+ All Categories
Home > Documents > Unified Strength Theory for Materials and Structuresxl/YML-talk.pdf · Unified Strength Theory for...

Unified Strength Theory for Materials and Structuresxl/YML-talk.pdf · Unified Strength Theory for...

Date post: 19-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
65
4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 1 Mao-Hong YUYue-Ming LI (speaker) Xi’an Jiaotong University, Xi’an, China Unified Strength Theory for Materials and Structures Spring Workshop on Nonlinear Mechanics April 4-7, 2011 Xi’an, China
Transcript
  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 1

    Mao-Hong YU,Yue-Ming LI (speaker)

    Xi’an Jiaotong University, Xi’an, China

    Unified Strength Theory for Materials and Structures

    Spring Workshop on Nonlinear MechanicsApril 4-7, 2011

    Xi’an, China

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 2

    CONTENTS

    1 Significance2 Unified Strength Theory3 Unified Constitutive Relation 4 Unified Characteristics line field

    Theory5 Application

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 3

    Strength:comes from various materials, structures (on Ground, in Space, under Ground and water).

    强度:那里使用材料、建造结构,那里就

    有强度问题,就需强度理论。

    1 Significance> Background

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 4

    1 Significance> Strength Theory

    Strength theory: • study the material’s yield or failure law under complex

    stress condition,• provide necessary calculation criterion and safety

    criterion for structure design.

    强度理论:• 研究材料在复杂应力状态下屈服或破坏规律,• 为工程结构设计提供必须的计算准则和安全判据。

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 5

    yield surface under complex stress state

    What is the meaning of outer convex limit loci ?最大外凸极限线的意义是什么?

    yield point under simple stress state

    π-plane

    ?

    1 Significance> Problem

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 6

    Three principal shear stresses Three principal normal stresses

    1 313 2

    σ στ −= 1 313 2σ σσ +=

    2 323 2

    σ στ −=

    1 212 2

    σ στ −= 1 212 2σ σσ +=

    2 323 2

    σ σσ +=

    Stress State at One Point

    2 Unified Strength Theory

    obviously τ13 = τ12+τ23

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 7

    1 313 2

    σ στ −=

    2 Unified Strength Theory

    1 313 2

    σ σσ +=

    Single-Shear Stress Concept

    principal shear stress(τ13,τ12,τ23)

    stress state (σ1, σ2, σ3)

    13 Cτ =Tresca

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 8

    13 12

    13 2

    12 23

    33 12 2

    CC

    τ ττ τ

    τ ττ τ

    = ≥ ≤

    ++ =

    when when

    since τ13 = τ12+τ23

    2 Unified Strength Theory

    1 313 2

    σ στ −= 1 313 2σ σσ +=

    2 323 2

    σ στ −=

    1 212 2

    σ στ −= 1 212 2σ σσ +=

    2 323 2

    σ σσ +=

    Twin-Shear Stress Concept

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 9

    21 , , ( / )1 1

    tt cC

    σαβ σ σα

    αα

    −= = =

    + +

    tσcσβ

    1 2 3( )2F σ σα σ σ= − + = t

    1 32 1

    σ ασσα

    +≤

    +when

    1 2 31' ( )2

    F σ σ σ σα= + − = t 1 32 1σ ασσ

    α+

    ≥+

    when

    where 、C can be determined with material properties,

    '13 12

    ' '13 23

    13 12

    13 23

    ( )( )

    F C when F FF C when F F

    β σ σβ σ

    ττ τ στ = + + = ≥

    = = ≤++ +

    +

    Convert to pincipale stress state

    2 Unified Strength Theory

    For geo-material:

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 10

    2 Unified Strength TheoryMechanical Model of the Unified Strength Theory

    continuum, space filled

    13 23τ τ,

    13 12τ τ,

    13 12 23τ τ τ,,

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 11

    Bounds and region

    yield loci for metal material limit loci for geo-material

    2 Unified Strength Theory

    What is for the region ?

