+ All Categories
Home > Documents > Unit II and III

Unit II and III

Date post: 28-Feb-2018
Category:
Upload: prakash
View: 213 times
Download: 0 times
Share this document with a friend

of 42

Transcript
  • 7/25/2019 Unit II and III

    1/42

    HEAT TRANSFER

    Prepared by

    M. Santhosh Kumar , AP-

  • 7/25/2019 Unit II and III

    2/42

    DERIVATION OF TEMPERATURE FUNCTION (T) AND SHAPE FUNCTION (N) FO

    CONDUCTION ELEMENT

    xaaT 10

    1

    01

    a

    axT

    1.1

    Consider a bar element with nodes 1 and 2 as shown in figure.T1 and T2 are the tempe

    respective nodes. Therefore T1 and T2 are the dof for this bar element.

    l

    1 2

    T2T1

    k

    Let the temperature function be

    Writing Eq 1.1 in matrix form

  • 7/25/2019 Unit II and III

    3/42

    1TT 0x

    2TT lx

    laaT

    aT

    102

    01

    1

    0

    2

    1

    101

    aa

    lTT

    1.3

    1.2

    1.4

    At node 1

    At node 2 ,

    Sub the above values in EQ 1.1

    Assemble EQ 1.2 & 1.3 in matrix form

    , TfunctioneTemperatur

    l

    xN

    l

    xN

    2

    1 1

    2

    1

    11

    011

    T

    Tl

    lxT

    Sub the EQ1.4 in EQ 1.1

    1

    1

    We know that

    From EQ 1.5&1.6

    We can get the shape functio

    2

    1

    1

    0

    11

    01

    T

    Tl

    la

    a

    2

    1

    21T

    TNNT

    2

    1

    T

    T

    l

    x

    l

    xlT

  • 7/25/2019 Unit II and III

    4/42

    Consider a bar element with nodes 1 and 2 as shown in figure.T1 and T2 are the temprespective nodes and k be the thermal conductivity of the material

    Stiffness matrix

    We know that

    Where

    Derivation of Stiffness matrix for 1 D heat conduction eleme

    dvBDBK T

    v

    1.1

    2211, TNTNTfunctioneTemperatur

    lxN

    l

    xN

    2

    1 1

    l

    1 2

    T2T1

    k

  • 7/25/2019 Unit II and III

    5/42

    Strain Displacement Matrix

    In 1-D heat conduction

    dx

    dN

    dx

    dNB 21

    l

    lB

    llB

    T

    1

    1

    111.2

    1.3

    1.4

    materialtheof

    tyconductiviThermalkKD

    Sub. EQ 1.2,1.3 &1.4 in EQ 1.1 , we

    Stiffness matrix for

    heat conduction

    l

    lK

    l

    C 1

    1

    0

    v

    C dvk

    ll

    llK **11

    11

    22

    22

    l

    C Ak

    ll

    llK0

    22

    22

    **11

    11

  • 7/25/2019 Unit II and III

    6/42

    l

    C dxAk

    ll

    llK0

    22

    22

    ***11

    11

    22

    22

    11

    11

    ll

    llAklKC

    11

    11

    l

    AkKC

    CK

    TKF C

    Thus is the stiffness matrix for he

    A= Area of the elementl = length of the element

    The general force equation is given by

    2

    1

    11

    11

    l

    Ak

    F

    F

  • 7/25/2019 Unit II and III

    7/42

    11

    11

    l

    AkKCStiffness matrix for 1-D heat conduction

    The convection term contribution to

    stiffness matrix is dANNhKT

    A

    endh

    functionShapeN

    coefficietransferHeath

    1.6

    Boundary conditions

    (i) 1-D heat conduction with free end convection

    Consider a element with node 1 and 2 with temperature T1 and T2respectively with convection is from the right end as shown in fig

    l

    Conduction

    k T2T1

    h

    Convection

    T

    x

    1 2

  • 7/25/2019 Unit II and III

    8/42

    Shape functions

    At node 2, x=l

    Sub EQ 1.7 in EQ 1.6

    l

    xN

    l

    xN

    2

    1 1

    1

    0

    10

    TN

    N

    21 NNN

    1.7

    dAhKA

    endh10

    1

    0

    10

    00hAK

    endh

    1.8

    Stiffness matrix [K] = + CK enhK

    Convection from the free end at x=

    1

    0AThF

    endh

    2

    1

    N

    NAThF

    endh

    We know that

    TKF C

    0

    0

    11

    11

    1

    0hA

    l

    AkATh

    dAhK

    endh

    10

    00

  • 7/25/2019 Unit II and III

    9/42

    11

    11

    l

    AkKC

    NNhKT

    S

    h

    NhPK

    Tl

    h 0

    dPdS XWhere

    (ii)1-D element with conduction, convection and internal heat gene

    Consider a rod with nodes 1 and 2 as shown in fig. This rod is subjected to conductio

