+ All Categories
Home > Documents > UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS...

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS...

Date post: 15-Nov-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
52
UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E RECURSOS NATURAIS LUCAS FIGUEIREDO SOARES COMO AS MUDANÇAS CLIMÁTICAS PODEM INFLUENCIAR A DISTRIBUIÇÃO DE ESPÉCIES XERÓFITAS? FORTALEZA 2019
Transcript
Page 1: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE BIOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA E RECURSOS NATURAIS

LUCAS FIGUEIREDO SOARES

COMO AS MUDANÇAS CLIMÁTICAS PODEM INFLUENCIAR A DISTRIBUIÇÃO

DE ESPÉCIES XERÓFITAS?

FORTALEZA

2019

Page 2: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

2

LUCAS FIGUEIREDO SOARES

COMO AS MUDANÇAS CLIMÁTICAS PODEM INFLUENCIAR A DISTRIBUIÇÃO DE

ESPÉCIES XERÓFITAS?

Dissertação apresentada ao Programa de Pós-

Graduação em Ecologia e Recursos Naturais

da Universidade Federal do Ceará, como

requisito parcial à obtenção do título de mestre

em Ecologia e Recursos Naturais. Área de

concentração: Ecologia e Recursos Naturais.

Orientador: Profa. Dra. Maria Iracema Bezerra

Loiola.

FORTALEZA

2019

Page 3: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

3

Page 4: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

4

LUCAS FIGUEIREDO SOARES

COMO AS MUDANÇAS CLIMÁTICAS PODEM INFLUENCIAR A DISTRIBUIÇÃO DE

ESPÉCIES XERÓFITAS?

Dissertação apresentada ao Programa de Pós-

Graduação em Ecologia e Recursos Naturais

da Universidade Federal do Ceará, como

requisito parcial à obtenção do título de mestre

em Ecologia e Recursos Naturais. Área de

concentração: Ecologia e Recursos Naturais.

Aprovada em: 10/04/2019.

BANCA EXAMINADORA

________________________________________

Profa. Dra. Maria Iracema Bezerra Loiola (Orientadora)

Universidade Federal do Ceará (UFC)

_________________________________________

Profa. Dra. Andréa Pereira Silveira

Universidade Estadual do Ceará (UECE)

________________________________________

Prof. Dr. Sebastião Medeiros Filho

Universidade Federal do Ceará (UFC)

Page 5: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

5

A Deus e minha família.

Page 6: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

6

AGRADECIMENTOS

À CAPES, pelo apoio financeiro com a concessão da bolsa de auxílio;

À Profa. Dra. Maria Iracema Bezerra Loiola, pela excelente orientação e por

confiar no meu trabalho;

Aos professores participantes da banca examinadora, Dr. Sebastião Medeiros

Filho, Dra. Andréa Pereira Silveira e Dra. Ingrid Koch pelas valiosas colaborações e sugestões;

Ao Marcelo Oliveira Teles de Menezes, pela colaboração no manuscrito e ideias

sugeridas;

À Luciana Silva Cordeiro, por toda a ajuda durante a elaboração dos modelos e do

manuscrito;

Aos demais amigos do Laboratório de Sistemática e Ecologia Vegetal (LASEV):

Valéria Sampaio, Fernanda Melo Gomes, Rayane Ribeiro, Edenilce Peixoto, Carlos Píffero,

Tatiane Nojosa, Natanael Pereira, Francisco Yago, Kyhara Soares e Diego Costa;

Aos amigos da pós-graduação: Luana Guimarães, Elvis Franklin, Gabriela

Ramires, Sérgio Lucas, Sabrina Moura, Margarida Xavier, James Castro, Antônio Xavier,

Mônica Santana, Robson Victor, Hélio Coelho, Frede Lima e os demais da turma de 2017;

Aos professores da pós graduação, em especial Roberta Zandavalli, Rogério

Parentoni, Roberto Feitosa, Lorenzo Zanette e Rafael Carvalho pelas reflexões, críticas e

sugestões recebidas;

À toda minha família, em especial minha vó Zuila Figueiredo e minha irmã Livia

Figueiredo;

Ao Mikael Mendes e aos amigos Raquel Castro e Marcelle Yanari;

À minha turma da Geografia 2012.1 da Universidade Estadual do Ceará – UECE.

Page 7: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

7

“They say that dreaming is free, but I wouldn’t

care what it cost me.”

(Hayley Williams, Taylor York)

Page 8: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

8

RESUMO

As mudanças climáticas transformam as condições ambientais, e consequentemente, afetam a

distribuição dos organismos em todo o planeta. Objetivamos com este estudo biogeográfico

compreender a probabilidade de ocorrência futura de cinco espécies xerófitas do gênero

Tacinga Britton & Rose (Cactaceae), distribuídas no semiárido brasileiro, em domínios

fitogeográficos de caatinga e cerrado. Para tal, utilizamos variáveis bioclimáticas que

derivaram os modelos futurísticos presentes no manuscrito. Nossa hipótese é que devido ao

aquecimento global previsto para os próximos anos, espécies xerófitas terão a distribuição

geográfica favorecida e expandida mesmo em áreas com risco de desertificação. No entanto,

nossos resultados sugerem que este fator deve ser analisado de acordo com cada táxon, pois

nem todas as espécies irão expandir sua distribuição. Verificamos que no território brasileiro

existem locais estratégicos para a preservação dessas espécies como a Chapada Diamantina na

Bahia, considerado um refúgio biológico do gênero. Concluímos que espécies com

probabilidade de ocorrência mais restritas, como T. funalis e T. saxatilis precisam ser

conservadas, devido uma possível restrição geográfica em tempos futuros, mais precisamente

em 2050.

Palavras-chave: Cactaceae. Modelagem de nicho. Tacinga. Xeromorfismo.

Page 9: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

9

ABSTRACT

Climate change transforms environmental conditions, and consequently, affects the

distribution of organisms around the planet. We aim with this biogeographic study to

understand the probability of future occurrence of five xerophyte species of the genus Tacinga

Britton & Rose (Cactaceae), distributed in the Brazilian semi-arid, in phytogeographic

domains of caatinga and cerrado. For this, we used bioclimatic variables that derived the

futuristic models present in the manuscript. Our hypothesis is that due to global warming

predicted for the coming years, xerophytic species will have the geographical distribution

favored and expanded even in areas at risk of desertification. However, our results suggest

that this factor should be analyzed according to each taxon, since not all species will expand

their distribution. We verified that in the Brazilian territory there are strategic locations for the

preservation of these species such as the Chapada Diamantina in Bahia, considered a

biological refuge of the genus. We conclude that species with a more restricted probability of

occurrence, such as T. funalis and T. saxatilis need to be conserved, due to a possible

geographical restriction in future times, more precisely in 2050.

Keywords: Cactaceae. Niche modelling. Tacinga. Xeromorphism.

Page 10: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

10

LISTA DE FIGURAS

Figura 1- Detalhe do hábito das espécies de Tacinga (Cactaceae) estudadas.

(a) T. funalis, (b) T. inamoena, (c) T. palmadora e (d) T. werneri.

Fotos por Marcelo Oliveira Teles de Menezes................................ 25

Figura 2- Distribuição atual das espécies de Tacinga: (a) T. funalis, (b) T.

inamoena, (c) T. palmadora, (d) T. saxatilis e (e) T.

werneri ..............................................................................................

.......................................................................................................... 26

Figura 3- Distribuição potencial das espécies Tacinga (Cactaceae) no Brasil.

(a) T. funalis, (b) T. inamoena, (c) T. palmadora, (d) T. saxatilis e

(e) T. werneri para 2050, com o aumento da temperatura em 1,5

graus, utilizando variáveis bioclimáticas (Isotermalidade,

Temperatura Média do Bairro Mais Seco, Média Temperatura do

Trimestre Mais Quente, Precipitação Anual, Precipitação do Mês

Mais Molhado, Precipitação do Mês Mais Seco e Precipitação do

Trimestre Mais Úmido) .................................................................

