+ All Categories
Home > Documents > Universidad de Zaragoza - Journal of African Earth...

Universidad de Zaragoza - Journal of African Earth...

Date post: 28-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
17
Paleoenvironmental and ecological changes during the Eocene- Oligocene transition based on foraminifera from the Cap Bon Peninsula in North East Tunisia Chaima Grira a , Narjess Karoui-Yaakoub a , Mohamed H edi Negra b , Lucia Rivero-Cuesta c , Eustoquio Molina c, * a D epartement des Sciences de la Terre, Facult e des Sciences de Bizerte, Universit e Carthage, Jarzouna, Bizerte 7021, Tunisia b Unit e de Recherche: Petrologíe S edimentaire et Cristaline, Falcult e des Sciences de Tunis, Universit e Tunis El Manar, Tunisia c Departamento de Ciencias de la Tierra and IUCA, Universidad de Zaragoza, E-50009 Zaragoza, Spain article info Article history: Received 29 July 2017 Received in revised form 24 January 2018 Accepted 19 February 2018 Available online 19 March 2018 Keywords: Foraminifera Eocene/oligocene Extinction Paleoenvironment Tunisia abstract Biostratigraphic analysis of the Eocene-Oligocene transition (E-O) at the Menzel Bou Zelfa and Jhaff composite section in the Cap Bon Peninsula (North East Tunisia) allowed us to recognize a continuous planktic foraminiferal biozonation: E14 Globigerinatheka semiinvoluta Zone, E15 Globigerinatheka index Zone, E16 Hantkenina alabamensis Zone and O1 Pseudohastigerina naguewichiensis Zone. A quantitative study of benthic and planktic foraminifera assemblages was carried out and the richness and diversity of foraminifera allowed us to reconstruct the paleoenvironmental evolution from marine to terrestrial environments. From the Eocene E14 Zone, the foraminiferal association characterizes a relatively warm climate with considerable oxygen content and a dominance of keeled and spinose planktic foraminifera, which became extinct at the E/O boundary, possibly due to cooling of the planktic environment. Nevertheless, the small benthic foraminifera do not show an extinction event at the Eocene/Oligocene (E/ O) boundary, indicating that the benthic environment was not signicantly affected. In the basal Oligocene O1 Zone, the benthic environment changes to a shallower setting due to cooling of the climate. These changes generated a remarkable dominance of globular forms in the planktic environment. Small benthic foraminifera apparently have a gradual extinction event, or more likely a gradual pattern of local disappearances, that could have been caused by the Oi1 glaciation. © 2018 Elsevier Ltd. All rights reserved. 1. Introduction The E-O transition, around 34 Ma, was a pivotal time in Earth's evolution as the climate shifted from Early Cenozoic greenhouse to glacial conditions with signicant permanent ice sheets on Antarctica (Shackleton and Kennett,1976; Zachos et al., 1996; Wade et al., 2012; Ortiz and Kaminski, 2012). This was associated with a cooling of the regions of low, medium and high latitudes (Coxall and Pearson, 2007; Lear et al., 2008). As the world shifted from warm Eocene climate to colder Oligocene climate, there were major changes in ecology, produc- tivity, chemistry and also probably within the vertical structure of the water column. This major change under the climatic conditions is reected by similar progressive changes in the oxygen and car- bon isotopes of the benthic foraminifera from deep waters (Coxall et al., 2005; Coxall and Wilson, 2011) as well as in the lithology of the pelagic sediments (Palike et al., 2012), reecting the cooling of the oceans and the development of large ice sheets in Antarctica (Shackleton and Kennett, 1976; Zachos et al., 1996; DeConto and Pollard, 2003; Coxall et al., 2005; Lear et al., 2008). These climate changes were associated with a reduction of atmospheric carbon dioxide (Pearson et al., 2009; Pagani et al., 2011), the extinction of many species of phytoplankton and zooplankton (Funakawa et al., 2006; Pearson et al., 2008) a deepening of the calcite compensa- tion depth (CCD), a fall in sea level increased ocean alkalinity (Coxall et al., 2005), and the tectonic changes that have opened Oceanic gateways of ows around the Antarctic (Exon et al., 2004; Stickley et al., 2004; Barker et al., 2007). Planktic foraminifera suffered extinction across the E/O boundary (Martínez-Gallego and Molina, 1975; Molina, 1980, 1986; * Corresponding author. E-mail address: [email protected] (E. Molina). Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci https://doi.org/10.1016/j.jafrearsci.2018.02.013 1464-343X/© 2018 Elsevier Ltd. All rights reserved. Journal of African Earth Sciences 143 (2018) 145e161
Transcript
  • lable at ScienceDirect

    Journal of African Earth Sciences 143 (2018) 145e161

    Contents lists avai

    Journal of African Earth Sciences

    journal homepage: www.elsevier .com/locate/ jafrearsci

    Paleoenvironmental and ecological changes during the Eocene-Oligocene transition based on foraminifera from the Cap BonPeninsula in North East Tunisia

    Chaima Grira a, Narjess Karoui-Yaakoub a, Mohamed H�edi Negra b, Lucia Rivero-Cuesta c,Eustoquio Molina c, *

    a D�epartement des Sciences de la Terre, Facult�e des Sciences de Bizerte, Universit�e Carthage, Jarzouna, Bizerte 7021, Tunisiab Unit�e de Recherche: Petrologíe S�edimentaire et Cristaline, Falcult�e des Sciences de Tunis, Universit�e Tunis El Manar, Tunisiac Departamento de Ciencias de la Tierra and IUCA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

    a r t i c l e i n f o

    Article history:Received 29 July 2017Received in revised form24 January 2018Accepted 19 February 2018Available online 19 March 2018

    Keywords:ForaminiferaEocene/oligoceneExtinctionPaleoenvironmentTunisia

    * Corresponding author.E-mail address: [email protected] (E. Molina).

    https://doi.org/10.1016/j.jafrearsci.2018.02.0131464-343X/© 2018 Elsevier Ltd. All rights reserved.

    a b s t r a c t

    Biostratigraphic analysis of the Eocene-Oligocene transition (E-O) at the Menzel Bou Zelfa and Jhaffcomposite section in the Cap Bon Peninsula (North East Tunisia) allowed us to recognize a continuousplanktic foraminiferal biozonation: E14 Globigerinatheka semiinvoluta Zone, E15 Globigerinatheka indexZone, E16 Hantkenina alabamensis Zone and O1 Pseudohastigerina naguewichiensis Zone. A quantitativestudy of benthic and planktic foraminifera assemblages was carried out and the richness and diversity offoraminifera allowed us to reconstruct the paleoenvironmental evolution from marine to terrestrialenvironments. From the Eocene E14 Zone, the foraminiferal association characterizes a relatively warmclimate with considerable oxygen content and a dominance of keeled and spinose planktic foraminifera,which became extinct at the E/O boundary, possibly due to cooling of the planktic environment.Nevertheless, the small benthic foraminifera do not show an extinction event at the Eocene/Oligocene (E/O) boundary, indicating that the benthic environment was not significantly affected. In the basalOligocene O1 Zone, the benthic environment changes to a shallower setting due to cooling of the climate.These changes generated a remarkable dominance of globular forms in the planktic environment. Smallbenthic foraminifera apparently have a gradual extinction event, or more likely a gradual pattern of localdisappearances, that could have been caused by the Oi1 glaciation.

    © 2018 Elsevier Ltd. All rights reserved.

    1. Introduction

    The E-O transition, around 34 Ma, was a pivotal time in Earth'sevolution as the climate shifted from Early Cenozoic greenhouse toglacial conditions with significant permanent ice sheets onAntarctica (Shackleton and Kennett, 1976; Zachos et al., 1996;Wadeet al., 2012; Ortiz and Kaminski, 2012). This was associated with acooling of the regions of low, medium and high latitudes (Coxalland Pearson, 2007; Lear et al., 2008).

    As the world shifted from warm Eocene climate to colderOligocene climate, there were major changes in ecology, produc-tivity, chemistry and also probably within the vertical structure ofthe water column. This major change under the climatic conditions

    is reflected by similar progressive changes in the oxygen and car-bon isotopes of the benthic foraminifera from deep waters (Coxallet al., 2005; Coxall and Wilson, 2011) as well as in the lithologyof the pelagic sediments (P€alike et al., 2012), reflecting the coolingof the oceans and the development of large ice sheets in Antarctica(Shackleton and Kennett, 1976; Zachos et al., 1996; DeConto andPollard, 2003; Coxall et al., 2005; Lear et al., 2008). These climatechanges were associated with a reduction of atmospheric carbondioxide (Pearson et al., 2009; Pagani et al., 2011), the extinction ofmany species of phytoplankton and zooplankton (Funakawa et al.,2006; Pearson et al., 2008) a deepening of the calcite compensa-tion depth (CCD), a fall in sea level increased ocean alkalinity(Coxall et al., 2005), and the tectonic changes that have openedOceanic gateways of flows around the Antarctic (Exon et al., 2004;Stickley et al., 2004; Barker et al., 2007).

    Planktic foraminifera suffered extinction across the E/Oboundary (Martínez-Gallego and Molina, 1975; Molina, 1980, 1986;

    mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.jafrearsci.2018.02.013&domain=pdfwww.sciencedirect.com/science/journal/1464343Xwww.elsevier.com/locate/jafrearscihttps://doi.org/10.1016/j.jafrearsci.2018.02.013https://doi.org/10.1016/j.jafrearsci.2018.02.013https://doi.org/10.1016/j.jafrearsci.2018.02.013

  • C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161146

    Molina et al., 1986, 1988; 1993, 2006; Nocchi et al., 1988; Gonzalvoand Molina, 1992; Farouk et al., 2013, 2015; Pearson and Wade,2015; Karoui-Yaakoub et al., 2017). Planktic foraminifera suffereda rapid but gradual extinction event, which is characterized by theextinction of the hantkeninids and turborotalids (Hantkeninaprimitiva, Hantkenina compressa, Hantkenina alabamensis, Hantke-nina nanggulanensis, Cribohantkenina lazzarii, Turborotaliacocoaensis and Turborotalia cunialensis). Furthermore, the largerPseudohastigerina micra s. str. also seems to have gone extinct.These species gradually became extinct in about 0.04 Myr and ac-count for 31% of the planktic assemblages (Molina, 2015). The E/Oboundary was defined at the Massignano section, coinciding withthe extinction of the hantkeninids (Premoli Silva and Jenkins,1993).

    Larger foraminifera living in shallow platforms had a turnover(Orabi et al., 2015), but did not suffer extinction coinciding with theE/O boundary (Molina et al., 2016), although the magnitude of thisturnover is not yet well known. Small benthic foraminifera, living inbathyal and abyssal environments, are not so well studied asplanktic and their pattern of extinction at the E/O boundary is notyet known in detail. Deep-sea benthic foraminifera underwent amass but gradual extinction from the late Eocene-early Oligocene,with modern type assemblages becoming established (Kaminskiet al., 1989; Thomas, 1992; Thomas and Gooday, 1996; Kaminskiand Gradstein, 2005; Thomas and Via, 2007).