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 12

    '13 12 13 12

    ' '13 23 13 23

    ( )( )

    F C F FF

    b bb b C F F

    τ τ β σ στ τ β σ σ

    = + + + = ≥

    = + + + = ≤

    whenwhen

    0

    0

    1 (1 ), , 11 1 ( )

    tt

    t c

    bC b σ ταβ σα α σ τ σ

    − += = = −

    + + −

    1 31 2 3 2( ) 1 1t

    bb

    F when σ ασασ σ σ σ σα

    += − + = ≤

    + +

    1 31 2 3 2

    1 ( ) 1 1t

    whenbFb

    σ ασσ σ ασ σ σα

    +′ = + − = ≥+ +

    A parameter b is introduced, and the unified strength theory is modeled as:

    where C、β、b could be determined by tension σt、compressionσc and pure shear τ0 as well as:

    Convert to pincipale stress space:

    2 Unified Strength Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 13

    Limit Loci of the Unified Strength Theory at Deviatoric Plane

    2 Unified Strength Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 14

    ( )( ) 2323121223132313'

    2323121212131213

    βστβστσσβττ

    βστβστσσβττ

    +≤+=+++=

    +≥+=+++=

    ifCbbf

    ifCbbf

    C=13τb = 0b= 0.5b = 1

    C=8τ

    23122323'

    23121213

    ττττ

    ττττ

    ≤=+=

    ≥=+=

    ifCf

    ifCf

    Tresca

    Mises approximate

    Twin-shear criterion

    b = 0b= 0.5b = 1

    C=+ 1313 σβτ

    C=+ 88 σβτ

    ( )( ) 2323121212132323'

    2323121212131213

    βστβστσσβττ

    βστβστσσβττ

    +≤+=+++=

    +≥+=+++=

    ifCf

    ifCf

    Mohr-Coulomb

    Druker-Prager approximate

    Twin-shear strength theory

    0≠β Geomaterial

    = 0 β Metal material

    β reflects pure shear property. reflects SD effect , b

    2 Unified Strength Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 15

    Three yield criteriaUnified strength theory

    ( )( ) 2323121223132313'

    2323121212131213

    βστβστσσβττ

    βστβστσσβττ

    +≤+=+++=

    +≥+=+++=

    ifCbbf

    ifCbbf

    π-plane

    Twin-shear

    2 Unified Strength Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 16

    Single-shear concept

    Three-shear concept

    Twin-shear concept

    Mohr-Coulomb

    Drucker-Prager

    Twin shear Strength Theory

    1962, 1982 1985-1990

    Tresca 1864

    Mises 1904

    Unified Strength Theory

    1990-

    2 Unified Strength TheoryClassic Strength Theory Progress

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 17

    single–shear 1900 twin–shear 1985 unified strengththeory 1991

    unified yieldcriterion 1991

    2 Unified Strength Theory

    Classic Strength Theory Progress

    Two things were done.

    = 0 β

    Unified on π-plane,not meridian plane

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 18

    Others b1 meaning ?

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 19

    Fb

    b t= − ++ =σ

    ασ σ σ1 2 31

    ( ) , αασσ

    σ++

    ≤1

    312

    Fb

    b t' ( ) ,= ++ − =

    11 1 2 3

    σ σ ασ σαασσ

    σ++

    ≥1

    312when

    when

    2 Unified Strength Theory> Simplicity and linearity

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 20

    2 Unified Strength Theory> Symmetry

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 21

    Unified Strength Theory0 1b≤ ≤

    Single-shearfailure criterion

    Mohr 1900

    Twin-shear failure criterion

    YU 1985

    New failure criteria

    0

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 22

    Shear stress ratio

    ( ) ( ) ( )''' 321

    213

    232

    221

    σσσσσσσσσ

    ++−+−+−

    Shear strain ( ) ( ) ( )213232221 εεεεεε −+−+−

    31

    21

    13

    12

    σσσσ

    τ

    τµτ −

    −==

    shear stress ratio and shear strain is defined

    Twin-shear stress state parameter (Yu 1998)

    Experiment results of sands by Yoshimine.M.(1996)

    2 Unified Strength Theory>The choice of b depending on the experiments

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 23

    It is convenient for analytical solution andnumerical calculation.