........................................................................................................... 27

Page 11: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

11

LISTA DE TABELAS

Tabela 1- Projeção dos domínios fitogeográficos e tipos de solos das espécies

de Tacinga Britton & Rose (Cactaceae) ............................................. 29

Page 12: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

12

SUMÁRIO

1 INTRODUÇÃO GERAL ............................................................... 13

2 MANUSCRITO 1. HOW DOES CLIMATE CHANGE

INFLUENCE THE DISTRIBUTION OF XEROPHYTIC

SPECIES? ....................................................................................... 17

3 INTRODUCTION .......................................................................... 19

4 MATERIAL AND METHODS ...................................................... 21

4.1 Data Collection ............................................................................... 21

4.2 Niche modeling ............................................................................... 21

4.3 Biological models ............................................................................ 22

5 RESULTS ........................................................................................ 23

6 DISCUSSION ................................................................................. 29

7 CONCLUSIONS ............................................................................. 31

8 ACKNOWLEDGMENTS .............................................................. 31

9 CONSIDERAÇÕES FINAIS ........................................................ 32

REFERÊNCIAS ............................................................................. 34

ANEXO A - NORMAS DA REVISTA JOURNAL OF PLANT

ECOLOGY ...................................................................................... 39

Page 13: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

13

1 INTRODUÇÃO GERAL

Os estudos biogeográficos possibilitam entender os processos ecológicos envolvidos

na distribuição das espécies nas mais diferentes escalas (GILLUNG, 2011). Com base na

Biogeografia, podemos inferir sobre a distribuição potencial das espécies, a história

biogeográfica, o cálculo de riqueza, o ordenamento atual dos táxons, dentre outros

(TABARELLI; MANTOVANI, 1999; ABREU; PINTO; MEWS, 2014; MA et al., 2016).

As espécies possuem limites de distribuição, que muitas vezes são aleatórios ou ainda

não conhecidos (HAUSDORF, 2002). Fazem interações com o meio, e sua continuidade

depende de fatores abióticos (como por exemplo, água, luz, umidade, temperatura, tipo de

solo, etc.) e bióticos (associações, competição, dispersão) favoráveis à sua existência. É aí que

as mudanças climáticas podem atuar, pois estas alteram as condições terrestres, e

consequentemente, modificam o ordenamento das espécies (KERR et al., 2015; PACIFICI et.

al., 2015).

Vários estudos indicam que as mudanças climáticas podem trazer consequências

desastrosas para nosso planeta, como a oscilação nos índices pluviométricos, o aumento da

temperatura, a ampliação de áreas desérticas, a elevação do nível do mar, a diminuição da

diversidade de diferentes grupos de plantas e animais, extinção de espécies endêmicas e o

aumento de CO2 na atmosfera (HUGHES, 2000; URBAN, 2015; HUGHES et al., 2017).

Ainda segundo alguns especialistas, o aumento da temperatura do planeta é um fenômeno

considerado normal, porém, está sendo intensificado por atividades humanas (STEFFEN et

al., 2015; MIAO; JIN; CUI, 2016).

Em eras geológicas passadas, a terra presenciou o aumento da aridez ou glaciações. O

que acarretou no aumento e diminuição de tipos vegetacionais de climas úmidos e

estacionalmente secos (HUGHES et al., 2013), este último predominante no nordeste do

Brasil. Deste modo, surgiram algumas áreas de refúgios nas quais as plantas mantiveram sua

diversidade (HAFFER, 1969; WERNECK et al., 2011; MENEZES et al., 2016; CORDEIRO,

2017). É o caso dos remanescentes de vegetação florestal serrana presentes no semiárido

brasileiro (AZEVEDO, 2017), em locais onde a altitude é elevada, variando entre 400 e 1.154

m (FAJARDO; TIMOFEICZYK JUNIOR, 2015).

Page 14: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

14

Estudos têm evidenciado que na região Neotropical existem várias áreas de

endemismo (HAROLD; MOOI, 1994; LIMA et. al., 2018), devido às interações ecológicas e

estabilidade climática (ARITA; VAZQUEZ-DOMINGUEZ, 2008; ANTONELLI;

SANMARTIN, 2011). Pesquisadores de diferentes áreas da Ciência propõem a preservação

desses locais para que haja a manutenção dessas espécies e dos serviços ecossistêmicos que as

mesmas oferecem para diversos grupos de animais, incluindo a população humana

(FONSECA; SILVA, 2010; LEAL; LOPES; MACHADO; TABARELLI, 2018).

O aumento de diversidade na região Neotropical está frequentemente associado à

especiação por vicariância (ANTONELLI; SANMARTIN, 2011). A vicariância é um

mecanismo evolutivo (ROSEN, 1978; LUEBERT et al., 2017), onde, por exemplo, algumas

populações devido à quebra do fluxo gênico em decorrência da fragmentação de sua área de

ocorrência vão apresentar diferenças morfológicas, o que poderá resultar em especiação

alopátrica ao longo do tempo (SOUZA; RIBEIRO, 2017). Assim, cabe ao organismo se

adaptar ao ambiente, ocupar novas áreas ou limitar sua distribuição.

A modelagem de nicho é uma ferramenta que possibilita a elaboração de modelos

probabilísticos de distribuição de espécies. É comumente utilizada em estudos sobre a origem

das espécies - biogeografia histórica (GELVIZ-GELVEZ et al., 2015; KOLÁŘ et al., 2016;

LI; THOMAS; SAUNDERS, 2017), ou em um contexto de mudanças climáticas, já que estas

alteram a paisagem e a diversidade de espécies (HAFFER, 2008). Pode ainda ser usada na

inferência sobre a probabilidade de ocorrência, principalmente para espécies endêmicas

(CORDEIRO et al., 2017), em extinção (MOAT et al., 2019) ou exóticas, que causam

desequilíbrio no ecossistema (DESCOMBES et al., 2018). Essa ferramenta também foi usada

em pesquisas com espécies xerófitas (ZHANG; ZHANG; SANDERSON, 2016; OSSA et al.,

2019), a fim de compreender seu ordenamento passado.

Atualmente, existe ainda um conjunto de dados online sobre a distribuição de espécies

vegetais, como por exemplo GBIF, SiBBr, speciesLink e Reflora. Essas informações dão

subsídios à formulação de diversas perguntas e hipóteses ecológicas, e buscam preencher as

lacunas do conhecimento científico (MILLINGTON, 2013). Com a tecnologia e os Sistemas

de Informações Geográficas - SIGs, podemos obter informações mais exatas especialmente

sobre a distribuição dos táxons (HIJMANS et al., 2005).

Page 15: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

15

No presente estudo, nos utilizamos da modelagem de nicho com o intuito de entender

como a distribuição de um grupo de plantas pode ser influenciada mediante as mudanças

climáticas previstas. Para analisarmos a distribuição potencial de espécies xerófitas, tivemos

como modelo biológico representantes do gênero Tacinga Britton & Rose, pertencente à

família Cactaceae. Esse gênero é constituído por oito espécies, das quais sete (T. braunii

Esteves, T. funalis (Britton & Rose), T. inamoena (K.Schum.) N.P.Taylor & Stuppy, T.

palmadora (Britton & Rose) N.P.Taylor & Stuppy, T. saxatilis (Ritter) N.P.Taylor & Stuppy

subsp., T. inamoena subsp. subcylindrica M.Machado & N.P.Taylor e T. werneri (Eggli)

N.P.Taylor & Stuppy) são endêmicas do leste do Brasil (ZAPPI & TAYLOR, BFG, 2015), e

uma (Tacinga lilae Trujillo & Marisela Ponce) é endêmica do Nordeste da Venezuela

(MAJURE; PUENTE, 2014).