    The aim of this work is to study the paleoenvironmentalchanges across the E/O boundary in North East Tunisia, based onthe quantitative analyses of small benthic and planktic foraminif-eral assemblages at the Menzel bou Zelfa and Jhaff compositesection. The richness of planktic foraminiferal species reflects theclimatic stability of the water, and therefore, varies depending onocean circulation being greatest where redistribution of hot watermasses is promoted (Wade and Pearson, 2008). This causes a va-riety of ecological habitats where the various species of life growand proliferate. The planktic foraminiferal extinction event isknown to coincide with the E/O boundary, but little is known aboutwhat happened at the sea bottom. Our study therefore, focuses onsmall benthic foraminifera in order to investigate the nature andtiming of the benthic foraminiferal turnover and to ascertainwhether the benthic extinctions coincided with the E/O boundaryand the beginning of the Oi1 glaciation.

    2. Geological and geographical setting

    The 54m thick Menzel Bou Zelfa (MBZ) section is located in thenorth-eastern of Tunisia in the Cap Bon peninsula. Section samplingwas carried out on the NE flank of the anticline Jebel Abderrah-mane. The stratigraphic series is essentially composed of marls,limestones and sands ranging in age from the middle Eocene toQuaternary (Fig. 1). However, in some places the E/O boundaryinterval was covered with Quaternary deposits, for which reason itwas decided tomerge two separate sections into a single compositeone. It was necessary to carry out detailed sampling across the E/Oboundary, which is why a better exposed section in the same areaabout 1 km to the south was chosen, located between the coordi-nate points 36� 42016.4400N and 10º41042.5800E. This interval of thecomposed section is named Jhaff (J6-J13). This detailed interval waslocated between MBZ 26 and MBZ 25 (Fig. 2).

    This section is composed of light grey marls occasionally inter-bedded with centimetric argillaceous reddish limestone beds, richin iron oxide and is called Unit 1. From sample Jhaff 11 it comprisesa sandy limestone bed rich in iron oxide and is called Unit 2. Thissample marks a transition to a new facies characterized by greysandymarls. This facies is overlaid by dark grey marls intersected atthe top by a centimetric bed of indurated marl with ferruginousconcretions. The units 1 and 2 are marine and belong to the Tellien

    Domain. The top of the section is formed by light grey marl,sometimes intercalated with yellowish to brownish rust, overlaidwith a sandstone bed with yellow limestone cement known as Unit3. This upper unit is terrestrial and belongs to the Numidian Flysch(Boukhalfa et al., 2009).

    3. Materials and methods

    In the field it was possible to select a complete section, whichwas accessible and presented the best outcrop. An initial scattersampling was performed during the first visit to identify the loca-tion of the boundaries, followed by a second more detailed sam-pling to further characterize them.

    The marly samples were washed in the laboratory. Each samplewas soaked in tap water for few days, adding diluted H2O2 for somevery compacted samples. These samples were then washedthrough a column of three interlocking sieves, with meshes250 mm, 150 mm and 63 mm. The washed residue was collected inPetri dishes and dried in a stove at a temperature of 50 �C.

    The residues were sorted and observed under a binocular mi-croscope in order to identify the foraminifera. The quantitative andtaxonomic studies were based on representative splits of >300specimens of the 63 and 150-mm fraction combined, obtained withan Otto microsplitter and the rest of the sample was scanned tolook for rare species. Relative abundance of common taxa wascalculated, together with faunal indices commonly used in ecologyand paleoenvironmental reconstruction. The most representativetaxawere photographed using the Scanning ElectronMicroscope atthe ETAP (Tunisian National Oil Company).

    The biostratigraphy of this section was previously studied andpublished by the present authors (Karoui-Yaakoub et al., 2017) withplanktic foraminifera biozonation based on Pearson et al. (2006).The last occurrence (LO) of the index taxon Globigerinatheka semi-involutawas used to recognize E14, the LO of Globigerinatheka indexto mark E15, the LO of Hantkenina alabamensis to locate the E16/O1boundary, and the LO of Pseudohastigerina naguewichiensis to markthe first biozone of the Rupelian (Fig. 2).

    Benthic fauna occupies numerous and diverse ecological niches.Indeed, it yields a considerable amount of information about theconditions of the bottom of the ocean and has played an importantrole over the years in interpreting these conditions. Furthermore,determining the micro-habitat of benthic foraminifera is funda-mental as it allows us to specify the ecological requirements of eachspecies. This work has used quantitative analysis based primarilyon the nature of foraminifera tests, whether calcitic, agglutinated orporcelaneous (Fontanier, 2003).

    4. Results

    In this work the association of planktic foraminifera in themiddle and upper Eocene sediments reflects a considerable num-ber of individuals (about 500 individuals), belonging to around 25species. This number of planktic foraminifera is relatively smallcompared to the number of species of benthic foraminifera (seebelow). Major turnovers of planktic foraminifera occur across the E/O boundary; the quantitative analysis revealed that planktic fora-minifera are very numerous but not very diversified (about 7 spe-cies). Furthermore, it showed low diversity of benthic foraminifera(about 15 species) and represented by a relatively small number ofindividuals (Fig. 2).

    The planktic foraminifera are present in all samples of themiddle Eocene to the lower Oligocene succession interval and showa variation of the assemblage composition and relative abundance.A faunal turnover occurred during the E/O transition interval andincludes major extinctions of some species such as the extinction of

  • Late LutetianEarly Clay

    Late LutetianReineche limestone

    PriabonianClay and marl

    OligoceneSandstone: Korbous

    Unit

    QuaternaryCrust and crusting

    Aquitanian-Burdigalian Haouaria unit

    Late Lutetian-

    1 Km

    Djeb

    el H

    ofra

    Djeb

    el e

    d Di

    s

    Cap Bon

    TunisGolf of Tunis

    Mediterraneansea

    Djeb

    el Ab

    d er

    rahm

    ane

    Reineche

    20 Km

    DamousMenzel Bou Zelfa

    section

    Jhaffsection

    21

    24

    14

    1418

    18

    13

    14 20

    2524

    21

    161919

    20

    22

    2219

    Reineche

    Djeb

    el AB

    D ER

    RAH

    MANE

    MEDITERRANEANSEA Tunisia

    N

    500 km

    Fig. 1. Geographical and geological location of the Menzel Bou Zelfa and Jhaff sections.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 147

    all species of the genus Hantkenina and three species of Turborotalia(T. cerroazulensis Cole, T. cocoaensis Cushman, T. cunialensis Tou-markine and Bolli). At the same time, species such as Pseudohasti-gerina micra Cole, P. naguewichiensis Myatliuk, Chilguembelinaototara Finlay, Streptochilus martini Pijpers, and Tenuitella prae-gemma Li dominate the assemblages.

    Above the E/O boundary, there is a gradual decrease in the in-fluence of pelagic realm signaled by a decreased number of plankticforaminifera and a micro-faunistic undiversified associationannounced by a low value of species richness, 10 to 15 species persample. According to Wade and Pearson (2008), a minor change intemperature can have an important effect on planktic foraminiferaas their niches are closely grouped together and depend on thestratification of the water column.

    Benthic foraminiferal species richness varies from 30 to 50species per sample, represented mainly by calcitic test species suchas Bolivinoides floridana Cushman, Brizalina antegressa Subbotina,Globocassidulina subglobosa Brady, Cibicidoides mundulus Brady,Parker and Jones, C. praemundulus Berggren and Miller, Oridorsalisumbonatus Reuss and Gyroidina girardana Reuss. Indeed, theextinction of only two species (Nuttallides truempyi Nuttall andAngulogerina muralis Terquem) was observed across the E/O tran-sition interval.

    The dominance of the benthic foraminifera especially with thecalcitic test, is recorded throughout the section (Fig. 3), such asB. floridana, Br. antegressa Subbotina, Gl. Subglobosa Brady, C. mun-dulus Brady, C. praemundulus Berggren and Miller, O. umbonatusReuss, G. girardana Reuss, C. eocaenus Gümbel, C. mexicanus Nuttall,and representative species of tri-serial tests groups such as Buli-mina jarvisi Cushman and Parker, Bu. macilenta Cushman andParker, Bu. jacksonensis Cushman, Bu. thanetensis Cushman andParker and Bu. secaensis Cushman and Stainforth.

    On the other hand, the agglutinated test forms are less abundant(around 10%) and are represented by the species Reticulo-phragmium amplectens Gzybowski, Valvulina peruviana Cushmanand Stainforth, Rhadbamina samunica Berry, Ammodiscus sp., Kar-rierella sp. The Miliolidae with porcelaneous tests are representedmainly by Spiroloculinidae and are very rare throughout thesection.

    5. Discussion

    As foraminifera constitute the major protists in many marineecosystems (Murray, 1991), we will discuss their role in thereconstruction of the paleoenvironment. Their potential for fossil-ization makes them good indicators of the physicochemical

  • Fig. 2. Planktic foraminiferal biostratigraphy and specific richness of foraminifera.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161148

    conditions of deposition environment where they were buried.Changes in relative abundances and diversity have been used toinfer changes in carbonate saturation state, oxygenation and foodsupply (Gooday, 2003).

    The calcitic test assemblages found are typical of bathyal andabyssal environments; generally, the Bolivinidae, Buliminidae,Uvigerinidae and Cibicidoidae genera require bathyal environ-ments (Holbourn et al., 2013). On the contrary, Gyroidinoidinaeindicates an abyssal domain. We also noticed the coexistence ofseveral species such as C. mexicanus Nuttall, Bu. Jarvisi Cushmanand Parker, C. grimsdalei Nuttall, indicators of a low to medianbathyal environment (Holbourn et al., 2013) (Fig. 3).

    Furthermore, we identified cosmopolitan species which thrivein deep sea basins such as Nuttallides umboniferus rarely found onthe Oligocene sediment, Epistominella exiguawhich was also rarelyfound on the Eocene and Oligocene sediment, and Cibicidoideswuellerstorfi which are distributed all along the section (Jorissenet al., 2007). However, below the E/O boundary we recorded theLO of the species Nuttallides truempyi which is proposed to reflectfluctuations in organic matter flux to the seafloor (meso-to eutro-phic) under oxygenated bottom-water conditions. Indeed, it is oneof the dominant lower bathyal-abyssal taxa with an age range ofLate Cretaceous (Maastrichtian) to latest Eocene, which was re-ported in Molina et al. (2006), Berggren and Miller (1989) andHolbourn et al. (2013). Angulogerina muralis, which refer to theEocene (Ortiz and Thomas, 2006; Molina et al., 2006) was also

    found in this section and we marked the LO close to the E/O whichwas also reported in the Fuente Caldera section in Spain (Molinaet al., 2006) (Fig. 3a).