    internal heat generation

    Stiffness matrix for

    1-D heat conduction

    Heat convection part of

    stiffness matrix is

    1 2k Q Conduction

    T2T1 l

    Convection

    Thermal

    Conductivity

    Internal heat generation

    l

    xl

    l

    xl

    xl

    hPK

    l

    h

    0

  • 7/25/2019 Unit II and III

    10/42

    dx

    l

    x

    l

    x

    l

    x

    l

    x

    l

    x

    l

    xl

    hPK

    l

    h

    0

    2

    2

    2

    2

    2

    22

    36

    63ll

    ll

    hP

    21

    12

    6

    hPlKh

    21

    12

    611

    11 hPl

    l

    AkK

    hC KK KmatrixStiffness

    Force matrix due to heat generati

    dVQNFT

    v

    Q

    dxQNF

    Tl

    Q *A**0

    Q

    1

    1

    2

    lAQFQ

    dxNAQFTl

    Q 0

    dx

    l

    xl

    xl

    AQ

    l

    0

  • 7/25/2019 Unit II and III

    11/42

    Force matrix due to convection is given by

    PdxNhT T

    s

    l

    TdxNPhT

    0

    l

    dx

    l

    xl

    xlPhT

    0

    1

    1

    2

    lPhTFh

    dSNhTF T

    s

    h

    Force matrix

    QFFmatrixForce

    1

    1

    2

    PlAQF

    2

    PhTQAlF

  • 7/25/2019 Unit II and III

    12/42

    The general force equation is given by

    where

    TKF

    1

    1

    2

    lPhTQAl

    2

    1

    21

    12

    611

    11

    T

    ThPl

    l

    Ak

    Substituting the values of [K] & {F} in the above equation we obtain

    2

    1

    21

    12

    611

    11

    T

    ThPl

    l

    Ak

    1

    1

    2

    lPhTQAl

    Q=Heat Generation

    P=Perimeter , m

    The above equation is the finite element equation for 1-D eleme

    is subjected to conduction , convection, internal heat generation

  • 7/25/2019 Unit II and III

    13/42

    A furnace wall is made up of three layers, inside layer with thermal conductivity

    the middle layer with thermal conductivity 0.25 W/mK, the outer layer with ther

    conductivity 0.08 W/mK. The respective thickness of inner, middle and outer lay

    25cm,5cm, and 3cm respectively. The inside temperature of the wall is 600 C and

    the wall is exposed to atmospheric air at 30

    C with the heat transfer coefficient o

    Determine the nodal temperatures.

    Problem 1:

  • 7/25/2019 Unit II and III

    14/42

    For element 2:

    Nodes 2 & 3

    2

    1

    1

    11

    2

    1

    11

    11

    T

    T

    l

    kA

    F

    F

    2

    1

    2

    1

    11

    11

    25.0

    5.8

    T

    T

    F

    F

    2

    1

    2

    1

    3434

    3434

    T

    T

    F

    F

    For element 1:

    Nodes 1& 2

    2

    22

    3

    2

    11

    11

    l

    kA

    F

    F

    3

    2

    11

    11

    05.0

    25.0*1

    F

    F

    3

    2

    55

    55

    F

    F

    l1

    CONDUCTION

    k1T1 T21

    l2

    CONDUCTION

    k2T2 T32

  • 7/25/2019 Unit II and III

    15/42

    For element 3:

    Nodes 3 & 4

    The third element is subjected to both

    conduction and convection

    4

    3

    3

    33

    10

    00

    11

    11

    1

    0

    T

    ThA

    l

    kAATh

    4

    3

    10

    001*45

    11

    11

    03.0

    08.0*1

    1

    01*303*45

    T

    T

    4

    3

    3 450

    00

    666.2666.2

    666.2666.2

    10*635.13

    0

    T

    T

    4

    3

    3

    666.47666.2

    666.2666.2

    10*635.13

    0

    T

    T

    l3

    Conduction

    k3

    T4T3

    h

  • 7/25/2019 Unit II and III

    16/42

    Assembling the finite elements we get

    4

    3

    2

    1

    4

    3

    2

    1

    666.2666.200

    666.2666.750

    053934

    003434

    F

    F

    F

    F

    T

    T

    T

    T

    Since there is no heat generation&

    convection except from the right end

    34

    321

    10*635.13

    0

    F

    FFF

    3

    4

    3

    2

    10*635.13

    0

    0

    0873

    666.2666.200

    666.2666.750

    053934

    003434

    T

    T

    T

    1

    From Equation 1 form simultan

    equation and solve to get value

    Solution:

    T2=846.2 K

    T3=664.1 KT4=323.2 K

  • 7/25/2019 Unit II and III

    17/42

  • 7/25/2019 Unit II and III

    18/42

    3

    3

    2

    2

    1

    1

    v

    u

    v

    u

    v

    u

    u

    Derivation of shape function for heat transfer in 2D elem

    Displacement

    Consider a triangular element with nodes 1,2,& 3 with nodal displacements u 1,u2,u3

  • 7/25/2019 Unit II and III

    19/42

    yxv

    yxu

    654

    321

    333213

    232212

    131211

    yxu

    yxu

    yxu

    3

    2

    1

    33

    22

    11

    3

    2

    1

    1

    1

    1

    yx

    yx

    yx

    u

    u

    u

    3

    2

    1

    1

    33

    22

    11

    3

    2

    1

    1

    1

    1

    u

    u

    u

    yx

    yx

    yx

    3123

    1332

    31132332

    2312332

    1

    33

    22

    11

    yx-y(x

    )(

    1

    1

    1

    1

    xxxx

    yyyy

    yxyx

    yyxyxyxyx

    yx

    yx

  • 7/25/2019 Unit II and III

    20/42

    3

    2

    1

    123123

    211332

    122131132332

    2312312332

    3

    2

    1

    )yx-y(x)yx-y(x

    X)()(

    1

    u

    u

    u

    xxxxxx

    yyyyyy

    yxyx

    xxyyyxyxyx

    33

    22

    11

    1

    1

    1

    2

    1

    yx

    yx

    yx

    A

    (21

    312332 yxyxyxA

    (2 312332 yyxyxyxA

    123123

    211332

    122131132332

    3

    2

    1 )yx-y(x)yx-y(x

    X2

    1

    xxxxxx

    yyyyyy

    yxyx

    A

  • 7/25/2019 Unit II and III

    21/42

    3

    2

    1

    321

    321

    321

    3

    2

    1

    X2

    1

    u

    u

    u

    ccc

    bbb

    aaa

    A

    123312231

    213132321

    122133113223321

    yx-yxyx-yx

    xxcxxcxxc

    yybyybyyb

    aayxyxa

    1yxu

    3

    2

    1

    333222111

    3

    2

    1

    321

    321

    321

    222

    X211

    u

    u

    u

    A

    ycxba

    A

    ycxba

    A

    ycxbau

    u

    u

    u

    ccc

    bbb

    aaa

    Ayxu

    21

    21

    NNNv

    NNNu

  • 7/25/2019 Unit II and III

    22/42

    A

    ycxbaN

    A

    ycxbaN

    A

    ycxbaN

    2

    2

    2

    3333

    2222

    1111

    3

    3

    2

    2

    1

    1

    321

    321

    000

    000

    ),(

    ),(

    v

    u

    v

    u

    v

    u

    NNN

    NNN

    yxv

    yxu

    uDisplacement function

    N1,N2,N3ARE THE SHAPE FUNCTIONS O

    TRIANGULAR ELEMENT

  • 7/25/2019 Unit II and III

    23/42

    Stiffness matrix and load vector for heat transfer in 2-D element

    y

    x

    3

    21

    T1 T2

    T3

    (x1,y1) (x2,y2)

    (x3,y3)