    A series of results can be obtained by using theunified strength theory, including:Tresca solution,

    Mohr-Coulomb solution,

    Twin-shear solution,

    and a lot of new results.

    2 Unified Strength Theory> Convenient for using

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 24

    0 20 40 60 80 100 120 1400

    100200300400500600700800900

    10001100

    δ(mm)

    P(N)

    Unified Strength Theory(b=1.0) Unified Strength Theory(b=0.5) Mohr-Coulomb(b=0.0)

    Different b for different theory

    Bearing capacity for weightless soil under a plane strain strip load using unified strength theory (b=0, b=0.5 and b=1).

    2 Unified Strength Theory> Convenient for using

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 25

    consolidation soil fine sand

    2 Unified Strength Theory > experiments

    comparing with experimental results

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 26

    Comparison of cracked angle with various fracture criteria

    167.0=µ

    0 30 60 900

    30

    60

    90

    maximum tension stress criterionmin-J2 criterion

    unified fracture criterion(¦ Á=1,b=1)

    ¦ Â(¡ã)

    -¦ È(¡ã)

    minimum strain energy density criterion

    unified fracture criterion(¦ Á=1,b=0)

    unified fracture criterion(¦ Á=0.1,b=0)unified fracture criterion(¦ Á=0.1,b=1)

    test point[10]

    comparing with experimental results

    2 Unified Strength Theory > experiments

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 27

    200 400 600 800 1000 12000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    V0 (m/s)

    z max

    (m)

    b=0.0 b=0.15 b=0.5 b=1.0 test data

    Comparison of penetration deep with test data

    Normal penetration

    2 Unified Strength Theory > experiments

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 28

    under plastic stress conditions under plastic strain conditions

    1- Large aggregates 2- Small aggregates 3- Water bubble 4- Air bubble 5- Mortar

    Three meso-concrete models with different aggregate gradation

    Failure loci of three meso-concrete models

    2 Unified Strength Theory > experiments

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 29

    0 2 4 6 8 100.100.120.140.160.180.200.220.240.260.280.30

    (Jiang-shen,1986) (本文解£¬b=1) 试验点(ÎÄÏ× [11] )

    d/h

    p/[π

    h(d+

    h)f' c]

    m=20

    strength theory calculating value comparing with test results for concrete plate punching

    2 Unified Strength Theory > experiments

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 30

    3 Unified Constitutive Relation

    3.1 Elasto-Plastic Constitutive Relations

    pdε

    Treatment of coner singularity for twin-shear theory

    pdεpdε

    pdε

    Treatment of coner singularity for single-shear theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 31

    3 Unified Constitutive Relation

    pdε

    pdε

    pdε

    pdε

    pdε

    Full view of platic strain increments

    pdε

    Coner singularity treatment of unified strength theory

    Unified Strength Theory

    pdεpdε

    pdε

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 32

    3.2 Elasto-plastic FEM Analysis

    tIJ

    bbJF σαθαθα =−+

    +−

    ++= )1(3

    sin1

    )1(cos3

    2)2

    1( 12/12/1

    012/12/1

    ' )1(3

    sin)1

    (cos3

    )12( t

    IJb

    bJbbF σαθαθα =−+

    ++++

    +−

    =

    32

    31

    233cos

    31

    J

    J−=θ

    The unified strength theory can be expressed by stressinvariant and stress angle.