    The assemblages of small benthic foraminifera in Menzel BouZelfa and Jhaff sections are very diverse. Species with calcitic testare significantly the most dominant and have a very high frequencyranging from 85.63 to 100%. This percentage reflects sedimentationabove the CCD. The quantitative study of benthic foraminiferaspecies immediately below the E/O boundary (Fig. 4) shows theabundance of bathyal forms, the most important among them be-ing Br. antegressa (around 8%) and B. floridana (around 6%). More-over, we cannot exclude the presence of some foraminifera withcalcitic test but typical of neritic environment such as Lagenidaeand Lenticulininae (around 0.1e0.7%). Their presence is interpretedas the result of erosion of the shallow levels and thus transportfrom the platform to the bathyal environment. On the other hand,we noticed the presence of some agglutinated forms mostly rep-resented by clavulinids, Ammodiscus, Karrierella, vulvulinids, andPlectina such as Cyclamina cancellata, Ammodiscus incertus andReticulophragmium amplectens, which coincide with Alano sectionNE Italy (Agnini et al., 2011). These forms show relatively smallpercentages (about 0.05%).

    Approaching the E/O boundary, the abundance of these agglu-tinated forms shows a slight increase, particularly of the speciesCyclammina cancellata, which shows a maximum value 0.68%(Table 1). This increase is negligible compared to percentages of

  • ZON

    E

    UN

    IT

    DE

    PTH

    ( m)

    LITH

    OLO

    GY

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    : H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    40

    2

    10

    20

    30

    50

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9

    J10J11J12J13

    si snendabanyr oci hp

    mA

    ill att unani

    mmat cel pori p

    S

    si snemar yb

    anil utt uG

    ar hcl upanil u

    maR

    mur opil uvr apnort si oesea

    mgyP M

    at al ucr ebutsi sponil uni gr a

    asomauqs

    anil uvaF

    l att unall e

    mot sollitS

    ili htr oft ni at s

    arir asodoN Si

    anili omg

    i unets

    snegnianegal or ecor

    P Pl

    all emot sor ue

    .f csnanr etl a

    Sp

    el poriat at ned

    anim

    mat c

    anayngi br oai nel osot n

    E Enot

    nel osai

    .f cgr a

    mat anisil ar u

    mani r egol ugn

    Ai yp

    meurtsedill att u

    N

    at aevl aanil ucol ori p

    S

    amot soli hc

    all ei r err aK

    i si vr ajani

    mil uB

    ir egi bU

    nebua

    anari ra

    at acl usanegaL

    elP

    dnorf ot cuav

    ai r al ucinahgi

    atr ucedair asodonospill

    E

    al ur ypair asodo

    N

    nohpiS

    i r asodoap

    ar egil umo

    ani r egi vut ceR

    xem

    anaci

    earP

    bobol gi

    mil un

    ni psa

    snecse

    gi vU

    anir eaci xe

    man

    iCb

    odi ciid

    obmu

    seefi nsur

    uvl aViln

    ur epa

    nai vd

    aapor csisn

    dnalG

    at agi vealanil u

    edi odi ci biC

    uneacoes

    s

    at neli cam

    animil u

    B

    ai r anozatl ucr eP

    i nahguav sol uni psani r egi v

    Ua anai r ebua

    ani r egi vU St

    i sneyawdi

    mall e

    mot sollis

    Pl

    sr ell euw

    anil unatifr o

    si snenoskcajani

    mil uB

    t neD

    il aan

    .f ccu

    Mranata

    ll emot sollit

    Ssbus

    aasoni p

    gol asyr hC

    emui no

    mut agnol

    asO

    air al ugnanaci xe

    m

    anar epi cani r egi v

    Uat airt s

    anegaLanil ucit neL

    at anr oni

    Fig. 3a. Stratigraphic distribution of benthic foraminifera species.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 149

    forms of hyaline tests that showed considerable ability to surviveand thrive during the limit. While the frequency of species withhyaline tests increased steadily up to the upper part of the O1 Zonereaching a high frequency of around 98.3%.

    This mixture of foraminifera, comprising 3 types of test, could beindicative of a decrease in sea level and an increase in erosion thatcaused the transport of certain non-native species from the plat-form to the bathyal domain. This decrease could be linked to thecooling and global glaciation characterizing the E-O transition(Molina et al., 2006). Approaches based onmicro-organisms for theestimation of paleo-depth have been developed by determining theindex of oceanity which normally increases with depth (Bellieret al., 2010). The density of planktic foraminifera is therefore

    maximal in open marine environments. Moreover, we have alsoused some species of benthic foraminifera considered to be indi-cator species for paleobathymetry (Nyong and Olsson, 1984; VanMorkhoven et al., 1986; Culver, 2003; Alegret and Thomas, 2004).

    The index of oceanity shows values close to 80% (Fig. 5) at thebase of the series, decreasing to 40% at sample Jhaff 10. Indeed, theindex marks some fluctuations in the last 30m (from sample MBZ26). The percentages of around 80% recorded at the base of theseries indicate sedimentation in nearby bathymetries 200m andmore precisely the upper bathyal domain. This is confirmed by thepresence of an association of planktic foraminifera typical of thesurface dwellings and intermediate environments (Molina et al.,2006) such as T. cunialensis, T. cocoaensis, Cr. inflata, H.

  • ZON

    E

    UN

    IT

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    :H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9J10J11J12J13

    ssi snenazal a

    anil amon

    Asi

    mr ofi ssi pl asyr h

    Ci nogomul

    mut at soci gno

    llitS

    l apall e

    mot soci necoea

    si snenazal aani vil o

    B Banadi r olf

    sedi oi vil oasser get na

    anil azirB

    ani vil oB

    . ps

    udi ssaC

    ilnbus

    aasobol g

    i vUg

    ani r eapac

    naya

    al cyC

    mani

    mat all ecnac

    at ar bal gsucsi do

    mmA

    uvalC

    lnie

    sedi osnerr ucx

    ni regi vU

    am

    anta

    si sne

    biC

    di odi cisut ari psbus

    se

    ur yP

    lnia

    acumniata

    anit celP

    unill att

    eLat artl ucbus

    anil ucit n

    i ci biC

    dm

    sedi oe

    sunaci xaemgi p

    ani r egi vU

    esnenavahnoi no

    N

    eD

    anil at n.f c

    epoocnersi s

    dom

    mA

    sutr ecnisucsi

    animabal

    Aeya

    wdim

    si sn

    Bumilni

    nemapxut

    asi s

    ali hpom

    maai a

    waznaH

    nell uP

    iab

    sedi oll ugaL

    ane.f c

    oclA

    i ko

    i r egi vut ceR

    nm

    ae

    anaci x

    Si r anecar a

    kcnehcsa

    i

    ni di or yG

    ga

    anadr ari msedi odi ci biC

    uul udns

    hpol ucit eR

    garmuim

    el pma

    net cns

    augi xeall eni

    mot si pE

    biC

    idi odi c

    air osr ucaer pse

    odi ci biC

    numaer p

    sedisul ud

    hR

    bhdaa

    masani

    mma

    aci n

    neLanil ucit

    sp.

    oR

    psul ublummeeari ya

    woll agani r egi v

    U

    amili ccar g

    ai r asodonospillE

    si sneacesani

    mil uB

    at acsi gnolair asodo

    N

    at ai rt sbusanegaL

    il ucit neLl uc

    ant arta

    mul ur epsasedi o

    mot sot soL

    aneacoeanil at ne

    D

    ani oknesr uF2. ps

    odi rO

    bobmu

    sil asrsut a

    ai nell uP

    uqeuqniloab

    i r err aK

    l ei ydar b

    al

    anil uni gr aM

    . ps

    mut ani r acsedi o

    mgar hpol paH

    Calcitic

    Aglutinated

    Porcelaneous

    Fig. 3b. Stratigraphic distribution of benthic foraminifera species.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161150

    alabamensis, S. linaperta, S. corpulenta, S. eocaena that showed arelative abundance at the base of this series (Fig. 5). However, itshould be noted that values below 80% indicating low bathymetriesare probably related to a fall in the number of planktic foraminiferaand therefore the state of preservation of these microorganisms.This reflects a disturbance of stratification of the water columncaused by the decline in sea level. Moreover, the upheaval in thebehavior of foraminifera is essentially due to the disappearance ofthe latest keeled forms and therefore a fall in the index of oceanityat the E/O boundary. However, this change is followed by thedevelopment of typical forms of deep dwellings such as

    D. pseudovenezuelana, D. tripartita, C. unicavus, Gl. suteri. At thesame time, we note that the assemblages of benthic foraminiferaare dominated by the calcitic test forms of the upper bathyaldomain such as B. floridana, Br. antegressa, Gl. subglobosa, C. mun-dulus, O. umbonatus.

    The abundance of benthic forms is continuous throughout theseries, causing the decrease of the index of oceanity, showing theeustatic variation during the late Eocene and the base of Oligocene.The relative fall of this index at the E/O boundary could indicate adecrease in sea level, from the decline of the sea spawned duringglobal cooling.

  • ZON

    E

    UN

    IT

    DE

    PTH

    (m)

    LITH

    OLO

    GY

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    :H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    40

    2

    10

    20

    30

    50

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9

    J10J11J12J13

    atneli cam

    animil u

    B

    ar hcl upanil u

    maR

    adi cul r epanegaL

    si sneno skcajani

    mil uB

    anaci xem

    air al ugnasO

    si unetanili o

    mgiS

    si snenebabbusanil a

    monA

    mut agnol emui nogol as yr h

    C

    at al ucr ebr ut .f f asi sponil uni gr a

    M

    aneacoeanil at ne

    D

    mut at soci gnolmui nogol as yr h

    C

    at ai rt sanegaL

    ill at t unal l e

    mot sollitS

    asoni psbusall e

    mot sollitS

    at anro nianil uci t neL

    anai re buaani regi v

    U

    si sneyawdi

    mal l e

    mot sollitS

    i frot sr ell euw

    ani l unalP

    esnenavahnoi no

    N

    si snenaz al aanil a

    monA

    i htr oft ni atsai r asodo

    N

    asomauqs

    anil uva F

    anar epi cani r egi v

    U

    a cin ecoela pall e

    mot solli tS

    anadi r olfsed oi vil o

    B

    asser get naani l azi r

    B

    aemgi p

    ani r egi vU

    11.01.0221111.01.01.01.05.0 0.5 0.5 0.520.2 0.2 0.5 0.5 0.50.410.5 2 5

    Fig. 4a. Relative abundances of the most common benthic foraminifera species.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 151

    Foraminifera have a rapid adaptation to environmental changes,a potential for fossilization and a strong correlation with the lat-itudinal distributions of surface temperatures, and the use of ap-proaches based on the morphology of their test could provide anestimation of the paleotemperature and paleobathymetry (Murray,1991). The change in the water column structure is mainly due tothe variation of the thermocline, which is defined as the depthwhere we find the highest temperature transition. Even in thegeneral case, the warm surface waters or deep thermocline favorsthe establishment of shallow dwellings with warm waters. How-ever, the reduction in depth of the thermocline favors deep nichesand forms that thrive in cold waters (Wade and Pearson, 2008).