Tacinga compreende espécies arbustivas, subarbustivas e lianas, com cladódios

complanados ou cilíndricos, geralmente segmentados, com abundantes gloquídios em suas

aréolas, frutos globosos ou alongados com gloquídios e poucas sementes (TAYLOR & ZAPPI,

2004). Seus representantes são importantes componentes da flora do semiárido brasileiro,

ocorrendo preferencialmente em vegetação de caatinga (ZAPPI & TAYLOR, 2004; BFG,

2015) e apenas uma espécie foi registrada no cerrado (T. saxatilis). Além disso, têm papel

destacado na ecologia e sustentabilidade desses ecossistemas em diferentes aspectos como,

por exemplo, constituem fonte de alimento e água para diversos animais; contribuem para a

formação de solo sobre inselbergues, permitindo o estabelecimento de vários outros grupos de

plantas (TAYLOR & ZAPPI, 2004). Merece destacar que Tacinga braunii Esteves foi

enquadrada como espécie ameaçadas de extinção, categoria vulnerável (ZAPPI et al., 2013).

Para o presente trabalho, selecionamos cinco espécies que possuem no mínimo 10

pontos de ocorrência. Esse valor mínimo é necessário para obtermos modelos com resultados

mais robustos. Partimos do seguinte questionamento: Como as mudanças climáticas

influenciam a distribuição de espécies xerófitas? A partir dessa pergunta, buscamos

compreender o ordenamento futuro dessas espécies, utilizando algorítimos de probabilidade

de ocorrência, a fim de elucidar respostas sobre o porquê dessas espécies estarem ocorrendo

nessas manchas dos modelos. Esta é uma pesquisa inovadora para o gênero Tacinga, por se

tratar da elaboração de modelos onde o foco está na distribuição futura.

O objetivo do estudo foi definir as áreas de ocorrência dessas espécies xerófitas de

Page 16: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

16

acordo com as mudanças climáticas, a fim de elucidar os fatores que poderão influenciar na

redução ou aumento de áreas de distribuição de suas populações. Considerando que o habitat

de espécies xerófitas incluem ambientes onde existem altas temperaturas, solos rasos e

pedregosos, baixa precipitação e clima semiárido, nossa hipótese é que esses táxons

maximizarão sua distribuição nos próximos anos, pois estamos vivenciando um aquecimento

global diante das flutuações climáticas, já que de acordo com especialistas, a temperatura irá

aumentar em cerca de 1 a 5º C em 2050, acarretando em áreas de desertificação no nordeste

do Brasil.

A dissertação foi elaborada no formato de um capítulo, intitulado “How can climate

change influence the distribution of xerophytic species? O manuscrito foi submetido para a

revista Journal of Plant Ecology, B1 em biodiversidade, de acordo com critérios da CAPES,

com fator de impacto 1.937.

Page 17: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

17

2 MANUSCRITO 1. HOW CAN CLIMATE CHANGE INFLUENCE THE

DISTRIBUTION OF XEROPHYTIC SPECIES?

Lucas Figueiredo Soares¹*, Marcelo Oliveira Teles de Menezes², Luciana Silva Cordeiro³ and

Maria Iracema Bezerra Loiola¹

Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal do Ceará

(UFC), Centro de Ciências, Departamento de Biologia, Av. Mr. Hull, s/n, Pici, Fortaleza,

Ceará, Brasil.¹

Departamento de Educação, Instituto Federal de Educação, Ciência e Tecnologia do Ceará

(IFCE), Av. Treze de Maio, 2081, Benfica, Fortaleza, Ceará, Brasil.²

Programa de Pós-graduação em Bioprospecção Molecular, Universidade Regional do Cariri

(URCA), Rua Cel. Antônio Luís, 1161, Pimenta, Crato, Ceará, Brasil.³ *Correspondence

address. Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal

do Ceará (UFC), Centro de Ciências, Departamento de Biologia, Av. Mr. Hull, s/n, Pici,

60440-900, Fortaleza, Ceará, Brasil; Telefone: +5585 336698126; E-mail:

[email protected]

Page 18: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

18

ABSTRACT

Aims

The distribution of plants is constantly influenced by climatic fluctuations. We had as

objective to make probabilistic models and examine the future distributions of endemic

xerophytic species in semiarid environments and in areas potentially subject to desertification.

Methods

We used niche modeling to simulate the probable occurrences of five species of the genus

Tacinga Britton & Rose (Cactaceae Juss.) using simulation data according to IPCC’s

information for the year 2050 with scenarios variations in ambient conditions over a

temperature range of 1 to 5°C.

Important findings

We observed that not all xeromorphic species would be favored with growth distributions due

to increasing temperatures and declining annual precipitation. Indicating that not all biological

models showed all members of the Cactaceae family maximizing future distributions. Our

research suggests the need to conserve strategic dispersal sites, such as the Chapada

Diamantina (Bahia State, northeastern Brazil) and protect species that show more restricted

probabilities of why occurrence (T. saxatilis and T. werneri), as they are important sources of

resources for local animal populations (food and water).

Key words: Tacinga, biogeography, geographic distribution, ecological niche modeling.

Page 19: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

19

3 INTRODUCTION

The environmental conditions of the Neotropics have favored overall plant diversity

(ANTONELLI et al., 2015). Brazil, for example, currently has a great diversity of species of

plants and a high incidence of endemism. Of a total of 33,243 species of plants registered in

the Brazilian territory, 18,643 are endemic (BFG, 2015), corresponding to approximately 56%

of recorded taxa.

The current distributions of its taxa, and those of past and future times, must be

considered within the context of constant climatic change (COX, 2016). Those distribution

processes are essential to understanding how different biotic, abiotic, edaphic, and stochastic

factors will influence the biogeographic patterns of caatinga (Brazilian Seasonally Deciduous

Tropical Forests – SDTF (caatinga) vegetation (MORO et al., 2016), with 2.232 species,

which 327 are endemic (BFG, 2015).

The response time for changes in vegetation following abrupt shifts in climate is

currently unknown. Recently, several studies tried to explain the dry vegetation of South

America on the past (HUGHEN et al., 2004; WERNECK et al., 2011; JARA-ARANCIO et

al., 2014; CORDEIRO et al., 2017). They found that these plants originated during the

Miocene-Eucene, and also in the Pleistocene. However, studies that seek to predict the

behavior of dry vegetation in the face of future changes are still scarce for these vegetations.

Xerophytic species are highly representative of Brazilian Seasonally Deciduous Tropical

Forests – SDTF (caatinga), originating after the Eocene-Oligocene (HERNÁNDEZ-

HERNÁNDEZ et al., 2014). They adapted to the expansion of aridity in the Americas at the

end of the Miocene – a scenario that favored the emergence of new habitats favorable to their

expansion (JARA-ARANCIO et al., 2014). In that context, they used dispersal strategies in

the past to expand their range (TAYLOR; ZAPPI, 2004).

Representatives of Cactaceae family have significant economic importance to

human populations living in semiarid regions who exploit the ecosystem services of those

species, including as food resources. The fruits of the cacti are an important source of

resources for several species of animals in the Caatinga, especially the fruits of the species

that bear fruit during an extended period of the year, especially in the drier months (ZAPPI et

al., 2011). Additionally, cacti are pollinated by several bird species of the Brazilian semiarid

Page 20: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

20

region (KIILL et al., 2012). Therefore, the cacti species has an important role in the ecological

maintenance of arid and semi-arid ecosystems such as the Caatinga.

Georeferenced data has been used in different approaches to biodiversity studies.