    The expression can be rewritten as:

    3 Unified Constitutive Relation

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 33

    ∂∂

    ∂∂

    +

    ∂∂

    ∂∂

    −=

    σσ

    σσFDFH

    DFFDDD

    e

    T

    e

    T

    e

    eep

    ][

    ][][][][

    '

    σθ

    θσσσσα

    ∂∂⋅

    ∂∂

    +∂

    ∂⋅

    ∂∂

    +∂∂⋅

    ∂∂

    =∂∂

    =FJ

    JFIFFT 2/12

    2/12

    1 )()(

    },,,,,{ xyyxyzzyx τττσσσσ =where

    ∂∂⋅−

    ∂∂⋅

    −=

    ∂∂

    σσθσθ 2/12

    22

    332/3

    2

    )(3)(1

    3sin23 J

    JJJ

    J

    332211 αααα CCC ++=

    σα

    ∂∂

    = 11IT

    σα

    ∂∂

    =2/1

    22

    )(JTσ

    α∂∂

    = 33JTwhere

    3 Unified Constitutive Relation

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 34

    )1(31

    11 α−=∂

    ∂=

    IFC

    +−

    ++⋅++−

    ++=

    ∂∂⋅+

    ∂∂

    =

    θαθαθθαθα

    θθ

    cos1

    )1(sin3

    2/2)(1-ctg3sin1

    )1(cos3

    2)2

    1(

    )(3ctg

    )( 2/122/1

    22

    bb

    bb

    FJJ

    FC

    +−

    ++−⋅−=∂∂⋅−= θαθα

    θθθcos

    1)1(sin

    32)

    21(

    3sin23

    )(3sin23

    22/3

    23 b

    bJ

    FJ

    C

    )1(31

    1

    ''1 α−=∂

    ∂=

    IFC

    +

    ++++

    ⋅++

    ++++−

    =

    ∂∂⋅

    ∂+

    ∂∂

    =

    θαθαθθαθα

    θθ

    cos)1

    (3

    sin)b1b-2(-ctg3sin)

    1(

    3cos)

    12(

    )(3ctg

    )(

    '

    2/12

    2/12

    ''2

    bb

    bb

    bb

    FJJ

    FC

    +

    ++++−

    −⋅−=∂∂⋅−= θαθα

    θθθcos)

    1(

    3sin)

    12(

    3sin23

    )(3sin23

    2

    '

    2/32

    '3 b

    bbb

    JF

    JC

    )(21 '

    2202 CCC +=

    0 '1 1 1

    1 ( )2

    C C C= + )(21 '

    3303 CCC +=

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 35

    299.83

    205.81

    0.002.00 4.00

    limit load 252.38 when b=1

    143.84

    200.28

    0.002.00 4.00

    limit load 171.77 when b=0

    4 Unified Characteristics line field Theory

    B

    c

    d

    a

    bc1

    d1

    q=rD

    qua1

    I

    II

    III

    II

    III45o+

    Rough footing of foundation

    B

    Pp

    C

    Pp

    Ca1 a

    b

    qu

    wedge-type model

    W

    4.1 Unified Slip Field Theory for Plane Strain Problem

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 36

    Unified solution of bearing capacity for Rough footing (基底完全粗糙)

    Single-shear solution Twin-shear solution

    4 Unified Characteristics line field Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 37

    0

    1000

    2000

    3000

    4000

    5000

    b=0.0 b=0.2 b=0.5 b=0.8 b=1.0

    Unified solution of bearing capacity for Smooth footing (基底完全光滑)

    Twin-shear solutionSingle-shear solution

    4 Unified Characteristics line field Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 38

    4.2 Characteristics Line Field for Plane Stress Problem

    -----------------------

    4 Unified Characteristics line field Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 39

    0.0000000000.2000000030.4000000060.6000000090.8000000121.00000001513.70

    13.75

    13.80

    13.85

    13.90

    13.95

    14.00

    14.05

    14.10

    14.15

    14.20

    1.00.4 0.6 0.80.2

    13.8

    13.9

    14.0

    14.1

    0.013.7

    b

    q/c

    0

    4.3 Unified Characteristics Theory for Spatial Axisymmetric Plastic Problem

    Yu M-H,et al.

    Unified characteristics line theoryof spatial axisymmetric plasticproblem. Science in China (SeriesE), 2001 44(2): 207-215.