    332211),(, TNTNTNyxTfunctioneTemperatur A

    cxbaN

    A

    cxbaN

    A

    ycxbaN

    2

    2

    2

    3333

    2222

    1111

    Shape functions are giv

    dvBDBKmatrixStiffnessT

    C

  • 7/25/2019 Unit II and III

    24/42

    StrainDisplacement matrix is given by

    y

    N

    y

    N

    y

    Nx

    N

    x

    N

    x

    N

    B321

    321

    321

    321

    2

    1

    ccc

    bbb

    AB

    33

    22

    11

    2

    1

    cbcb

    cb

    AB

    T

    Stress strain matrix is given by

    y

    x

    k

    kD

    0

    0

    Assuming a unit thickness, dv=da

    Now we get the stiffness matrix by substit

    [B],[B]T,[D] in [K]

    c

    b

    Ak

    k

    cb

    cb

    cb

    AK

    y

    x

    C

    1

    1

    33

    22

    11

    2

    1

    0

    0

    2

    1

    cc

    bb

    k

    k

    cb

    cb

    cb

    AK

    y

    x

    C

    1

    1

    33

    22

    11

    2 0

    0

    4

    1

    For an isotropic material , kx=ky=k NNNNN 2

  • 7/25/2019 Unit II and III

    25/42

    p , x y

    Thus the Stiffness matrix for conduction is

    2

    3

    2

    332323131

    3232

    2

    2

    2

    22121

    31312121

    2

    1

    2

    1

    4cbccbbccbb

    ccbbcbccbb

    ccbbccbbcb

    A

    kKC

    convectionformatrixStiffness

    dSNNN

    N

    N

    N

    hKS

    h 321

    3

    2

    1

    dSNNhK TS

    h

    Now considering edge 1-2, alone and N3

    NNNNN

    NNNNN

    NNNNN

    hKS

    h

    2

    33231

    32

    2

    221

    31211

    dSNNNNNN

    hKS

    h

    000

    0

    02

    221

    21

    2

    1

    Substitute N3=0 in Equation 1.1

    Sub N1=L1,N2=L2 and N3=L3, along the e

    2

    1 000

    0

    02

    221

    21

    2

    1s

    s

    h dSLLL

    LLL

    hK

    Sub eq. 1.2,1.3,1.5 in eq. 1.2We know that

  • 7/25/2019 Unit II and III

    26/42

    sdsLL)!1(

    !!21

    33*2*1

    2*1

    !12

    !2

    2

    1

    2

    1

    ssdsL

    sdsL

    6!111

    !1!121

    ssdsLL

    33*2*1

    2*1

    !12

    !2

    2

    2

    2

    2

    ssdsL

    sdsL

    1.3

    1.4

    1.5

    00

    36

    63

    2121

    2121

    2121

    ss

    ss

    hKh

    0

    1

    2

    62121

    21 shKh

    We know that

    Now considering edge 2 3 alone Now considering edge 3 1 alone

  • 7/25/2019 Unit II and III

    27/42

    Now considering edge 2-3, alone

    And N1=0 at the this edge

    Sub N2=L2,N3=L3 , along the

    edge 2-3,N1=L1=0

    Sub in 1.1

    dSLLL

    LLLhKS

    h

    2

    332

    32

    2

    2

    0

    0

    000

    360

    630

    000

    3232

    3232

    3232

    ss

    sshKh

    210

    120

    000

    6

    32

    32

    32 shKh

    Now considering edge 3-1, alone

    And N2=0 at the this edge

    Sub N1=L1,N3=L3 , along the

    edge 3-1,N2=L2=0

    dSLLL

    LLL

    hKS

    h

    2331

    31

    2

    1

    0

    000

    0

    606

    0006

    03

    1313

    1313

    1313ss

    ss

    hKh

    201

    000

    102

    6

    1313

    13

    shKh

    Stiff t i f C ti i 000012

  • 7/25/2019 Unit II and III

    28/42

    Stiffness matrix for Convection is

    133221

    hhhh KKKK

    201

    000

    102

    6

    210

    120

    000

    6000

    021

    012

    6

    1313

    32322121

    sh

    shsh

    Kh

    Stiffness matrix for 2-D heat transfer element is given by

    hC KKK

    1

    0

    2

    6

    000

    021

    012

    6

    4

    1313

    22121

    2

    3

    2

    332323131

    3232

    2

    2

    2

    22121

    31312121

    2

    1

    2

    1

    sh

    hsh

    cbccbbccbb

    ccbbcbccbb

    ccbbccbbcb

    A

    kK

    Force ector for 2 D heat transfer dsNqFT

    hTF

  • 7/25/2019 Unit II and III

    29/42

    Force vector for 2-D heat transfer

    elements is

    dvNqF To1

    3

    2

    1

    1

    L

    L

    L

    AqF o

    By using area coordinate system

    AdALLL 2*)!2(

    !!!321

    1

    1

    1

    31

    AqF o

    dsNqFs

    2

    dsNN

    N

    qF

    s

    s

    2

    1

    3

    2

    1

    2

    dsLL

    qF

    s

    s

    2

    1

    0

    2

    1

    2

    0

    1

    1

    2

    21212

    sqF

    hTFs

    3

    hTF 3

    hTF 3

    2

    213

    ThF

    Unit thickness

    Compute the element matrix and vectors for the element shown in figure, When the e

