particles have the same

    velocity and acceleration of a reference particleA,and

    - of a motion in which particleAis assumed fixed.

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    57/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yn

    15 - 57

    Sample Problem 15.11

    The crane rotates with a constantangular velocity 1= 0.30 rad/s and the

    boom is being raised with a constant

    angular velocity 2= 0.50 rad/s. The

    length of the boom is l= 12 m.

    Determine: angular velocity of the boom,

    angular acceleration of the boom,

    velocity of the boom tip, and

    acceleration of the boom tip.

    Angular acceleration of the boom,

    21

    22221

    Oxyz

    Velocity of boom tip,

    rv

    Acceleration of boom tip,

    vrrra

    SOLUTION:

    With

    Angular velocity of the boom,

    21

    ji

    jirkj

    639.10

    30sin30cos1250.030.0 21

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    58/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yn

    15 - 58

    Sample Problem 15.11

    jir

    kj

    639.10

    50.030.0 21

    SOLUTION:

    Angular velocity of the boom,

    21 kj

    srad50.0srad30.0

    Angular acceleration of the boom,

    kj

    Oxyz

    srad50.0srad30.021

    22221

    i 2srad15.0

    Velocity of boom tip,

    0639.10

    5.03.00

    kji

    rv

    kjiv

    sm12.3sm20.5sm54.3

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    59/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yn

    15 - 59

    Sample Problem 15.11

    jir

    kj

    639.10

    50.030.0 21

    Acceleration of boom tip,

    kjiik

    kjikji

    a

    vrrra

    90.050.160.294.090.0

    12.320.53

    50.030.00

    0639.10

    0015.0

    kjia 222 sm80.1sm50.1sm54.3

    Vector Mechanics for Engineers: DynamicsEighth

    Edition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    60/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved.

    g yn

    15 - 60

    Three-Dimensional Motion. Coriolis Acceleration

    With respect to the fixed frame OXYZand rotating

    frame Oxyz,QQQ OxyzOXYZ

    Consider motion of particlePrelative to a rotatingframe Oxyzor Ffor short. The absolute velocity can

    be expressed as

    FPP

    OxyzP

    vv

    rrv

    The absolute acceleration can be expressed as

    onacceleratiCoriolis22

    2

    F

    F

    POxyzc

    cPp

    OxyzOxyzP

    vra

    aaa

    rrrra

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    61/64

    Vector Mechanics for Engineers: DynamicsE

    ighth

    E

    dition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    62/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved. 15 - 62

    Sample Problem 15.15

    For the disk mounted on the arm, the

    indicated angular rotation rates are

    constant.

    Determine:

    the velocity of the pointP,

    the acceleration ofP, and

    angular velocity and angular

    acceleration of the disk.

    SOLUTION:

    Define a fixed reference frame OXYZat Oand a moving reference frameAxyzor F

    attached to the arm atA.

    WithPof the moving reference frame

    coinciding withP, the velocity of the point

    Pis found from

    FPPP vvv

    The acceleration ofPis found from

    cPPP aaaa

    F

    The angular velocity and angular

    acceleration of the disk are

    F

    FD

    Vector Mechanics for Engineers: DynamicsE

    ighth

    E

    dition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    63/64

    2007 The McGraw-Hill Companies, Inc. All rights reserved. 15 - 63

    Sample Problem 15.15SOLUTION:

    Define a fixed reference frame OXYZat Oand a

    moving reference frameAxyzor Fattached to thearm atA.

    j

    jRiLr

    1

    k

    jRr

    D

    AP

    2

    F

    WithPof the moving reference frame coinciding

    withP, the velocity of the pointPis found from

    iRjRkrv

    kLjRiLjrv

    vvv

    APDP

    P

    PPP

    22

    11

    FF

    F

    kLiRvP

    12

    Vector Mechanics for Engineers: DynamicsE

    ighth

    E

    dition

  • 8/11/2019 Unidad II Cinematica de Cuerpo Rgido Beer_dinamica_8e_presentaciones_c15

    64/64

    Sample Problem 15.15 The acceleration ofPis found from

    cPPP aaaa

    F

    iLkLjraP 2

    111

    jRiRk

    ra APDDP

    2222

    FFF

    kRiRj

    va Pc

    2121 22

    2

    F

    kRjRiLaP

    2122

    21 2

    Angular velocity and acceleration of the disk,

    FD

    kj

    21

    kjj

    F

    i


Recommended