    4 Unified Characteristics line field Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 40

    0.0 0.2 0.4 0.6 0.8 1.0

    1.4

    1.6

    1.2

    1.0

    2.2

    2.0

    1.8

    b

    Characteristic line

    Finite element

    Comparison of the FEM with Characteristics field theory

    Single-shear solutionTwin-shear solution

    Unified solution:serial results of bearing capacity for circle foundation

    q◌ ਼/2c

    4 Unified Characteristics line field Theory

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 41

    Plastic Analysis of Plate

    5. Applications> Analytical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 42

    0.0 0.2 0.4 0.6 0.8 1.0

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    α=0.6α=0.7α=0.8α=0.9

    b

    p eD/

    (tσt )

    α=1.0

    A series of solutions obtained by using the unified strength theory

    One solution obtained by using the Mohr-Coulomb strength theory

    Limit pressures for thick cylinder with the parameter b of the unified strength theory

    5. Applications> Analytical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 43

    Relation of limit pressure to parameter b

    0.0 0.2 0.4 0.6 0.8 1.02.0

    2.1

    2.2

    2.3

    2.4

    2.5

    2.6

    2.7

    α=0.6

    α=0.7

    α=0.8

    α=0.9

    b

    p eD

    /(tσ t

    )

    α=1.0

    Relation of wall thickness to parameter b

    0.0 0.2 0.4 0.6 0.8 1.00.36

    0.38

    0.40

    0.42

    0.44

    0.46

    0.48

    0.50

    α=0.6

    α=0.7

    α=0.8

    α=0.9

    b

    t [σ]

    /(pD)

    α=1.0

    stress state

    te Dt

    bbbp σα

    4221

    −++

    = 2 21 4[ ]

    b b pDtbα

    σ+ −

    ≥+

    5. Applications> Analytical Solution

    Thin-wall Pressure Vessel

    a series solutions

    Single shear

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 44

    Internal forces in a circular plate element

    Plastic limit load of plate(b from 0 to 1)

    5. Applications> Analytical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 45

    Internal moment fields with loading radius d=a

    psprr MMmMMm /,/ θ==

    Velocity field with loading radius d=a

    00 / www =

    5. Applications> Analytical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 46

    Rotating discs and rotating cylinders

    Relation of the strength theory parameter bto plastic limit angular velocity

    0

    123

    rbb y

    ρσ

    ω++

    =

    Relation of the angular velocity to the radius of the plastic zone

    812 (3 )

    ye

    σω

    ν ρ=

    +

    5. Applications> Analytical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 47

    Plastic zone for mode I crack in plane stress

    21

    2sin

    11

    11

    2cos

    π21

    +++

    +−=

    θαα

    αθσ b

    bbKrt

    bθθ ≥

    21 )

    2sin

    111(

    2cos

    π21

    +−

    +=θθ

    σ bbKr

    tbθθ ≤ α

    αθ+

    =2

    arcsin2b

    when

    when

    Unified solution for the plastic zone at crack tip:

    1=α

    Plastic zone for mode I crackin plane strain

    5. Applications> Fracture

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 48

    Plastic zone of crack tip forMode II (plane stress)

    1=α

    Plastic zone of Crack tip forMode II (plane strain)

    1=α

    5. Applications> Fracture

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 49

    The sample model: macro and meso fiber direction

    Tresca von Mises twin-sheartransverse direction

    Stress–strain curves

    Plastic zones

    5. Applications > Multi-scale computing

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 50

    Plastic zone when b=0 Plastic zone when b=1

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 51

    1α =

    Unified Yield Criterion

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 52

    Plastic zone of weightless soil under the same load by using the unified strength theory

    UST: b=0.5 UST: b=1UST: b=0 (Mohr-Coulomb)

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 53

    Underground cave and finite element mesh

    Principal stress trace around underground cave

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 54

    The maximum principal stress σ1 around the cave

    The principal stress σ2around the cave

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 55

    Plastic zone of rock excavation (A large power station at Yellow River) b=1 (Twin-shear theory)

    Plastic zone of rock excavation (A large power station at Yellow River) b=0 (Mohr-Coulomb theory)