Programs using that type of information have aided ecological research, as some are able to

project past and future scenarios and delete predict reductions of vegetation cover in certain

areas. Those projections can be extremely important for studying the dispersal of organisms in

different ecosystems (RIBEIRO-SILVA et al., 2016), and can be used to examine semiarid

environments in Brazil having high levels of biodiversity (ROSSATO et al., 2017). Such

information can also provide support for natural resource conservation (WHITTAKER et al.,

2007).

To evaluate plant diversity and species distribution, it is advisable to use tools to

observe and investigate the factors that influence them (GENTRY, 1992; HAFFER, 2008).

Thus, ecological niche modeling emerges as an extremely useful tool for researchers seeking

to investigate that approach, as it produces models that project accurate probabilities of

species occurrences (PETERSON, 2001; BRITO et al., 2011). This method can be used in

different studies, depending on the desired application, such as conservation (ELITH et al.,

2011).

Approximately 15% of the semiarid region of Brazil is susceptible to desertification

caused by climatic changes and/or anthropogenic factors (LI et al., 2016). Desertification can

lead to reductions in populations of endemic plant species, and represents a serious concern

for environmental conservation (CUNHA; GUERRA, 1996) as endemic species are highly

adapted to specific geographic areas.

We evaluated here the influence of temperature increases and precipitation decreases

on the distribution of species adapted to semiarid climates, focusing on species of the genus

Tacinga (Cactaceae) recorded in the eastern portion of the Brazilian semiarid domain, in

SDTF and savanna vegetation. The choice of representatives of Tacinga for the present study

was to highlight important components of the Brazilian semiarid vegetation (Nobel and

Bobich, 2002) that have prominent roles in the ecology and sustainability of those ecosystems,

serve as sources of food and habitat for many animals, and contribute to the formation of soils

that allow the establishment of other plants (TAYLOR; ZAPPI, 2004). The present study had

as objective to examine the future distributions of five Tacinga Britton & Rose (Cactaceae)

species.

Page 21: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

21

4 MATERIAL AND METHODS

4.1 Data Collection

To elaborate the models predicting the probability of species occurrences in the future,

georeferenced information was extracted from the Reference Center on Environmental

Information CRIA site (2018) and Global Biodiversity Information Facility site (2018)

(https://www.gbif.org/). The bioclimatic variables for the current climate were obtained from

the Worldclim 1.4 database (2005) (http://www.worldclim.org/), while the IPCC (2014)

(http://www.ipcc.ch/) variables were use to model future scenarios.

The collections at eight herbaria were consulted: ASE (Universidade Federal de

Sergipe); CEN (EMBRAPA Recursos Genéticos e Biotecnologia - DF); CEPEC (Centro de

Pesquisas do Cacau - BA); EAC (Universidade Federal do Ceará – CE); HUEFS

(Universidade Estadual de Feira de Santana - BA); MOSS (Universidade Federal Rural do

Semiárido - RN); UESC (Universidade Estadual de Santa Cruz - BA); UFP (Universidade

Federal de Pernambuco - PE); and UNEB (Universidade do Estado da Bahia) – acronyms

according to Thiers (2018, continuously updated). Specimens collected and identified by

specialists such as Daniela C. Zappi, Marlon C. Machado, Marcelo O. T. de Menezes, and

Nigel P. Taylor were mainly considered. We developed this study by combining a minimum

of 10 occurrence points for each species and taxonomic identification by specialists.

4.2 Niche modeling

Simulations of future climate scenarios were run considering projected temperature

ranges of from 1 to 5 degrees in 50 years, acoording to IPCC. The selection of variables was

performed by PCA (Principal Components Analysis) in the R (R Development Core Team

2010) program to detect useful environmental variables related to temperature and

precipitation and quarterly variations during the year (ELITH et al., 2011). The objective was

to exclude correlated variables that have lower utility for determining the spatial distributions

of the genus. In that way, the following bioclimatic variables (BIO) were chosen: BIO3 =

Isothermality (BIO2/BIO7) (* 100), BIO9 = Mean Temperature of Driest Quarter, BIO10 =

Mean Temperature of Warmest Quarter, BIO12 = Annual Precipitation, BIO13 = Precipitation

of Wettest Month, BIO14 = Precipitation of Driest Month, and BIO16 = Precipitation of

Page 22: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

22

Wettest Quarter.

We then generated models that simulated climatic conditions in 2050 using the most

updated method indicated by ecologists to evaluate the limits of the geographic distribution of

a species (SIQUEIRA, 2005). The present study used MaxEnt 3.3.3, the most widely used

algorithm, which generates what are considered the most robust and accurate models

(PETERSON et al., 2007), as the algorithm can fill in information gaps concerning the

species and decrease the inclusion of false occurrence areas in the final model.

A minimum of 10 occurrence points were selected for each species, distributed

evenly throughout the area, as recorded in the Flora do Brasil 2020 site. That minimum value

of 10 was suggested by Phillips; Dudík (2008) to provide greater accuracy in the delimitation

of the areas of most likely occurrence.

Niche modeling is designed to predict how climate changes will affect future species

occurrence areas within the accuracy of the mathematical probability algorithm used by the

program (ELITH et al., 2011). The models obtained display data referring to the geographic

locations of species of the genus Tacinga, with darker tones indicating the highest probability

of occurrence for the climatic scenario modeled. Soil data were extracted from the database of

the Brazilian Institute of Geography and Statistics (IBGE, 2016).

4.3 Biological models

The genus Tacinga is represented in Brazil by nine taxa, including seven species and

two subspecies. Five representatives of the genus were selected for this study, with the

requirement that each taxon had at least ten occurrence records. We disregard the others. The

species studied were:

Tacinga funalis Britton & Rose – Endemic to northeastern Brazil (Fig. 1a), occurring in the

states of Piauí, Pernambuco, and Bahia in caatinga and “carrasco” vegetation (ZAPPI;

TAYLOR, 2018), usually associated with gneiss and granite rocks (TAYLOR; ZAPPI, 2004).

Tacinga inamoena ( K.Schum.) N.P.Taylor & Stuppy – Endemic to eastern Brazil (Hunt

2006, Fig. 1b). Occurring in all of the states in the northeastern region, and in northern Minas

Gerais State (southeastern region) in caatinga, “carrasco” and rupestrian field vegetation

(ZAPPI; TAYLOR, 2018). Often found on rock outcrops, although it occurs on a wide variety

of substrates and at altitudes ranging from sea level to 1550 m (TAYLOR; ZAPPI, 2004;

MENEZES et al., 2011).

Page 23: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

23

Tacinga palmadora (Britton & Rose) N.P.Taylor & Stuppy – Endemic to northeastern

Brazil (Fig. 1c), being recorded in the states of Piauí, Ceará, Rio Grande do Norte, Paraíba,

Pernambuco, Alagoas, Sergipe, and Bahia in caatinga and “carrasco” vegetation (Zappi;

Taylor, 2018), at altitudes between 200 and 1020 m (Taylor; Zappi, 2004).

Tacinga saxatilis (Ritter) N.P.Taylor & Stuppy subsp. saxatilise – Endemic to Brazil,

with confirmed occurrences only in the states of Bahia (northeastern Brazil) and northern

Minas Gerais (southeastern region) in caatinga vegetation and in deciduous and

semideciduous seasonal forests, often on rock outcrops (Zappi; Taylor, 2018).

Tacinga werneri (Eggli) N.P.Taylor & Stuppy –Endemic to Brazil (Fig. 1d), with

distribution restricted to the states of Bahia (northeastern Brazil) and northern Minas Gerais

(southeastern region), in drier environments such as caatinga (ss) and deciduous and

semideciduous seasonal forests, often on rock outcrops (Zappi; Taylor, 2018).

5 RESULTS

We found that some species of the genus will have broad distributions in

environments currently with less pronounced aridity.