    In the section of Menzel Bou Zelfa and Jhaff, planktic forami-nifera present a well-preserved test in all samples. At the base ofthe section, precisely in the E14, E15 biozones of Gl. semiinvolutaand Gl. index, we notice a major faunal change in the history of theevolution of planktic foraminifera, which involves paleoenvir-onmental implications in determining the Bartonian/Priabonianboundary (Fig. 5). These changes are manifested by the absence ofkeeled forms such as Morozovelloides and Acarinina that areabundant in low and middle latitudes (Agnini et al., 2011). In fact,these forms normally record the low values of d18O and the greatest

    values of d13C and are typical of warm waters (Pearson et al., 1993,2001; Norris, 1996). The absence of these typical forms of surfacewater, with no disruption of those living in deeper waters, generallyreflects a drop in temperature or more precisely the cooling ofsurface waters.

    According to Wade (2004), the extinction of these keeled formsmay result from the destruction of their dwellings, due initially tosudden cooling of the thermocline. In addition, the drop in tem-perature is accompanied mainly by a decrease in the depth of thethermocline. These forms are therefore disturbed by the installa-tion of a low temperature zone, meaning an inability to adapt tothese conditions caused their major extinction. This structuralchange in the water column may also have impacts on the repro-ductive side of foraminifera, leading to a gradually decreasing fre-quency. This change was followed by the invasion of the mixedlevel by the genera Hantkenina, Turborotalia and Subbotina at thereduced level of the thermocline, and thus the change in the depthof their niches (Wade, 2004).

    This extinction can be associated with several factors includingthe main cause, which is the inability of acarininids to overcomethis temperature decrease. A small increase in the number of keeledforms on the upper Eocene at samples (J6, J7, J8, J9, MBZ 26, MBZ27,

  • ZON

    E

    UN

    IT

    DE

    PTH

    (m)

    LITH

    OLO

    GY

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    :H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    40

    2

    10

    20

    30

    50

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9

    J10J11J12J13

    0.50.5 0.50.2 0.2 0.1 0.5 0.50.05 0.5 0.2 0.21 0.1 5 0.5 0.10.5 1 0.5 0.5 0.5 0.5 0.5 0.1 1

    snanr etl af canall e

    mot sor uelP

    anaci x em

    ani r egi vut ceR

    . psani vil o

    B

    anayapacani r egi v

    U

    anadr ari gani di ory

    G

    2psani oknesr uF

    ear em

    mul pai r asodonospill

    E

    snanretl aanegaL

    at at nedani

    mmat cel pori p

    S

    abol euqni uqai nell u

    P

    sutr ecnisucsi do

    mmA

    iy awoll ag

    anir egi vU

    at ani gr am.f c

    ai nel osot nE

    sedi oll ubai nell u

    P

    asobolgbusanil udi ssa

    C

    i si vr ajani

    mil uB

    at all ecnacani

    mmal cy

    C

    si snemapxut

    a nimil u

    B

    sunaci xem

    sedi o di ci biC

    sut anobmu

    sil asr odi rO

    anayapacani r egi v

    U

    anadr ari gani di or y

    G

    ill att unani

    mmatcel pori p

    S

    aci namas

    animabdah

    R

    il l att unani t cel

    P

    mut anir acs edi o

    mgar hpol paH

    Fig. 4b. Relative abundances of the most common benthic foraminifera species.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161152

    MBZ28, MBZ 29) could be explained by a particular abundance ofthe species: T. cunialensis, T. cocoaensis T. cerroazulensis, H. primitiva,H. compressa.

    The top of the Eocene, precisely the top of the E16 zone, ischaracterized by the last appearance of five species of the genusHantkenina, typical of surface dwellings; H. compressa, H. primitiva,H. nanggulanensis, H. alabamensis and Cribrohantkenina lazzarii, isassociated with the extinction of T. cerroazulensis T. cunialensis andT. cocoaensis. According to Coxall and Pearson (2007), these speciesrequire the establishment of a warm climate with considerableoxygen levels, which explains their development during theMiddleto Upper Eocene. In addition, Molina et al. (2006) pointed out thatthese species would be linked to a lower rate of d18O and a high rateof d13C, belonging to the group of low and middle latitudesreflecting a mixed level of warm water. Thus, the species whichsurvived the beginning of the cooling would subsequently beaffected by this event.

    From the boundary, this extinction of tropical and subtropicalforms is followed by an increase in the number of species belongingto the families Globigerinidae, Globoquadrinidae and the speciesT. ampliapertura. However, at the base of the Oligocene the speciesS. corpulenta and S. eocaena and the Globoquadrinidae

    Dentoglobigerina galavisi, Dentoglobigerina pseudovenezuelanaconstantly increase in number. According to Wade and Pearson(2008), these species show high values of d18O which reflectdwellings belonging to a deep cold thermocline. It should be notedthat Catapsydrax unicavus which appears on the lower Eocene isone of the species that has shown a considerable abundance afterthe E/O boundary and is considered a good indicator of deep, coldenvironments (sub thermocline) (Pearson et al., 2001). Based onthese data, some species are indicators of cold deep water. Thesespecies have survived despite the crisis by adapting to the newwayof life; the others were not able to survive and underwent a majorextinction.

    However, we noticed the existence of a third group of forami-nifera that was affected by this crisis but was able to adapt to theseconditions, these are the Pseudohastigerina group. According toWade and Pearson (2008), the species Ps. naguewichiensis is asso-ciated with values depleted in d18O, indicating that it has beencalcified in the mixed levels. Indeed we notice the existence of thisspecies in the samples above the E/O boundary, but in the fractionsless than 150 mm, meaning it suffered an actual reduction in size.Furthermore, the species Ps. micra has been able also adapt to theseconditions using a different strategy. Indeed, they are smaller than

  • Table

    1Pe

    rcen

    tage

    sof

    smallb

    enthic

    foraminifera.

    Uvigerina

    pigm

    eaBu

    limina

    macile

    nta

    Ram

    ulina

    pulchra

    Lagena

    perluc

    ida

    Bulim

    ina

    jacksone

    nsis

    Osang

    ularia

    mexican

    aSigm

    oilin

    atenu

    isAno

    malina

    subb

    aden

    ensis

    Chrysalogo

    nium

    elon

    gatum

    Marginu

    linop

    sisaff.

    tube

    rculata

    Den

    talin

    aeo

    caen

    aLagena

    striata

    Spirop

    lectam

    mina

    nuttalli

    Stillostomella

    nuttalli

    Stillostomella

    subspino

    sa

    MBZ1

    00

    00

    00

    00

    00

    00

    00

    0MBZ2

    00

    00

    00

    00

    00

    00

    00

    0MBZ3

    00

    00

    00

    00

    00

    00

    00

    0MBZ4

    00

    00

    00

    00

    00

    00

    00

    0MBZ5

    00

    00

    00

    00

    00

    00

    00

    0MBZ6

    00

    00

    00

    00

    00

    00

    00

    0MBZ7

    00

    00

    00

    00

    00

    00

    00

    0MBZ8

    00

    00

    00

    00

    00

    00

    00

    0MBZ9

    00

    00

    00

    00

    00

    00

    00

    0MBZ1

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ1

    10

    0,95

    00

    1,71

    00

    00

    00

    00

    01,14

    MBZ1

    20

    0,84

    00

    0,25

    00,08

    00

    00

    00

    0,08

    1,09

    MBZ1

    30

    0,00

    00

    00,35

    0,53

    00

    00

    00

    00,35

    MBZ1

    40

    1,58

    00

    0,39

    01,18

    01,18

    00

    00

    00,39

    MBZ1

    50

    0,00

    0,11

    00,11

    0,11

    0,11

    00,22

    00

    00

    01,02

    MBZ1

    60

    0,00

    00

    00

    00

    00

    00

    00,48

    2,42

    MBZ1

    70

    0,84

    00

    0,55

    00,27

    0,27

    0,83

    01,4

    0,55

    00,27

    2,23

    MBZ1

    80

    0,34

    00

    2,72

    020

    410

    1,02

    00

    00

    00,34

    MBZ1

    90

    0,18

    00

    0,73

    00,37

    00

    00,74

    01,1

    0,92

    1,29

    MBZ2

    10

    0,77

    00

    1,27

    01,27

    00

    00

    01,02

    1,53

    4,34

    MBZ2

    20

    0,64

    00

    00

    0,64

    00,32

    00,32

    00,64

    1,92

    4,5

    MBZ2

    30

    0,00

    00

    1,93

    00,32

    00

    00

    00

    07,09

    MBZ2

    40

    0,00

    00

    0,77

    01,16

    00,38

    01,56

    00

    08,17

    MBZ2

    50

    0,00

    00

    1,53

    02,15

    00,61

    00

    00

    40

    Jhaff13

    00,31

    00

    00

    0,18

    00

    00

    00

    00,81

    Jhaff12

    00,45

    00

    0,19

    00,64

    00

    0,06

    00,13

    00

    1,23

    Jhaff10

    00,11

    00

    0,44

    00,11

    00

    00

    00

    02,78

    Jhaff9

    01,57

    00

    00

    0,31

    00

    0,09

    00,09

    00

    2,02

    Jhaff8

    00,83

    00

    0,05

    00,16

    00

    00

    0,22

    0,05

    00,88

    Jhaff7

    01,87

    00

    0,62

    00,67

    00

    00

    0,41

    1,19

    02,08

    Jhaff6

    00,00

    00

    1,19

    00,25

    00,15

    0,05

    00

    0,25

    00

    MBZ2

    60

    0,27

    0,27

    0,82

    0,41

    01,09

    00

    0,13

    00,27

    00

    1,09

    MBZ2

    70

    0,64

    00

    0,85

    0,85

    00

    0,21

    00

    00

    00

    MBZ2

    80

    0,00

    0,17

    01,24

    0,35

    0,17

    00,35

    00,36

    00

    00

    MBZ2

    90,3

    0,30

    00

    1,36

    00

    00,45

    00

    00

    00

    MBZ3

    01,61

    0,32

    0,32

    0,32

    1,29

    0,32

    0,32

    1,29

    0,96

    0,32

    0,65

    0,32

    0,64

    0,96

    3,87

    Lenticulina

    inorna

    taUvigerina

    aube

    rian

    aStillostomella

    midway

    ensis

    Plan

    ulina

    wue

    llerstorfi

    Non

    ion

    hava

    nense

    Ano

    malina

    alazan

    ensis

    Nod

    osaria

    stainforthi

    Favu

    lina

    squa

    mosa

    Uvigerina

    cipe

    rana

    Stillostomella

    paleocen

    ica

    Brizalina

    antegressa

    Boliv

    ioides

    floridan

    aPleu

    rostom

    ellana

    cf.a

    lterna

    nsRectuvigerina

    mexican

    aFu

    rsen

    koina

    sp2

    Ellip

    sono

    dosaria

    plum

    merae

    Boliv

    ina

    spSp

    irop

    lectam

    mina

    dentata

    MBZ1

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ2

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ3

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ4

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ5

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ6

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ7

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ8

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ9

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ1

    00

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ1

    10

    0,38

    10,27

    3,04

    00

    00

    01,52

    10,5

    2,47

    00

    00,38

    0,76

    0MBZ1

    20,25

    02,10

    0,84

    00

    0,08

    00

    0,25

    7,66

    2,35

    00

    00,42

    0,76

    0,08

    MBZ1

    30

    00

    0,53

    00

    00

    01,43

    13,4

    1,61

    0,18

    00

    0,71

    0,36

    0MBZ1

    40

    0,39

    3,95

    5,13

    00

    0,4

    0,39

    00

    8,7

    00

    0,79

    00

    00

    MBZ1

    50

    00

    0,56

    00

    0,23

    00,56

    1,70

    9,9

    1,59

    0,11

    00

    0,68

    0,68

    0MBZ1

    62,91

    00

    00

    00

    00

    0,48

    5,34

    00

    00

    00

    0MBZ1

    70,84

    0,27

    00

    00

    1,12

    00

    1,11

    5,87

    00

    0,28

    00

    00

    MBZ1

    80

    05,44

    2,72

    00

    0,68

    0,34

    00,34

    5,78

    1,70

    00

    0,34

    00

    0MBZ1

    90,74

    00

    00

    00,37

    00,73

    0,73

    4,07

    2,03

    0,18

    00

    00,37

    0MBZ2

    11,53

    00

    0,25

    00

    00

    00

    3,84

    00

    00

    00,26

    0MBZ2

    20,64

    00

    00

    00

    00,64

    04,5

    00

    00

    02,57

    0MBZ2

    30

    00

    00

    00

    00

    08,06

    00

    00

    00,32

    0MBZ2

    40

    0,38

    0,38

    0,38

    00

    00

    3,11

    07

    00

    00

    01,17

    0

    (con

    tinu

    edon

    next

    page)