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 56

    5. Applications ( Ship lock of the Yangtze Three Georges )

    根据Mohr-Coulomb准则计算的塑性区

    根据双剪强度理论计算的塑性区

    Plastic zone of excavation b=0 (Mohr-Coulomb theory)

    Plastic zone of excavation b=1 (Twin-shear theory)

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 57

    UST b=0 (Mohr-Coulomb)

    Deformation Analysis of foundation of Big Goose Pagoda

    UST b=1 (Twin-shear)

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 58

    Applications

    5. Applications> Numerical Solution

    Xi’an City Wall

    (a) Twin-shear (b) Single shear

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 59

    Shear strain spread with several yield criteria for a slope

    5. Applications> Numerical Solution

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 60

    结构面

    Safety factors with b

    20

    0

    ( 3 )l

    l

    J p k dlw

    dl

    α

    τ

    − −= ∫

    5. Applications> Numerical Solution

    Safety factor cures for different b

    Dynamic safety factor

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 61

    Strength Theoriesfor Structures

    Strength Theoriesfor Materials

    Plastic analysis

    of structures

    Plane stress

    problems

    Plane strain

    problems

    Axial-symmetricproblems

    NumericalAnalysis

    of structures

    Material Mechanics

    Rock-Soil Mechanics

    ConcreteMechanics

    Metal PlasticMechanics

    Summary

    Unified Strength Theory

    Single-shearfailutre criterion

    1900Twin-shear

    failure criterion1985

    New failure criteria0

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 62

    “The UTS (统一强度理论) is advantageous over other failurecriteria because it encompasses all other established criteria asspecial cases. Or, such criteria are merely the linear approximationsof the UST. Moreover, the parameters of the UST are easily obtainedby experiments. ”

    Xuesong Zhang, Hong Guan, Yew-Chaye Loo (Dean, School ofEngineering, Griffith University Gold Coast Campus, Australia)“UST failure criterion for punching shear analysis of reinforcement

    concrete slab-column connections”.: Computational Mechanics – New Frontiers for New Millennium,Valliappan S. and Khalili N. eds. Elsevier Science Ltd, 2001, 299-304.

    澳大利亚Griffith大学教授

    “统一强度理论超越其他各种准则之处在于它包含了所有其他已经建立的准则并把他们作为特例,或者是统一强度理论的线性逼近。此外,统一强度理论的参数可以由实验较容易得到。”

    Evaluation

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 63

    “The beauty of the twin-shear-unified strength theory is her feasibilityin difining the convex shape of the surface. Setting the value of thecontrollable convex parameter b to 0 or 1 yields the lower and upper limitof the convex shape function. For any arbitrary value of b, the shapefunction can be written in the following form:

    ……”Fan S. C. and Qiang, H.F. , “Normal high-velocity impacton concrete slabs-a simulation using the meshless SPH procedures”. Computational Mechanics – New Frontiers for New Millennium,Valliappan S. and Khalili N. eds. Elsevier Science Ltd, 2001, 1457-1462.

    “双剪统一强度理论的美在于她在确定外凸面形状时的可行性。取可控制的外凸参数b为0或1,可得出外凸形状函数的下限和上限,形状函数可写为:

    ……”

    新加坡南洋理工大学教授

    Evaluation

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 64

    • Mao-Hong Yu, “Unified Strength Theory and Its Applications”, Berlin: Springer, 2004

    • Mao-Hong Yu, et al. “Generalized Plasticity”, Berlin: Springer, 2006

    • Mao-Hong Yu, et al. “Structural Plasticity”, ZJU-Springer, 2009

    More details can be found in themonograph published by Springer in Berlin

    References

  • 4/19/2011 State Key Lab. for Strength and Vibration Xi'an Jiaotong University 65

    Thank you

    Spring Workshop on Nonlinear MechanicsApril 4-7, 2011

    Xi’an, China

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Slide Number 44Slide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Applications Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 63Slide Number 64Slide Number 65


Recommended