Tacinga funalis is currently restricted to areas of Caatinga (STDF), mainly in the

Chapada Diamantina region, in Bahia State (Fig. 2a). In the simulation for 2050 (Fig. 3a), its

area of occurrence increased in the extreme northeastern region of Brazil, near the São

Francisco River and Borborema Plateau, and near the coast (mainly in the states of Alagoas,

Bahia, Pernambuco, and Sergipe). The distribution of the species was influenced mainly by

BIOS referring to precipitation levels, such as Annual Precipitation and Isothermality.

Tacinga inamoena currently has wide distribution in Brazilian STDF, mainly in

Caatinga vegetation (Fig. 2b). In the simulation for 2050, it was projected to be present over a

large geographic area in the tropical region of eastern Brazil, mainly in the states of Alagoas,

Bahia, Ceará, Paraíba, Rio Grande do Norte, and Sergipe (Fig. 3b). Some representatives

would also be found in subtropical or humid areas, such as the Amazon (the states of Pará and

Roraima), in cerrado savanna vegetation (Mato Grosso do Sul, Goiás, São Paulo, and Minas

Gerais), and in Pampas (Rio Grande do Sul State). Most relevant to those analyses were Mean

Temperature of Driest Quarter, Annual Precipitation, Precipitation of Wettest Month, and

Precipitation of Wettest Quarter.

Page 24: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

24

Figura 1 – Detail of the habit of the Tacinga (Cactaceae) species studied. (a) T. funalis, (b) T.

inamoena, (c) T. palmadora e (d) T. Werneri.

Fonte: Marcelo Oliveira Teles de Menezes.

Page 25: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

25

Figura 2 – Current distribution of Tacinga (Cactaceae) in Brasil. (a). T.

funalis, (b). T. inamoena, (c) T. palmadora, (d) T. saxatilis and (e) T.

werneri.

Fonte: Próprio autor.

Page 26: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

26

Figura 3 – Potential distribution of the species Tacinga (Cactaceae) in Brazil. (a) T.

funalis, (b) T. inamoena, (c) T. palmadora, (d) T. saxatilis, and (e) T. werneri for 2050,

with the increase of the temperature by 1.5 degrees, using bioclimatic variables

(Isothermality, Mean Temperature of Driest Quarter, Mean Temperature of Warmest

Quarter, Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest

Month and Precipitation of Wettest Quarter).

Fonte: Próprio autor.

Tacinga palmadora currently occurs widely in areas of southeastern STDF, in

northeastern Brazil (Fig. 2c). In 2050, its distribution was predicted to extend, to a lesser

Page 27: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

27

degree, to the savanna near Venezuela (Roraima State) and to the westernmost cerrado areas

(the states of Mato Grosso, São Paulo, Minas Gerais, and Mato Grosso do Sul) throughout the

central-western, southern, and southeastern regions of Brazil (Fig. 3c). Most relevant to the

analyses were the BIOS Precipitation of Wettest Quarter, Annual Precipitation, and

Isothermality.

Tacinga saxatilis representatives currently grow exclusively in Chapada Diamantina and

nearby regions, in the states of Bahia, Pernambuco, and Paraíba (Fig. 2d). In our simulations

for the future, this species became widely distributed throughout the tropical region of Brazil,

in current savanna and Caatinga vegetation in the states of Goiás, Ceará, and Bahia, among

others (Fig. 3d), being influenced largely by the BIO Annual Precipitation.

Tacinga werneri is currently found along the São Francisco River and in the

Chapada Diamantina, Bahia State (Fig. 2e), and will occupy those same areas in 2050,

although with still wider distribution, reaching mainly the states of Rio Grande do Norte,

Ceará, Pernambuco, and Paraíba (Fig. 3e), being influenced largely by Annual Precipitation

and Mean Temperature of Warmest Quarter.

Another relevant factor found in our research was the influence of different soil

types on future projections. Tacinga species are currently found growing predominantly in

Luvisol soils, while our results suggest that, in the future, some of those plants will occupy

habitats with, Ferralsol, planosol and cambisol (Table 1).

Page 28: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

28

Tabela 1 – Projected phytogeographic domains and soil types of Tacinga

species (Cactaceae).

Species Phytogeographical domain Type of soil

Tacinga funalis Savanna STDF Non-calcic brown soils,

latosol

Tacinga

inamoena

Savanna STDF, Rainforest,

Seasonal Forest

Non-calcic brown soils,

latosol, planosol,

cambisol

Tacinga

palmadora

Savanna STDF, Rainforest,

Seasonal Forest

Non-calcic brown soils,

latosol, planosol,

cambisol

Tacinga

saxatilis

Savanna STDF, Rainforest Non-calcic brown soils,

latosol, planosol,

cambisol

Tacinga

werneri

Savanna STDF Non-calcic brown soils,

latosol

Fonte: BFG (2015), WRB (1998) and IBGE (2016) databases.

6 DISCUSSION

Species of the genus Tacinga occur in semiarid regions, in environments with high

temperatures, shallow soils, and low precipitation levels (ZAPPI; TAYLOR, 2018). Its

distribution is exclusive to the phytogeographic domains of savanna STDF (caatinga and

cerrado). Its species are found in eastern Brazil under similar edaphoclimatic and vegetation

conditions. Our simulations sought to determine where their representatives will be

distributed in the future in light of environmental changes.

Tacinga species are currently widely distributed in the semiarid region of Brazil

(REALINI et al., 2015), and their future distributions will aid us in understanding if they will

still occupy those sites in environments prone to desertification, such as Rio Jaguaribe region.

The aforementioned biological model of Tacinga is especially relevant to studies of semiarid

areas in the Neotropics susceptible to desertification because its species (as well as cacti in

general) are easily observed in the field (ARZABE et al., 2018).

Climate change can reduce the chances of regeneration of populations, influencing

the distribution of plants. It is icreased by anthropogenic factors, as reported by Carrillo-

Angeles et al. (2016) for the genus Astrophytum (Cactaceae). They verified the distribution of

Page 29: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

29

the genus by 2020 and 2050, mainly using bioclimatic precipitation variables, which had

greater biological weight, a result similar to the present study.

It was possible to observe that the species T. funalis conserved its location in the

future in its current range due to their high climatic stability. This result suggests that the

specie should have priority for conservation efforts because, as suggested by Saraiva et al.

(2015), it is endemic to the semiarid region and helps protect the soil and avoid erosion.

Our results were similar to those of Ferreira et al. (2016), and indicated that Tacinga

species would show the greatest distribution expansions in areas with high temperatures and

rainfall rates below 1000 mm.y-1, although the results presented here (under the simulated

climatic conditions used) indicated those species would be limited to semiarid areas.

Tacinga inamoena and T. saxatilis showed the suitable range enlargement in relation

to the other taxa, and we attribute that increased occurrence to anthropogenic impacts on

tropical and subtropical environments. Tacinga palmadora showed distribution displacements

that apparently take advantage of natural biological refuges in mountainous areas of the

Chapada Diamantina and near the São Francisco River. According to Franco and Manfrin

(2013), those areas will function as dispersal centers for that species.

The probabilities of occurrence of those three species (Tacinga inamoena, T.

saxatilis, and T. palmadora) were also expanded to regions north of the Amazonian domain,

suggesting that even in areas currently having high annual precipitation levels there will be

locations suitable for Cactaceae, a situation that does not exist today. That situation should

have direct influences on the dynamics of their respective communities, as the projected

environment will favor geographic expansion of xerophytic species.

We observed future species distributions in the area near Venezuela within the

diagonal of dry vegetation that Prado; Gibbs (1993), Pennington et al. (2000), and Neves et al.

(2015) discuss as supporting SDTFs during the Pleistocene. The species Tacinga inamoena, T.

saxatilis, and T. palmadora were projected to grow in that territorial band, and we interpret

those occurrences to exist due to remnants of plants found in the past, during that geological

period.