  • 7/25/2019 Unit II and III

    30/42

    Compute the element matrix and vectors for the element shown in figure, When the e

    and 3-1 experience convection heat loss.

    405010

    508535

    103525

    CK

    15.5645.762.20

    45.790.140

    62.20025.41

    hK

    200

    200

    200

    1F

    3F

    02 F

    a) Element matrix

    (i) conduction(ii) convection

    b) Force vectors

    Shape function derivation for fluid mechanics We know that

  • 7/25/2019 Unit II and III

    31/42

    p

    in 2-D element

    Let us consider a three noded triangular element as

    shown in fig. Let the nodal potentials are p1,p2 and p3

    Let the potential function be

    3

    2

    1

    p

    p

    p

    p

    yxp 321

    131211 yxp

    232212 yxp

    333213 yxp

    W

    3

    2

    1

    1

    33

    22

    11

    3

    2

    1

    1

    1

    1

    p

    p

    p

    yx

    yx

    yx

    3

    2

    1

    321

    321

    321

    3

    2

    1

    2

    1

    p

    pp

    ccc

    bbbaaa

    A

    12213

    31132

    23321

    yxyxa

    yxyxa

    yxyxa

    213

    132

    321

    yyb

    yyb

    yyb

    c

    c

    c1.1

    From eq 1.1

  • 7/25/2019 Unit II and III

    32/42

    q

    3

    2

    1

    1

    yxp

    3

    2

    1

    321

    321

    321

    2

    11

    p

    p

    p

    ccc

    bbb

    aaa

    Ayxp

    AxbaN

    xbaN

    A

    xbaN

    2

    2

    2

    333

    222

    111

    3

    2

    1

    333222111

    222p

    p

    p

    Aycxba

    Aycxba

    Aycxbap

    21),( NNyxp

    -2ofmechanicsfluid

    shtheare&, 321 NNN

    hPDerivation of 1 - D Heat transfer

  • 7/25/2019 Unit II and III

    33/42

    dx

    0x lx

    OTQ

    Convection

    FIN

    Q

    dx

    AreaSectionalCrossA

    surfaceateTemperaturT

    atmosphereAmbient

    /

    / 2

    T

    Thicknessdx

    PerimeterP

    ConvectionofefficientCoh

    mkK

    Kmh

  • 7/25/2019 Unit II and III

    34/42

    )( TTdxPhdQQQ

    0)( TTdxPhdQ

    dx

    dTKAQ

    LawFourierBy

    ''

    0)(

    dxbyequationabovethe

    TTdxPhdQ

    (

    Phdx

    dx

    dTKAd

  • 7/25/2019 Unit II and III

    35/42

    0)(

    insulatedisEnd:ICase

    lQ

    endat theretemperatuisT

    )()(

    atmosphereopen toisEnd:IICase

    LWhere

    TThAlQ L

    )(

    TatmaintainedissurfaceEnd:IIICase

    TThAQL

    Boundary conditions By Ritz method

    dxxwGDE )()(

    By assuming bar element for he

    Wt

    Wt

    Niseqsecondforfunction.

    -1Niseqfirstforfunction.