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 153

  • Table

    1(con

    tinu

    ed)

    Lenticulina

    inorna

    taUvigerina

    aube

    rian

    aStillostomella

    midway

    ensis

    Plan

    ulina

    wue

    llerstorfi

    Non

    ion

    hava

    nense

    Ano

    malina

    alazan

    ensis

    Nod

    osaria

    stainforthi

    Favu

    lina

    squa

    mosa

    Uvigerina

    cipe

    rana

    Stillostomella

    paleocen

    ica

    Brizalina

    antegressa

    Boliv

    ioides

    floridan

    aPleu

    rostom

    ellana

    cf.a

    lterna

    nsRectuvigerina

    mexican

    aFu

    rsen

    koina

    sp2

    Ellip

    sono

    dosaria

    plum

    merae

    Boliv

    ina

    spSp

    irop

    lectam

    mina

    dentata

    MBZ2

    50,92

    2,46

    00,61

    00

    0,31

    00

    0,61

    11,4

    00

    00

    00

    0Jhaff13

    0,13

    00,06

    0,25

    00

    0,13

    00

    0,56

    12,5

    4,32

    00

    00

    00

    Jhaff12

    0,13

    00

    0,9

    00

    00

    0,06

    0,06

    19,6

    5,45

    00,26

    00

    00

    Jhaff10

    0,11

    00

    1,33

    00

    00

    01,11

    226,68

    2,12

    00

    00

    0Jhaff9

    0,81

    00

    0,49

    00

    00

    0,53

    08,67

    7,00

    00

    00

    00

    Jhaff8

    0,61

    00

    0,05

    00

    00

    00,27

    5,61

    4,73

    0,44

    0,06

    00

    00

    Jhaff7

    1,35

    0,05

    00,41

    00

    0,05

    00

    0,2

    9,37

    4,94

    00,36

    0,15

    00

    0Jhaff6

    0,41

    0,2

    00

    00

    00

    0,10

    0,98

    4,67

    1,86

    0,1

    00

    00

    0MBZ2

    61,37

    00,41

    2,32

    00

    00,13

    00,13

    6,44

    0,41

    00,27

    00

    0,55

    0,27

    MBZ2

    71,72

    00

    1,07

    01,07

    00

    00

    3,86

    0,64

    00

    0,42

    0,21

    00

    MBZ2

    82,66

    3,19

    0,35

    0,35

    00,36

    0,36

    00,53

    0,35

    6,93

    3,55

    00,71

    1,24

    00,36

    0,36

    MBZ2

    90,15

    0,45

    00

    0,45

    1,52

    00

    2,42

    07,59

    1,82

    1,06

    00,45

    00

    0MBZ3

    01,61

    0,32

    0,96

    0,32

    0,32

    0,65

    0,32

    0,32

    0,64

    0,32

    00

    00

    00

    00

    Lagena

    alternan

    sPu

    llenia

    quique

    loba

    Ammod

    iscu

    sincertus

    Uvigerina

    gallo

    way

    iPu

    llenia

    bullo

    ides

    Cassidulina

    subg

    lobo

    saBu

    limina

    jarvisi

    Cyclam

    mina

    canc

    ellata

    Bulim

    ina

    tuxp

    amen

    sis

    Cibicido

    ides

    mexican

    usRha

    dbam

    mina

    saman

    ica

    Orido

    rsalis

    umbo

    natus

    Entosoleniacf.

    margina

    taPlectina

    nuttali

    Uvigerina

    capa

    yana

    Gyroidina

    girardan

    aHap

    loph

    ragm

    oide

    scarina

    tum

    MBZ1

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ2

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ3

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ4

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ5

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ6

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ7

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ8

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ9

    00

    00

    00

    00

    00

    00

    00

    00

    0MBZ1

    00

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ1

    10

    00

    00

    6,46

    00,19

    00,19

    00,95

    00,19

    0,57

    0,57

    0MBZ1

    20

    00

    00,17

    4,88

    00,25

    0,08

    0,75

    00,16

    00

    0,33

    0,58

    0MBZ1

    30

    0,36

    00

    00

    01,07

    0,17

    1,43

    00,35

    0,71

    00,71

    1,25

    0MBZ1

    40

    00

    00

    00

    1,58

    03,55

    1,97

    1,18

    0,39

    0,39

    0,79

    1,97

    0MBZ1

    50

    0,23

    00

    05,23

    0,11

    0,22

    0,11

    0,11

    00

    00

    00,45

    0MBZ1

    60

    1,94

    0,49

    4,36

    00

    00

    00,48

    00

    00

    00,48

    0MBZ1

    70

    0,28

    00

    07,54

    01,11

    0,27

    0,27

    0,27

    00

    00,83

    00

    MBZ1

    80

    0,34

    00

    04,42

    0,34

    2,04

    01,7

    2,72

    00

    00

    1,02

    0MBZ1

    90

    0,18

    00

    05,54

    0,55

    0,37

    0,18

    0,18

    00

    00

    00,36

    0MBZ2

    10

    00

    00

    8,69

    0,25

    0,51

    20

    0,76

    00

    00

    0,25

    1,27

    0MBZ2

    20

    00

    00

    17,0

    00,32

    0,32

    00

    00

    00

    00

    MBZ2

    30

    00

    00

    9,03

    00,32

    00

    00

    00

    01,61

    0MBZ2

    40

    00

    0,77

    00

    0,38

    0,38

    00

    00

    00

    0,77

    0,38

    0MBZ2

    50

    00

    00

    00

    0,61

    00

    00

    00

    02,15

    0,31

    Jhaff13

    00

    00

    08,46

    00

    0,18

    00

    00,18

    00

    00

    Jhaff12

    00

    00

    05,19

    00

    0,32

    00

    0,06

    00

    00,06

    0Jhaff10

    00,22

    00

    010

    ,13

    00

    01,33

    00,55

    00

    00,22

    0Jhaff9

    00,22

    0,13

    00,22

    6,73

    0,49

    0,09

    00,4

    0,13

    00,35

    00

    0,44

    90

    Jhaff8

    00

    00

    04,89

    0,27

    0,05

    00

    00

    0,16

    00,16

    0,27

    0Jhaff7

    00,1

    0,21

    00

    2,34

    0,57

    0,05

    0,46

    00

    0,41

    0,05

    00

    0,57

    0Jhaff6

    00,73

    0,1

    00

    4,76

    0,25

    0,05

    00

    00,1

    0,31

    00,36

    0,62

    0,16

    MBZ2

    60,14

    0,14

    0,14

    00,27

    02,05

    0,13

    00

    00

    00

    0,54

    0,54

    0MBZ2

    70,21

    1,07

    0,43

    0,64

    0,43

    0,64

    00

    00

    00

    00

    1,07

    00

    MBZ2

    80,18

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ2

    90

    00

    00

    00

    00

    00

    00

    00

    00

    MBZ3

    00

    00

    00

    00

    00

    00

    00

    00

    00

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161154

  • ZON

    E

    UN

    IT

    DE

    PTH

    (m)

    LITH

    OLO

    GY

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    :H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    40

    2

    10

    20

    30

    50

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9

    J10J11J12J13

    Calcareous test

    Porcelaneous test

    Agglutinated test

    500 100 150 500 1000 1500

    I= P/P+B

    I< 80%

    - +

    4020 60 80 10000

    TEST NATURE TESTMORPHOLOGYOCEANITY

    INDEX Neritic Bathyal Sea level

    Inner Outer Upper Lower

    30 100 200 600 20001000

    Globular formKeeled form

    Fig. 5. Relative abundance of muricate and globular taxa, calcareous, agglutinated and porcelaneous taxa and the oceanity index.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 155

  • ZON

    E

    UN

    IT

    DE

    PTH

    (m)

    LITH

    OLO

    GY

    EN

    EC

    OGIL

    OE

    NE

    CO

    E?.

    GILO

    ETALYL

    RA

    ER

    UP

    ELI

    AN

    CH

    ATTI

    AN

    ?P

    RIA

    BO

    NIA

    NLA

    TE

    E16

    :H

    . ala

    bam

    ensi

    sO

    1: P

    seud

    ohas

    tiger

    ina

    nagu

    ewic

    hien

    sis

    E15

    : G

    . ind

    exO

    2 ?

    E14: G.semiin.

    U3

    U2

    U1

    HC

    OP

    EE

    GA

    ELP

    MA

    S

    40

    2

    10

    20

    30

    50

    26

    252423

    30

    29

    28

    27

    19

    17

    14

    1110

    6

    1

    J6J7J8J9

    J10J11J12J13

    20 40 60 80 10 50 100

    % Unfaunal

    5 10 15 20 20 40 60 80 20 40 60 80 100

    58.9 %

    41.5 %

    49.2 %

    l anuafi pE%

    % Benthicforaminifera

    % Epifaunal% Infaunal

    % Buliminids % Bolivinids % Bi-Triserial

    Fig. 6. Relative abundance of infaunal and epifaunal morphogroups.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161156

  • C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 157

    150 mm and are considered Pseudohastigerina cf.micra (see Plate 1).In conclusion, we can note a remarkable dominance of globular

    forms during the late Eocene to the Oligocene, adapting to the coldclimate (Fig. 6). This can be explained by the instability of theenvironment in the tropical zones causedmainly by the decrease intemperature and thus the paleoecological changes of the forami-niferal habitat. These changes would likely be in conjunction withthe predominance of glaciation in the high latitudes and a changein the circulation of deep waters (Wade and Pearson, 2008).