It is important to highlight that this research focused on the desertification and

climatic oscillations we are currently experiencing, but future biological changes are still

unknown (such as the restricted distribution of species resistant to high temperatures,

facilitation and competition) a problem likewise put forward by Bestelmeyer et al. (2015),

Page 30: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

30

Vieira et al. (2015) and Wang et al. (2017). It was evident here that even Amazonian

environments (for example), with their current high precipitation rates and dense arboreal

vegetation, will be the habitat of cacti species in the future due to savannization resulting from

the anthropogenic forest degradation of recent years, as described by Coe et al. (2017) and

Monteiro et al. (2017).

7 CONCLUSIONS

We conclude that xerophytic species will be expanded mainly in their dispersal

centers, and will be greatly benefited by global warming in relation to their arrangement,

although not all of them extend their arrangement. We emphasize the importance of the

permanent protected area of Chapada Diamantina for the preservation of xerophytic species

that are currently widely distributed throughout the region, especially species at risk of

extinction. We also emphasize the need for more extensive surveys of cacti to be able to

generate models with greater accuracy.

8 ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001. Maria Iracema Bezerra Loiola

thanks CNPq for the productivity grant (Process n° 304099 / 2017-1), and Luciana Silva

Cordeiro acknowledges the PNPD / CAPES grant (Process n° 1810203).

Conflict of interest statement. The authors declare that they have no conflict of interests.

Page 31: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

31

9 CONSIDERAÇÕES FINAIS

Atualmente, todas as espécies do gênero Tacinga (Cactaceae) estão presentes na região

semiárida do leste do Brasil, nos domínios fitogeográficos caatinga e cerrado. De acordo com

as informações extraídas das bases de dados consultados têm-se registros desses táxons nos

estados de Alagoas, Bahia, Ceará, Minas Gerais, Paraíba, Pernambuco, Piauí, Rio Grande do

Norte e Sergipe. No entanto, com base nos resultados encontrados com a modelagem de nicho

no presente estudo, em um futuro próximo, haverá uma maior concentração de espécies na

Bahia. O local é também conhecido como “refúgio da Bahia” por ter sido uma área de

estabilidade durante o período Pleistoceno e Holoceno.

Verificamos ainda que a maioria das espécies estudadas (T. inamoena, T. palmadora e

T. saxatilis) serão beneficiadas com o aumento da temperatura e com a redução da

precipitação, previstos para 2050, pois terão sua distribuição expandida para novas áreas,

além da manutenção das áreas atualmente ocupadas. Apesar disso, algumas dessas plantas

irão manter sua distribuição apenas próxima à Chapada Diamantina (T. funalis e T. werneri).

O resultado similar também foi destacado em trabalhos anteriores com outras espécies

xerófitas, o que vai de acordo com a hipótese que existem áreas de endemismo na região

Neotropical, como o planalto da Borborema e nos depósitos residuais do rio São Francisco,

que proporcionam a manutenção de algumas espécies.

Precisamos nos atentar para a preservação desse centro de endemismo, pois os

mesmos possuem uma grande biodiversidade, necessária para que haja conservação ambiental.

Além disso, os serviços ecossistêmicos são garantidos se essas plantas forem preservadas,

principalmente as endêmicas de distribuição restrita. Assim, sugerimos que a manutenção da

área de proteção permanente desse território é essencial, se quisermos atingir os objetivos

previamente citados, que visam a sustententabilidade.

O presente trabalho fomenta outras perguntas ecológicas, como por exemplo, o estudo

da história biogeográfica de representantes de Tacinga, a fim de promover um maior

entendimento sobre essas plantas. Entender a origem desses táxons pode elucidar questões

sobre como as espécies xerófitas se comportaram durante eras geológicas anteriores a essa.

Existem lacunas do conhecimento científico as quais trabalhos com essa temática podem

preencher, como por exemplo o ordenamento passado, atual ou futuro das espécies de plantas

em diferentes partes do mundo.

Page 32: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

32

REFERÊNCIAS

ABREU, T.A.; PINTO, J.R.R.; MEWS, H.A. Variações na riqueza e na diversidade de

espécies arbustivas e arbóreas no período de 14 anos em uma Floresta de Vale, Mato Grosso,

Brasil. Rodriguésia, v. 65, p. 73–88, 2014.

ANTONELLI, A.; SANMARTÍN, I. 2011. Why are there so many plant species in the

Neotropics? Taxon, v. 60, p. 403–414, 2011.

ANTONELLI, A.; ZIZKA, A.; SILVESTRO, D.; SCHARN, R.; CASCALES-MIÑANA, B.;

BACON, C.D. An engine for global plant diversity: highest evolutionary turnover and

emigration in the American tropics. Frontiers in Genetics, v. 6, p. 1–14, 2015.

ARZABE, A. A.; AGUIRRE, L.F.; BALDELOMAR, M.P.; MOLINA-MONTENEGRO, M.A.

Assessing the geographic dichotomy hypothesis with cacti in South America. Plant Biology,

v. 20, n. 2, p. 399–402, 2018.

AZEVEDO, J.P.S. Ecofisiologia de Erythroxylum pauferrense em uma floresta de brejo de

altitude, nordeste do brasil. Universidade Federal da Paraíba. Trabalho de Conclusão de

Curso, 2017.

BESTELMEYER, B.T., OKIN, G.S.; DUNIWAY, M.C.; ARCHER, S.R.; SAYRE, N.F.;

WILLIAMSON, J.C.; HERRICK, J.E. Desertification, land use, and the transformation of

global drylands. Frontiers in Ecology and the Environment, v. 13, n. 1, p. 28–36, 2015.

BFG - THE BRAZIL FLORA GROUP. Growing knowledge: an overview of seed plant

diversity in Brazil. Rodriguésia, v. 66, p. 1085–1113, 2015.

BRASIL. Ministério da Educação. Fundação Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior. Portaria nº 206, de 4 de setembro de 2018. Diário Oficial da União, Brasília,

nº 172, 5 set. 2018. Seção 1, p. 22. Disponível

em: http://www.imprensanacional.gov.br/materia/-

/asset_publisher/Kujrw0TZC2Mb/content/id/39729251/do1-2018-09-05-portaria-n-206-de-4-

de-setembro-de-2018-39729135. Acesso em: 19 mar. 2018.

BRITO, J.C.; Fahd, S.; Geniez, P.; Martínez-Freiría, F.; Trape, J.F. Biogeography and

conservation of viperids from North-West Africa: an application of ecological niche-based

models and GIS. Journal of Arid Environments, v. 75, n. 11, p. 1029–1037, 2011.

CARRILLO-ANGELES, I.G.; SUZÁN-AZPIRI, H.; MANDUJANO, M.C.; GOLUBOV, J.;

MARTÍNEZ-ÁVALOS, J.G. Niche breadth and the implications of climate change in the

conservation of the genus Astrophytum (Cactaceae). Journal of Arid Environments, v. 124,

p. 310–317, 2016.

CNCFLORA. Tacinga inamoena. In: Lista Vermelha da flora brasileira versão 2012. Centro

Nacional de Conservação da Flora. Disponível em: http://cncflora.jbrj.gov.br/portal/pt-

br/profile/Tacinga inamoena. Acesso em: 10 fev. 2019.

Page 33: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

33

COE, M.T.; BRANDO, PM; DEEGAN, L.A.; MACEDO, M.N.; NEILL, C.; SILVERIO, D.V.

The forests of the Amazon and Cerrado moderate regional climate and are the key to the

future. Tropical Conservation Science, v. 10, p. 1–6, 2017.

CORDEIRO, L.S.; ARAÚJO, F.S.; KOCH, I.; SIMÕES, A.O.; MARTINS, F.R.; LOIOLA,

M.I.B. Paleodistribution of Neotropical species of Erythroxylum (Erythroxylaceae) in humid

and dry environments. Acta Botanica Brasilica, v. 31, p. 645–656, 2017.