    2

    1

    TThPdx

    dx

    dTKAdl

    0

    Thus we get

    d

  • 7/25/2019 Unit II and III

    36/42

    0w(x)w(x)0 0

    dxTThPdxdxdx

    dTKAdl l

    0)(dx

    dw)(

    000

    dxxwTThPdxdx

    dTKAxw

    dx

    dTKA

    lll

    Thus we arrive at the weak form of 1D heat transfer element

    v-uvdvu

    dx

    dwdu;)(

    xwu

    dxdx

    dTKA

    dx

    ddv

    0)(dx

    dw)()(

    00

    0

    dxxwTThPdxdx

    dTKAxQxw

    lll

    N l i fi t ti

  • 7/25/2019 Unit II and III

    37/42

    Now solving first equation

    ldx

    xdw

    lxw

    1)(

    X1N)( 1

    2

    Sub in2 1

    011

    11)(1

    0

    21

    21

    00

    dxl

    xTT

    l

    xT

    l

    xhp

    dxl

    Tl

    xT

    l

    x

    dx

    dKAxQ

    l

    x

    l

    ll

    ll

    ll

    xQl

    xdx

    l

    xThp

    dl

    xT

    l

    xT

    l

    xhpdx

    lT

    l

    xT

    l

    x

    dx

    dKA

    00

    0

    2121

    0

    )(11

    111

    1

    2

    1111 22

    dxxx

    Txx

    hpdxTTKAll

  • 7/25/2019 Unit II and III

    38/42

    )0(2

    322

    2

    3

    11

    0

    2

    2

    0

    2

    32

    1

    0

    2

    2

    3

    2212

    0

    Ql

    xxhpT

    Tl

    x

    l

    xT

    l

    x

    l

    xxhpdxT

    lT

    lKA

    l

    lll

    )0(2

    322

    2

    3

    2

    2

    0

    2

    32

    1

    2

    2

    3

    0

    2212

    Qdxl

    llhpT

    Tl

    l

    l

    lT

    l

    l

    l

    llhpT

    l

    xT

    l

    xKA

    ll

    )0(2

    3

    11121

    Ql

    hpT

    Tll

    lhpTl

    Tl

    KA

    12611 21

    2

    1

    hPT

    ThPl

    T

    T

    l

    KA

    )0(1

    1

    0

    0

    21221

    0

    Qdxl

    xhpT

    dxll

    Tll

    hpdxl

    Tl

    Tl

    KA

    l

    A

    For second equation

  • 7/25/2019 Unit II and III

    39/42

    ll

    xNxw

    1

    dx

    dw(x);)( 2 3

    Sub in3 1

    01

    11)(

    0

    21

    21

    00

    dxl

    xTT

    l

    xT

    l

    xhp

    dxl

    Tl

    xT

    l

    x

    dx

    dKAxQ

    l

    x

    l

    ll

    ll

    ll

    xQl

    xdx

    l

    xThp

    dxl

    xT

    l

    xT

    l

    xhpdx

    lT

    l

    xT

    l

    x

    dx

    dKA

    00

    0

    2121

    0

    )(

    11

    1

    11122ll

  • 7/25/2019 Unit II and III

    40/42

    )(

    111

    0

    0

    22

    2

    12

    2

    21

    0

    lQdxl

    xhpT

    dxTl

    xT

    l

    x

    l

    xhpdx

    lT

    lT

    lKA

    l

    )(2

    332

    11

    0

    2

    0

    22

    3

    12

    32

    2212

    0

    lQl

    xhpT

    Tl

    xT

    l

    x

    l

    xhpdxT

    lT

    lKA

    l

    ll

    )(2

    332

    21

    0

    2212

    lQl

    hpT

    Tl

    Tll

    hpTl

    xT

    l

    xKA

    l

    )(2

    32

    11121

    0

    lQlhpT

    Tll

    hpTl

    Tl

    KAl

    21

    611

    2

    1

    2

    1h

    T

    ThPl

    T

    T

    l

    KA

    B

    Combining A and B in matrix form

  • 7/25/2019 Unit II and III

    41/42

    CombiningAand B in matrix form

    2/

    2/

    21

    12

    611

    11

    2

    1

    2

    1

    l

    l

    hPTT

    ThPl

    T

    T

    l

    KA

    Apply boundary conditions

    (i) End is insulated i.e. Q(l)=0

    2/

    2/

    21

    12

    6

    11

    11

    2

    1 Q

    l

    lhPT

    T

    ThPl

    l

    KA

    (ii) End is open to atmosphere,

  • 7/25/2019 Unit II and III

    42/42

    @ end TL=T2; Q(L)=hA(TL-T)

    TL Surface temperature end (x=l)

    l

    l

    hPTT

    T

    hA

    hPl

    l

    KA

    2/

    2/

    0

    00

    21

    12

    611

    11

    2

    1

    (iii) End is maintained at temp T,

    At (x=l)

    (2/

    2/

    21

    12

    6

    11

    11

    2

    1

    hA

    Q

    l

    lhPT

    T

    ThPl

    l

    KA


Recommended