    Due to their lifestyle, their ubiquity and richness in marine en-vironments as well as their potential fossilization, benthic forami-nifera are good markers of paleo-depth due to their ability torapidly respond to environmental parameters. Based on the resultsobtained, it is noted that the benthic foraminifera assemblagesreflect the variations in their relative abundances along the section,reacting to the cooling which starts at the upper Eocene. Below theboundary, there is a dominance of infaunal species characterized by

    Plate 1. 1e3: Globigerinatheka semiinvoluta KEIJZER. Zone E14. Sample MBZ30. 4e5: GlobigSample MBZ29. Zone E15. 7: Hantkenina alabamensis CUSHMAN. Sample MBZ 27. Zone E1lazzarii. Sample Jhaff 8. Zone E16. 10: Pseudohastigerina micra COLE. Sample MBZ 12. ZonStreptochilus martini PIJPERS. Sample MBZ 27. Zone E16.

    percentage around 80%, due particularly to the high frequency ofBuliminids and Bolivinids. Their high abundance could be related toa significant transfer of the organic matter to the bottom of the seaas they proliferate in these environments (Molina et al., 2006;Alegret et al., 2008; Fenero et al., 2012) (see Plate 2).

    As we approach to the E/O boundary, we notice that the di-versity of the assemblages decline, reaching the lowest values. Thisdecrease is partly due to a decline in relative abundance of recti-linear species with complex apertures (Pleurostomella, Bulimini-dae, etc.) (Thomas and Via, 2007; Bordiga et al., 2015). We noticedalso a temporary decrease in abundance of buliminids reaching1.03%, also reported by Miller et al. (1985), Thomas (1992), andCoccioni and Galeotti (2003) in the Massignano section.

    The presence of infauna increases after the boundary, reaching amaximum value of about 89%. This abundance of infauna is due tothe proliferation of the Bi and Tri-serial forms (Fig. 6). Therefore, weinterpret a high relative abundance of the infaunal, triserial

    erinatheka index FINLAY. Sample MBZ29. Zone E15. 6: Globigerinatheka index FINLAY.6. 8: Cribrohantkenina inflata HOWE. Sample MBZ 27. Zone E16. 9: Cribrohantkeninae O1. 11: Pseudohastigerina naguewichiensis MYATLIUK. Sample MBZ 12. Zone O1. 12:

  • Plate 2. 1e2: Cibicidoides mexicanus NUTTALL. Sample MBZ15. Zone O1. 3:Pseudoglandulina manifesta REUSS. Sample MBZ29. Zone E15. 4: Gyroidina girardana REUSS. SampleMBZ29. Zone E15. 5: Lenticulina inornata D'ORBIGNY. Sample J12. Zone O1. 6: Cyclammina cancellata BRADY. Sample MBZ14. Zone O1. 7: Globocassidulina subglobosa BRADY. SampleMBZ16. Zone O1. 8: Planulina wuellerstorfi SCHWAGER. Sample J12. Zone O1. 9: Reticulophragmium amplectens GRZYBOWSKI. Sample MBZ12. Zone O1. 10: Pullenia quinquelobaREUSS. Sample MBZ28. Zone E15. 11e12: Oridorsalis umbonatus REUSS Cole. Sample J12. Zone O1. 13: Favulina squamosa MONTAGU. Sample MBZ30. Zone E14. 14: Plectina nuttalliCUSHMAN & STAINFORTH. Sample MBZ11. Zone O1. 15: Plectina nuttalli CUSHMAN & STAINFORTH. Sample MBZ11. Zone O1. 16: Cassidulina caudriae CUSHMAN & STAINFORTH.Sample MBZ13. Zone O1. 17: Sigmoilina tenuis CZJZEK. Sample J7. Zone E16. 18: Clavulinoides eucarinatus CUSHMAN & BERMUDEZ. Sample MBZ17. Zone O1. 19: Coryphostomamidwayensis CUSHMAN. Sample MBZ22. Zone O1. 20: Bulimina macilenta CUSHMAN & PARKER. Sample J12. Zone O1. 21: Bulimina secaensis CUSHMAN & STAINFORTH. SampleMBZ27. Zone E15. 22: Stilostomella subspinosa CUSHMAN. Sample MBZ22. Zone O1. 23: Stilostomella paleocenica CUSHMAN & TODD. Sample MBZ19. Zone O1. 24: Brizalina antegressaSUBBOTINA. Sample MBZ24. Zone O1. 25: Entosolenia flintiana CUSHMAN. Sample J8. Zone E16.

    C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161158

  • C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161 159

    buliminids as indicative of a high food supply (Gooday, 2003;Bordiga et al., 2015). They are represented mainly by small sizeforms and smooth test or lightly ornamented by longitudinalcostae, which generally explains a significant transfer of the potentsupply to the bottom of the sea. Indeed, two peaks (around 50%) ofBolivinidae are recorded during the upper Eocene and at the E/Oboundary. These peaks in fact correspond to an increase in thepercentage of the species Br. antegressa and B. floridana, which arerepresentative of bathyal domain. We suggest that this remarkableincrease in the percentage of bolivinids is the response of benthicforaminifera to a local increase in the flux of organic matter to thesea floor. In parallel with the dominance of the infaunal grouprecorded throughout the section, we notice the presence of someepifaunal species also characteristic of bathyal domain such asC. eocaenus, C. mexicanus, Planulina wuellerstorfi and Alabaminadissonata.

    This high influence of infaunal species typical of bathyal do-mains, markers of the environments with minimum oxygen and animportant flow of organic matter (Gooday, 2003) such as Bu.macilenta, Bu. jacksonensis, Bu. jarvisi, Br. antegressa, B. floridana, U.spinulosa and Glo. subglobosa associated with a small percentage ofepifaunal foraminifera (about 20%), undoubtedly indicates abathyal environment with eutrophic conditions.

    The assemblages of the benthic foraminifera found are the resultof an accumulation of autochthonous and allochthonous forms, thelatter being typical of neritic domains towards the deeper levelssuch L. inornata, La. sulcata, Si. tenuis, as well as the distribution ofthe organic substances in the bathyal zone. This mixture of formscould be related to the decrease in sea level at the beginning of theOi1 glaciation, facilitating the transport of this shallow species to-wards deeper environments. The retreat of the sea is also accom-panied by an increase in detrital elements observed from thesample MBZ 12.

    Small benthic foraminifera do not show an extinction event atthe E/O boundary, indicating that the benthic environment was notsignificantly affected. The extinction of N. truempyi is similarly notrecorded up to the boundary, although it was considered a markerfor the E/O boundary (Molina et al., 2006), possibly because theenvironment was not yet enough deep for this species to live in thesection studied.

    In the basal Oligocene O1 Zone, the small benthic foraminiferashows an apparently gradual pattern of extinction, which morelikely could be a pattern of local disappearances caused by thedecrease in temperature and depth. This patternwas not previouslyreported (Bolli et al., 1994; among others), although Hayward et al.(2010) suggested that it could be a benthic faunal turnover after therapid E-O cooling event. The maximum glacial conditions occurredabout 200 k.y. after the E/O boundary (Pearson et al., 2008).Consequently, this pattern of extinctions or disappearances couldbe caused by the Oi1 glaciation.

    6. Conclusions

    The detailed micropaleontological study of the samples of theMenzel Bou Zelfa and Jhaff section allowed us to establish differentcharacteristics of the planktic and benthic associations of forami-nifera, which meant we could reconstruct the paleoenvironmentand highlight the global and regional eustatic changes.

    The exploitation of all the micropaleontological data for plankticforaminifera led us to establish a regional scale of biozonationwhich we used to highlight the biological events recorded in thedeposits of the E-O transition in accordance with the differentialbehavior of planktic and benthic foraminifera. In the biostrati-graphic paper, wewere able to recognize in the of Menzel Bou Zelfaand Jhaff section the following zones: E14. Globigerinatheka

    semiinvoluta, E15. Globigerinatheka index, E16. Hantkenina alaba-mensis for the late Eocene and zone O1. Pseudohastigerina nague-wichiensis for the lower Oligocene.

    Based on a quantitative analysis and paleoecological preferencesfor planktic and benthic foraminifera, we have established a generalpaleoenvironment reconstruction during the Eocene. From the baseto the top of the Menzel Bou Zelfa and Jhaff section, these analysesrevealed that the associations of foraminifera are characteristic of arelatively warm climate with considerable oxygen content duringthe middle to late Eocene, whereas at base of Oligocene the dataindicates a cooling of the climate.

    The diversity of foraminifera reveals that the top of the Eocene ismarked by a massive extinction event of a distinctive group ofplanktic foraminifera, probably caused by the decrease in temper-ature, bathymetry and reduction in depth of the thermocline.Nevertheless, the small benthic foraminifera do not show anextinction event at the E/O boundary, indicating that the benthicenvironment was not significantly affected. Similarly, the extinctionof N. truempyi, which is considered a marker for the E/O boundary,is recorded at the boundary due to bathymetry.

    In the basal Oligocene a clear dominance of infaunal morpho-types with calcitic test, especially the bolivinids, indicates bathyaldomains with cold-water, eutrophic seas and oxygen minimum. Inthe basal Oligocene O1 Zone, the benthic environment is appar-ently affected by a gradual extinction event that could be caused bythe Oi1 glaciation. The small benthic foraminifera show a gradualpattern of extinction, which more likely could be local disappear-ances caused by the decrease in temperature and depth. Conse-quently, further studies are necessary to confirm whether thispattern is a global extinction event or just a local pattern ofdisappearances.

    Acknowledgements

    We would like to thank the research unit team “Petrologiesedimentaire et crystalline” of the Faculty of Sciences of Tunis andthe team of the Electronic Microscopy Scanning laboratory of theTunisian Petroleum Development Company (ETAP). This studyreceived financial support and assistance through Project CGL2014-58794P from the Spanish Ministry of Science and Technology(FEDER funds) and Consolidated Group E05 from the Governmentof Arag�on. We are grateful to Silvia Ortiz (PetroStrat, UK) for herhelpful review that significantly improved the manuscript and toPaul Smith for correcting the English text. Furthermore, we wouldlike to thank Orabi H. Orabi for reviewing the manuscript andMoncef Saïd Mtimed for help in the field and laboratory.

    References

    Agnini, C., Fornaciari, E., Giusberti, L., Grandesso, P., Lanci, L., Luciani, V., Muttoni, G.,P€alike, H., Rio, D., Spofforth, D.J.A., Stefani, C., 2011. Integrated bio-magnetostratigraphy of the Alano section (NE Italy): a proposal for defining themiddle-late Eocene boundary. GSA Bulletin 123 (5/6), 841e872.

    Alegret, L., Thomas, E., 2004. Benthic foraminifera and environmental turnoveracross the cretaceous/paleogene boundary at blake nose (ODP hole 1049C,Northwestern Atlantic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 59e83.

    Alegret, L., Cruz, L.E., Fenero, R., Molina, E., Ortiz, S., Thomas, E., 2008. Effects of theOligocene climatic events on the foraminiferal record from Fuente Calderasection (Spain, western Tethys). Palaeogeogr. Palaeoclimatol. Palaeoecol. 269,94e102.