COX, C.B.; MOORE, P.D.; LADLE, R. Biogeography: an ecological and evolutionary

approach. John Wiley & Sons, 2016.

CUNHA, S.B.; GUERRA, A.J.T. Degradação ambiental. Geomorfologia e meio ambiente, v.

4, p. 337–379, 1996.

DESCOMBES, P.; PETITPIERRE, B.; MORARD, E.; BERTHOUD, M.; GUISAN, A.;

VITTOZ, P. 2016. Monitoring and distribution modelling of invasive species along riverine

habitats at very high resolution. Biological invasions, v. 18, p. 3665–3679, 2016.

ELITH, J.; HASTIE, T.; DUDÍK, M.; YUNG, E.C.; YATES, J.C. A statistical explanation of

MaxEnt for ecologists. Diversity and distributions, v. 17, n. 1, p. 43-57, 2011.

FAJARDO, A.M.P.; TIMOFEICZYK JUNIOR, R. 2015. Financial Feasibility of Carbon

Sequestration in Serra de Baturité, Ceara state, Brazil in 2012. Floresta e Ambiente, v. 22, p.

391–399.

FERREIRA, P.S.M; LOPES, S.F.; TROVÃO, D.M.B.M. Patterns of species richness and

abundance among cactus communities receiving different rainfall levels in the semiarid region

of Brazil. Acta Botanica Brasilica, v. 30, n. 4, p. 569-576, 2016.

FONSECA, V.L.I.; SILVA, P.N. 2010. As abelhas, os serviços ecossistêmicos e o Código

Florestal Brasileiro. Biota Neotropica, v. 10, p. 60–62.

FRANCO, F.F.; MANFRIN, M.H. Recent demographic history of cactophilic Drosophila

species can be related to Quaternary palaeoclimatic changes in South America. Journal of

Biogeography, v. 40, n. 1, p. 142-154, 2013.

GELVIZ-GELVEZ, S.M.; PAVÓN, N.P.; ILLOLDI-RANGEL, P.; BALLESTEROS-

BARRERA, C. Ecological niche modeling under climate change to select shrubs for

ecological restoration in Central Mexico. Ecological Engineering, v. 74, p. 302–309, 2015.

GENTRY, A.H. Tropical forest biodiversity: distributional patterns and their conservational

significance. Oikos, v. 63, p. 19–28, 1992.

GILLUNG, J.P. Biogeografia: a história da vida na Terra. Revista da Biologia, v. 7, p. 1–5,

2018.

HAFFER, J. Speciation in Amazonian forest birds. Science, v. 165, p. 131–137, 1969.

Page 34: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

34

HAFFER, J. Hypotheses to explain the origin of species in Amazonia. Brazilian Journal of

Biology, v. 68, p. 917–947, 2008.

HAROLD, A.S; MOOI, R.D. Area of endemism: definition and recognition

criteria. Systematic Biology, v. 43, p. 261–266, 1994.

HAUSDORF, B. Units in biogeography. Systematic Biology, v. 51, p. 648-652, 2002.

HERNÁNDEZ-HERNÁNDEZ, T.; BROWN, J.W.; SCHLUMPBERGER, B.O.; EGUIARTE,

L.E.; MAGALLÓN, S. Beyond aridification: multiple explanations for the elevated

diversification of cacti in the New World Succulent Biome. New Phytologist, v. 202, p.

1382–1397, 2014.

HIJMANS, R.J.; CAMERON, S.; PARRA, J.; JONES, P.; JARVIS, A.; RICHARDSON, K.

WorldClim, version 1.3. University of California, Berkeley, USA, 2005.

HIJMANS, R.J.; CAMERON, S.E.; PARRA, J.L.; JONES P.G.; JARVIS, A. Very high

resolution interpolated climate surfaces for global land areas. International Journal of

Climatology, v. 25, p. 1965–1978, 2005.

HUGHEN, K.A.; EGLINTON, T.I.; XU, L.; MAKOU, M. Abrupt tropical vegetation

response to rapid climate changes. Science, v. 304, p. 1955-1959, 2004.

HUGHES, L. Biological consequences of global warming: is the signal already

apparent? Trends in Ecology & Evolution, v. 15, p. 56–61, 2000.

HUGHES, C.E.; PENNINGTON, R.T.; ANTONELLI, A. Neotropical plant evolution:

assembling the big picture. Botanical Journal Linnean Society, v. 171, p. 1–18, 2013.

HUGHES, T.P.; KERRY, J.T.; ÁLVAREZ-NORIEGA, M.; ÁLVAREZ-ROMERO, J.G.;

ANDERSON, K.D.; BAIRD, A.H.; BRIDGE, T.C. Global warming and recurrent mass

bleaching of corals. Nature, v. 543, p. 373–377, 2017.

IBGE. Base de dados de informação sobre solos. Disponível em: https://www.ibge.gov.br/

Acesso em: 06 mar. 2019.

IPCC Climate Change. Mitigation of climate change. Contribution of Working Group III to

the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014.

JARA-ARANCIO, P.; ARROYO, M.T.; GUERRERO, P.C.; HINOJOSA, L.F.; ARANCIO, G.;

MÉNDEZ, M.A. Phylogenetic perspectives on biome shifts in Leucocoryne (Alliaceae) in

relation to climatic niche evolution in western South America. Journal of biogeography,

v. 41, p. 328–38, 2014.

KERR, J.T.; PINDAR, A.; GALPERN, P.; PACKER, L.; POTTS, S.G.; ROBERTS, S.M.;

WAGNER, D.L.. Climate change impacts on bumblebees converge across continents. Science,

v. 349, p. 177–180, 2015.

Page 35: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

35

KIILL, L.H.P.; SANTOS, A.P.B.; MARTINS, C.T.V.D.; SILVA, N.B.G.; SILVA, T.A.

Pollination ecology of the cactus Arrojadoa rhodantha in a seasonal hiper-xerophilous

tropical forest. Sitientibus, v. 12, p. 303–312, 2012.

KOLÁŘ, F.; FUXOVÁ, G.; ZÁVESKÁ, E.; NAGANO, A. J.; HYKLOVÁ, L.; LUČANOVÁ,

M.; MARHOLD, K. Northern glacial refugia and altitudinal niche divergence shape

genome‐wide differentiation in the emerging plant model Arabidopsis arenosa. Molecular

Ecology, v. 25, p. 3929–3949, 2016.

LEAL, I.R.; LOPES, A.V.; MACHADO, I.C.; TABARELLI, M. Interações planta-animal na

Caatinga: visão geral e perspectivas futuras. Ciência e Cultura, v. 70, p. 35–40, 2018.

LI, Q.; ZHANG, C.; SHEN, Y.; JIA, W.; LI, J. Quantitative assessment of the relative roles of

climate change and human activities in desertification processes on the Qinghai-Tibet Plateau

based on net primary productivity. Catena, v. 147, p. 789–796, 2016.

LI, P.S.; THOMAS, D. C.; SAUNDERS, R. M.K. Historical biogeography and ecological

niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological

differentiation in Neotropical-Asian disjunctions and diversification in Asia. BMC

Evolutionary Biology, v. 17, p. 1–18, 2017.

LUEBERT, F.; COUVREUR, T. L.; GOTTSCHLING, M.; HILGER, H. H.; MILLER, J. S.;

WEIGEND, M. Historical biogeography of Boraginales: West Gondwanan vicariance

followed by long‐distance dispersal? Journal of Biogeography, v. 44, p. 158–169, 2017.