    Barker, S., Broecker, W., Clark, E., Hajdas, I., 2007. Radiocarbon age offsets of fora-minifera resulting from differential dissolution and fragmentation within thesedimentary bioturbated zone. Paleoceanography 22 (2). PA2205.

    Bellier, J.-P., Mathieu, R., Granier, B., 2010. Short treatise on foraminiferology(essential on modern and fossilForaminifera) (Court trait�e de foraminif�erologie(L'essentiel sur les foraminif�eres actuels et fossiles)). Carnets G�eol. 1e104[Notebooks on Geology].

    Berggren, W.A., Miller, K.G., 1989. Cenozoic bathyal and abyssal calcareous benthicforaminiferal zonation. Micropaleontology 35, 308e320.

    Bolli, H.M., Beckmann, J.P., Saunders, J.B., 1994. Benthic Foraminiferal

    http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref1http://refhub.elsevier.com/S1464-343X(18)30045-1/sref2http://refhub.elsevier.com/S1464-343X(18)30045-1/sref2http://refhub.elsevier.com/S1464-343X(18)30045-1/sref2http://refhub.elsevier.com/S1464-343X(18)30045-1/sref2http://refhub.elsevier.com/S1464-343X(18)30045-1/sref3http://refhub.elsevier.com/S1464-343X(18)30045-1/sref3http://refhub.elsevier.com/S1464-343X(18)30045-1/sref3http://refhub.elsevier.com/S1464-343X(18)30045-1/sref3http://refhub.elsevier.com/S1464-343X(18)30045-1/sref3http://refhub.elsevier.com/S1464-343X(18)30045-1/sref4http://refhub.elsevier.com/S1464-343X(18)30045-1/sref4http://refhub.elsevier.com/S1464-343X(18)30045-1/sref4http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref5http://refhub.elsevier.com/S1464-343X(18)30045-1/sref6http://refhub.elsevier.com/S1464-343X(18)30045-1/sref6http://refhub.elsevier.com/S1464-343X(18)30045-1/sref6http://refhub.elsevier.com/S1464-343X(18)30045-1/sref7

  • C. Grira et al. / Journal of African Earth Sciences 143 (2018) 145e161160

    Biostratigraphy of the South Caribbean Region. Cambridge University Press.Bordiga, M., Henderiks, J., Tori, F., Monechi, S., Fenero, R., Legarda-Lisarri, A.,

    Thomas, E., 2015. Microfossil evidence for trophic changes during the EoceneOligocene transition in the south Atlantic (ODP site 1263, Walvis Ridge). Clim.Past 11, 1249e1270.

    Boukhalfa, K., Ben Ismail-Lattrache, K., Riahi, S., Soussi, M., Khomsi, S., 2009. Analysebiostratigraphique et s�edimentologique des series�eo�oligoc�enes et mioc�enes dela Tunisie septentrionale: implications stratigraphiques et g�eodynamiques. C. R.Geoscience 341, 49e62.

    Coccioni, R., Galeotti, S., 2003. Deep-water benthic foraminiferal events from theMassignano eocene/oligocene boundary stratotype, Central Italy. In:Prothero, D.R., Ivany, L., Nesbitt, E. (Eds.), From Greenhouse to Icehouse: theMarine Eoceneeoligocene Transition. Columbia University Press, pp. 438e452.

    Coxall, H.K., Pearson, P.N., 2007. The eoceneeoligocene transition. In:Haywood, W.M., et al. (Eds.), Deep-time Perspectives on ClimateChange:Marrying the Signal from Computer Models and Biological Proxies. TheMicropalaeontological Society,Special Publications. The Geological Society,London, pp. 351e387.

    Coxall, H.K., Wilson, P.A., 2011. Early Oligocene glaciation and productivity in theeastern equatorial Pacific: insights into global carbon cycling. Paleoceanography26. PA2221.

    Coxall, H.K., Wilson, P.A., P€alike, H., Lear, C.H., Backman, J., 2005. Rapid stepwiseonset of Antarctic glaciation and deeper calcite compensation in the PacificOcean. Nature 433, 53e57.

    Culver, S.J., 2003. Benthic foraminifera across the CretaceouseTertiary (KeT)boundary: a review. Mar. Micropaleontol. 47, 177e226.

    DeConto, R.M., Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced bydeclining atmospheric CO2. Nature 421, 245e249.

    Exon, N.F., Brinkhuis, H., Robert, C.M., Kennet, J.P., Hill, P.J., Macphail, M.K., 2004.Tectono-sedimentary history of uppermost Cretaceous through Oligocene se-quences from the Tasmanian region, a temperate Antarctic margin. In:Exon, N.F., Kennett, J.P., Malone, M.J. (Eds.), The Cenozoic Southern Ocean:Tectonics, Sedimentation, and Climate Change between Australia andAntarctica. American Geophysical Union, Geophysical Monograph Series, vol.151, pp. 319e344.

    Farouk, S., Ahmad, F., Smadi, A.A., 2013. Stratigraphy of the middle eocene-lowerOligocene successions in northwestern and eastern Jordan. J. Asian Earth Sci.73, 396e408.

    Farouk, S., Faris, M., Ahmad, F., Powell, J.H., 2015. New microplalnktonic biostra-tigraphy and depositional sequences across the Middle-Late Eocene andOligocene boundaries in eastern Jordan. GeoArabia 20 (3), 145e172.

    Fenero, R., Thomas, E., Alegret, L., Molina, E., 2012. Oligocene benthic foraminiferafrom the Fuente Caldera section (Spain, western Tethys): taxonomy and pale-oenvironmental inferences. J. Foraminifer. Res. 42 (4), 286e304.

    Fontanier, C., 2003. Ecologie des foraminif�eres benthiques du Golf du Gascogne:�Etude de la variabilit�e spatiale et temporelle des faunes de foraminif�eres ben-thiques et de la composition isotopique (d18O, d13C) de leurs tests. Th�ese doc-torale. Universit�e Bordeaux.

    Funakawa, S., Nishi, H., Moore, T.C., Nigrini, C.A., 2006. Late eoceneeearly Oligoceneradiolarians, ODP leg 199 holes 1218A, 1219A, and 1220A, central pacific. In:Wilson, P.A., Lyle, M., Firth, J.V. (Eds.), Proc. ODP, Sci. Results, vol. 199, pp. 1e74.

    Gonzalvo, C., Molina, E., 1992. Bioestratigrafía y cronoestratigrafía del tr�ansitoEoceno-Oligoceno en Torre Cardela y Massignano (Italia). Rev. Esp. Palaontol. 7,109e126.

    Gooday, A.J., 2003. Benthic foraminifera (Protista) as tools in deep water palae-oceanography: environmental influences on faunal characteristics. Adv. Biol. 46,1e90.

    Hayward, B.W., Johnson, K., Sabaa, A.T., Kawagata, S., Thomas, E., 2010. Cenozoicrecord of elongate, cylindrical, deep-sea benthic foraminifera in the NorthAtlantic and equatorial Pacific Oceans. Mar. Micropaleontol. 74, 75e95.

    Holbourn, A., Henderson, A.S., Macleod, N., 2013. Atlas of Benthic Foraminifera.Natural History Museum.

    Jorissen, F.J., Fontanier, C., Thomas, E., 2007. Paleoceanographical proxies based onDeep-sea benthic foraminiferal assemblage characteristics. In: Hillaire-Marcel, C., de Vernal, A. (Eds.), Proxies in Late Cenoczoic Paleoceanography 1,Developments in Marine Geology, pp. 263e313.

    Kaminski, M.A., Gradstein, F.M., 2005. Atlas of Paleogene Cosmopolitan Deep-waterAgglutinated Foraminifera. Krak�ow, 8, pp. 237e255. Grzybowski FundationSpecial Publication.

    Kaminski, M.A., Gradstein, F.M., Scott, D.B., Mackinnon, K.D., 1989. Benthic Fora-minifera of the Baffin Bay and Labrador Sea. PANGAEA. https://doi.org/10.1594/PANGAEA.743960.

    Karoui-Yaakoub, N., Grira, C., Mtimet, M.S., Negra, M.H., Molina, E., 2017. Plankticforaminiferal biostratigraphy, paleoecology and chronostratigraphy across theEocene/Oligocene boundary in northern Tunisia. J. Afr. Earth Sci. 125, 126e136.

    Lear, C.H., Bailey, T.R., Pearson, P.N., Coxall, H.K., Rosenthal, Y., 2008. Cooling and icegrowth across the Eocene-Oligocene transition. Geology 36, 251e254.

    Martínez-Gallego, J., Molina, E., 1975. Estudio del tr�ansito Eoceno-Oligoceno conforaminíferos planct�onicos al Sur de Torre Cardela (Provincia de Granada, ZonaSubb�etica). Cuadernos de Geología 6, 177e195.

    Miller, K.G., Curry, W.B., Ostermann, D.R., 1985. Late paleogene (Eocene to Oligo-cene) benthic foraminiferal oceanography of the goban Spur region, deep seadrilling Project leg 80. In: Graciansky, P.C., Poag, C.W., et al. (Eds.), Initial Reportsof the Deep Sea Drilling Project80, pp. 505e538.

    Molina, E., 1980. Oligoceno-Mioceno inferior por medio de foraminíferos

    planct�onicos en el sector central de las Cordilleras B�eticas (Espa~na). Tesisdoctoral. Publicaci�on Universidades de Granada y Zaragoza.

    Molina, E., 1986. Description and biostratigraphy of the main reference section ofthe Eocene/Oligocene boundary in Spain: Fuente Caldera section. Dev. Pale-ontol. Stratigr. 9, 53e63.

    Molina, E., 2015. Evidence and causes of the main extinction events in the Paleo-gene based on extinction and survival patterns of foraminifera. Earth Sci. Rev.140, 166e181.

    Molina, E., Monaco, P., Nocchi, M., Parisi, G., 1986. Biostratigraphic correlation be-tween the central Subbetic (Spain) and umbro-marchean (Italy) pelagic se-quences at the eocene/oligocene boundary using foraminifera. Dev. Paleontol.Stratigr. 9, 75e85.

    Molina, E., Keller, G., Madile, M., 1988. Late Eocene to Oligocene events: molino deCobo, Betic Cordillera, Spain. Rev. Espanola Micropaleontol. 20, 491e514.

    Molina, E., Gonzalvo, C., Keller, G., 1993. The Eocene-Oligocene planktic foraminif-eral transition: extinctions, impacts and hiatuses. Geol. Mag. 130 (4), 483e499.

    Molina, E., Gonzalvo, C., Ortiz, S., Cruz, L.E., 2006. Foraminiferal turnover across theEoceneeOligocene transition at Fuente Caldera, southern Spain: Nocauseeeffect relationship between meteorite impacts and extinctions. Mar.Micropaleontol. 58, 270e286.

    Molina, E., Torres-Silva, A., �Cori�c, S., Briguglio, A., 2016. Integrated biostratigraphyacross the Eocene/Oligocene boundary at Noro~na, Cuba, and the question of theextinction of orthophragminids. Newsl. Stratigr. 49 (1), 27e40.

    Murray, J.W., 1991. Ecology and Paleoecology of Benthic Foraminifera. LongmanScientific and Technical, Harlow, Essex, England.

    Nocchi, M., Monechi, S., Coccioni, R., Madile, M., Monaco, P., Orlando, M., Parisi, G.,Premoli Silva, I., 1988. The extinction of Hantkeninidae as a marker for definingthe EoceneeOligocene boundary: a proposal. In: Premoli Silva, I., Coccioni, R.,Montanari, A. (Eds.), The EoceneeOligocene Boundary in the Marche-UmbriaBasin (Italy). Ancona, International Subcommission on Paleogene Stratigraphy,pp. 249e252. Special Publication.

    Norris, R.D., 1996. Symbiosis as an evolutionary innovation in the radiation ofPaleocene planktic foraminifera. Paleobiology 22, 461e480.

    Nyong, E.E., Olsson, R.K., 1984. A paleoslope model of campanian to lower maes-trichtian foraminifera in the North American basin and adjacent continentalmargin. Mar. Micropaleontol. 8, 437e477.

    Orabi, H., El Beshtawy, M., Osman, R., Gadallah, M., 2015. Larger benthic forami-niferal turnover across the eocene-oligocene transition at Siwa oasis, westerndesert, Egypt. J. Afr. Earth Sci. 105, 85e92.

    Ortiz, S., Thomas, E., 2006. Loweremiddle Eocene benthic foraminifera from theFortuna section (Betic Cordillera, southeastern Spain). Micropaleontology 52(2), 97e150.

    Ortiz, S., Kaminski, A.M., 2012. Record of deep-sea, benthic elongate-cylindricalforaminifera across the Eocene-Oligocene transition in the North AtlanticOcean (ODP hole 647a). J. Foraminifer. Res. 42 (4), 345e368.

    Pagani, M., Huber, M., Liu, Z., Bohaty, S.M., Henderiks, J., Sijp, W., Krishnan, S.,DeConto, R.M., 2011. The role of carbon dioxide during the onset of AntarcticGlaciation. Science 334, 1261e1264.

    P€alike, H., Lyle, M.W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A.,Acton, G.D., Anderson, L., Backman, J., Baldauf, J.G., Beltran, C., Bohaty, S.M.,Bown, P.R., Busch, W.H., Channell, J.E.T., Chun, C.O.J., Delaney, M.L., Dewang, P.,Dunkley, J. Tom, Edgar, K.M., Evans, H.F., Fitch, P., Foster, G.L., Gussone, N.,Hasegawa, H., Hathorne, Ed, Hayashi, H., Herrle, Jens O., Holbourn, A.,Hovan, S.A., Hyeong, K., Iijima, K., Ito, T., Kamikuri, Shin-Ichi, Kimoto, K.,Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T.C., Murphy, B.,Murphy, D.P., Nakamur, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R.S.,Rohling, Eelco J., Romero, Oscar E., Sawada, Ken, Scher, Howie D., Schneider, L.,Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B.S., Westerhold, T.,Wilkens, Roy H., Williams, T., Wilson, P.A., Yamamoto, Y., Yamamoto, S.,Yamazaki, T., Zeebe, R.E., 2012. A cenozoic record of the equatorial pacific car-bonate compensation depth. Nature 488, 609e614.

    Pearson, P.N., Wade, B.S., 2015. Systematic Taxonomy of Exceptionally Well-preserved Planktonic Foraminifera from the Eocene/Oligocene Boundary ofTanzania, 45. Cushman Foundation Special Publication, pp. 1e85.

    Pearson, P.N., Shackleton, N.J., Hall, M.A., 1993. The stable isotope paleoecology ofmiddle Eocene planktonic foraminifera and multispecies isotope stratigraphy,DSDP Site 523, South Atlantic. J. Foraminifer. Res. 23, 123e140.

    Pearson, P.N., Norris, R.D., Empson, A.J., 2001. Mutabella mirabilis gen. et sp. nov., aMiocene microperforate planktonic foraminifer with an extreme level ofintraspecific variability. J. Foraminifer. Res. 31 (2), 120e132.

    Pearson, P.N., Olsson, R.K., Huber, B.T., Hemleben, C., Berggren, W.A. (Eds.), 2006.Atlas of Eocene Planktonic Foraminifera. Cushman Foundation for ForaminiferalResearch, Fredericksburg.

    Pearson, P.N., McMillan, I.K., Wade, B.S., Jones, T.D., Coxall, H.K., Bown, P.R.,Lear, C.H., 2008. Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology 36, 179e182.

    Pearson, P.N., Foster, F.L., Wade, B.S., 2009. Atmospheric carbon dioxide through theEocene-Oligocene climate transition. Nature 461, 1110e1113.

    Premoli Silva, I., Jenkins, G., 1993. Decision on the Eocene Oligocene boundarystratotype. Episodes 16 (3), 379e382.

    Shackleton, N., Kennett, J.P., 1976. Paleotemperature history of the Cenozoic and theinitiation of Antarctic Glaciation: oxygen and carbon isotope analyses in DSDPsites 277, 279, and 281. In: Kennett, J.P.P., Houtz, R.E., et al. (Eds.), Initial Reportsof the Deep Sea Drilling Project, vol. XXIX. U.S. Government Printing Office,Washington, D.C, pp. 743e755.

    http://refhub.elsevier.com/S1464-343X(18)30045-1/sref7http://refhub.elsevier.com/S1464-343X(18)30045-1/sref8http://refhub.elsevier.com/S1464-343X(18)30045-1/sref8http://refhub.elsevier.com/S1464-343X(18)30045-1/sref8http://refhub.elsevier.com/S1464-343X(18)30045-1/sref8http://refhub.elsevier.com/S1464-343X(18)30045-1/sref8http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref9http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref10http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref11http://refhub.elsevier.com/S1464-343X(18)30045-1/sref12http://refhub.elsevier.com/S1464-343X(18)30045-1/sref12http://refhub.elsevier.com/S1464-343X(18)30045-1/sref12http://refhub.elsevier.com/S1464-343X(18)30045-1/sref13http://refhub.elsevier.com/S1464-343X(18)30045-1/sref13http://refhub.elsevier.com/S1464-343X(18)30045-1/sref13http://refhub.elsevier.com/S1464-343X(18)30045-1/sref13http://refhub.elsevier.com/S1464-343X(18)30045-1/sref13http://refhub.elsevier.com/S1464-343X(18)30045-1/sref14http://refhub.elsevier.com/S1464-343X(18)30045-1/sref14http://refhub.elsevier.com/S1464-343X(18)30045-1/sref14http://refhub.elsevier.com/S1464-343X(18)30045-1/sref14http://refhub.elsevier.com/S1464-343X(18)30045-1/sref14http://refhub.elsevier.com/S1464-343X(18)30045-1/sref15http://refhub.elsevier.com/S1464-343X(18)30045-1/sref15http://refhub.elsevier.com/S1464-343X(18)30045-1/sref15http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref16http://refhub.elsevier.com/S1464-343X(18)30045-1/sref17http://refhub.elsevier.com/S1464-343X(18)30045-1/sref17http://refhub.elsevier.com/S1464-343X(18)30045-1/sref17http://refhub.elsevier.com/S1464-343X(18)30045-1/sref17http://refhub.elsevier.com/S1464-343X(18)30045-1/sref18http://refhub.elsevier.com/S1464-343X(18)30045-1/sref18http://refhub.elsevier.com/S1464-343X(18)30045-1/sref18http://refhub.elsevier.com/S1464-343X(18)30045-1/sref18http://refhub.elsevier.com/S1464-343X(18)30045-1/sref19http://refhub.elsevier.com/S1464-343X(18)30045-1/sref19http://refhub.elsevier.com/S1464-343X(18)30045-1/sref19http://refhub.elsevier.com/S1464-343X(18)30045-1/sref19http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref20http://refhub.elsevier.com/S1464-343X(18)30045-1/sref21http://refhub.elsevier.com/S1464-343X(18)30045-1/sref21http://refhub.elsevier.com/S1464-343X(18)30045-1/sref21http://refhub.elsevier.com/S1464-343X(18)30045-1/sref21http://refhub.elsevier.com/S1464-343X(18)30045-1/sref21http://refhub.elsevier.com/S1464-343X(18)30045-1/sref22http://refhub.elsevier.com/S1464-343X(18)30045-1/sref22http://refhub.elsevier.com/S1464-343X(18)30045-1/sref22http://refhub.elsevier.com/S1464-343X(18)30045-1/sref22http://refhub.elsevier.com/S1464-343X(18)30045-1/sref22http://refhub.elsevier.com/S1464-343X(18)30045-1/sref23http://refhub.elsevier.com/S1464-343X(18)30045-1/sref23http://refhub.elsevier.com/S1464-343X(18)30045-1/sref23http://refhub.elsevier.com/S1464-343X(18)30045-1/sref23http://refhub.elsevier.com/S1464-343X(18)30045-1/sref24http://refhub.elsevier.com/S1464-343X(18)30045-1/sref24http://refhub.elsevier.com/S1464-343X(18)30045-1/sref24http://refhub.elsevier.com/S1464-343X(18)30045-1/sref24http://refhub.elsevier.com/S1464-343X(18)30045-1/sref25http://refhub.elsevier.com/S1464-343X(18)30045-1/sref25http://refhub.elsevier.com/S1464-343X(18)30045-1/sref26http://refhub.elsevier.com/S1464-343X(18)30045-1/sref26http://refhub.elsevier.com/S1464-343X(18)30045-1/sref26http://refhub.elsevier.com/S1464-343X(18)30045-1/sref26http://refhub.elsevier.com/S1464-343X(18)30045-1/sref26http://refhub.elsevier.com/S1464-343X(18)30045-1/sref27http://refhub.elsevier.com/S1464-343X(18)30045-1/sref27http://refhub.elsevier.com/S1464-343X(18)30045-1/sref27http://refhub.elsevier.com/S1464-343X(18)30045-1/sref27http://refhub.elsevier.com/S1464-343X(18)30045-1/sref27https://doi.org/10.1594/PANGAEA.743960https://doi.org/10.1594/PANGAEA.743960http://refhub.elsevier.com/S1464-343X(18)30045-1/sref29http://refhub.elsevier.com/S1464-343X(18)30045-1/sref29http://refhub.elsevier.com/S1464-343X(18)30045-1/sref29http://refhub.elsevier.com/S1464-343X(18)30045-1/sref29http://refhub.elsevier.com/S1464-343X(18)30045-1/sref30http://refhub.elsevier.com/S1464-343X(18)30045-1/sref30http://refhub.elsevier.com/S1464-343X(18)30045-1/sref30http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref31http://refhub.elsevier.com/S1464-343X(18)30045-1/sref32http://refhub.elsevier.com/S1464-343X(18)30045-1/sref32http://refhub.elsevier.com/S1464-343X(18)30045-1/sref32http://refhub.elsevier.com/S1464-343X(18)30045-1/sref32http://refhub.elsevier.com/S1464-343X(18)30045-1/sref32http://refhu


Recommended