MA, K.Y.; CRAIG, M.T.; CHOAT, J.H.; VAN HERWERDEN, L. The historical biogeography

of groupers: Clade diversification patterns and processes. Molecular Phylogenetics and

Evolution, v. 100, p. 21–30, 2016.

MACHADO, M.C.; MENEZES, M.O.T.; SANTOS, M.R.; PRIETO, P.V.; HERING, R.L.O.;

BARROS, F.S.M.; BORGES, R.A.X. Cactaceae. Plantas Raras do Brasil. Conservação

Internacional, Belo Horizonte, p. 118-126, 2009.

MAJURE L.C.; PUENTE, R. Phylogenetic relationships and morphological evolution in

Opuntia s.str. and closely related members of tribe Opuntieae. Succulent Plant Research, v.

8, p. 9–30, 2014.

MENEZES, M.O.T.; ZAPPI, D.C.; MORAES, E.M.; FRANCO, F.F.; TAYLOR, N.P.; COSTA,

I.R.; LOIOLA, M.I.B. Pleistocene radiation of coastal species of Pilosocereus (Cactaceae) in

eastern Brazil. Journal of Arid Environments, v. 135, p. 22–32, 2016.

MIAO, Y.; JIN, H.; CUI, J. Human activity accelerating the rapid desertification of the Mu Us

Sandy Lands, North China. Nature Scientific Reports, v. 6, p. 1–6, 2016.

MILLINGTON, A.C.; WALSH, S.J.; OSBORNE, P. E. GIS and remote sensing

applications in biogeography and ecology. Springer Science & Business Media, 2013.

Page 36: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

36

MOAT, J.; GOLE, T.W.; DAVIS, A.P. Least Concern to Endangered: Applying climate change

projections profoundly influences the extinction risk assessment for wild Arabica

coffee. Global change biology, v. 25, p. 390–403, 2019.

MONTEIRO, Marko. Science and Policies of Deforestation in the Amazon: Reflecting

Ethnographically on Multidisciplinary Collaboration. In: Intercultural Communication and

Science and Technology Studies. Palgrave Macmillan, Cham, p. 79–103, 2017.

MORO, M.F.; LUGHADHA, E.M.; ARAÚJO, F.S.; MARTINS, F.R. A phytogeographical

metaanalysis of the semiarid Caatinga domain in Brazil. The Botanical Review, v. 82, p. 91–

148, 2016.

NEVES, D.M.; DEXTER, K.G.; PENNINGTON, R.T.; BUENO M.L.; OLIVEIRA FILHO,

A.T. Environmental and historical controls of floristic composition across the South American

Dry Diagonal. Journal of Biogeography, v. 42, p. 1566–1576, 2015.

NOBEL, P.S.; BOBICHE, E.G. Environmental Biology. Los Angeles, CA: University of

California Press, 2002.

OSSA, C.G.; MONTENEGRO, P.; LARRIDON, I.; PÉREZ, F. Response of xerophytic plants

to glacial cycles in southern South America. Annals of Botany, v. 10, p. 1–11, 2019.

PACIFICI, M.; FODEN, W.B.; VISCONTI, P.; WATSON, J.E.; BUTCHART, S.H.; KOVACS,

K.M.; CORLETT, R. T. Assessing species vulnerability to climate change. Nature Climate

Change, v. 5, p. 215–224, 2015.

PEIXOTO, M.R.; ZAPPI D.C.; SILVA, S.R.; COSTA, G.M.; AONA, L.Y. Cactus survey at

the Floresta Nacional of Contendas do Sincorá, Bahia, Brazil. Bradleya, v. 34, p. 38–54, 2016.

PENNINGTON, R.T.; PRADO, D.E.; PENDRY, C.A. Neotropical seasonally dry forests and

Quaternary vegetation changes. Journal of Biogeography, v. 27, p. 261–73, 2000.

PETERSON, A.T.; PAPEŞ, M.; EATON, M. Transferability and model evaluation in

ecological niche modeling: a comparison of GARP and Maxent. Ecography, v. 30, p. 550–

560, 2007.

PHILLIPS, S.J.; DUDÍK, M. Modeling of species distributions with Maxent: new extensions

and acomprehensive evaluation. Ecography, v. 31, p. 161–175, 2008.

PRADO, D.E.; GIBBS, P.E. Patterns of species distributions in the dry seasonal forests of

South America. Annals Missouri Botanical Garden, v. 80, p. 902–27, 1993.

PETERSON, A.T. Predicting SPECIES'Geographic Distributions Based on Ecological Niche

Modeling. The Condor, v. 103, p. 599–605, 2001.

R CORE TEAM. Data from R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. Disponível em: https://www.r-project.org/ Acesso em:

Page 37: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

37

09 fev. 2019.

REALINI, M.F.; GONZÁLEZ, G.E.; FONT, F.; PICCA, P.I.; POGGIO, L.; GOTTLIEB, A.M.

Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South

America. Plant Systems Evolution, v. 301, p. 1123–1134, 2015.

RIBEIRO-SILVA, S.; MEDEIROS, M.B.; LIMA, V.V.F.; PEIXOTO, M.R.; AONA, L.Y.S.

Patterns of Cactaceae species distribution in a protected area in the semiarid Caatinga biome

of north-eastern Brazil. Edinburgh Journal of Botany, v. 73, p. 157–170, 2016.

ROSEN, D.E. Vicariant patterns and historical explanation in biogeography. Systematic

Zoology, v. 27, p. 159–188, 1978.

ROSSATO, L.; ALVALÁ, R.C.; MARENGO, J.A.; ZERI, M.; CUNHA, A.P.; PIRES, L.;

BARBOSA, H.A. Impact of soil moisture on crop yields over Brazilian semiarid. Frontiers

in Environmental Sciences, v. 5, p. 1–16, 2017.

SARAIVA, D.D.; SOUSA, K.S.; OVERBECK, G.E. Multiscale partitioning of cactus species

diversity in the South Brazilian grasslands: Implications for conservation. Journal for nature

conservation, v. 24, p. 117–122, 2015.

SIQUEIRA M.F.D. Uso de modelagem de nicho fundamental na avaliação do padrão de

distribuição geográfica de espécies vegetais. Tese (Doutorado em Ciências da Engenharia

Ambiental). Universidade de São Paulo, Brasil, 2005.

SOUZA, T.S.; RIBEIRO, M.S.L. De volta ao passado: revisitando a história biogeográfica das

florestas neotropicais úmidas. Oecologia Australis, v. 21, p. 93–107, 2017.

STEFFEN, W.; BROADGATE, W.; DEUTSCH, L.; GAFFNEY, O.; LUDWIG, C. The

trajectory of the Anthropocene: the great acceleration. The Anthropocene Review, v. 2, p.

81–98, 2015.

TABARELLI, M.; MANTOVANI, W. A regeneração de uma floresta tropical montana após

corte e queima (São Paulo-Brasil). Revista Brasileira de Biologia, v. 59, p. 239–250, 1999.

TAYLOR, N.P.; ZAPPI, D.C. Cacti of Eastern Brazil. Kew: Royal Botanic Gardens, 2004.

THIERS B (continuously updated) Index herbariorum: a global directory of public

herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium.

URBAN, M. C. Accelerating extinction risk from climate change. Science, v. 348, n. 6234, p.

571–573, 2015.

VIEIRA, R.D.S.P.; TOMASELLA, J.; ALVALÁ, R.C.S.; SESTINI, M.F.; AFFONSO, A.G.;

RODRIGUEZ, D.A.; OLIVEIRA, S.B.P. Identifying areas susceptible to desertification in the

Brazilian northeast. Solid Earth, v. 6, p. 347–360, 2015.

Page 38: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

38

WANG, X.; HUA, T.; LANG, L.; MA, W. Spatial differences of aeolian desertification

responses to climate in arid Asia. Global and Planetary Change, v. 148 p. 22–28, 2017.

WERNECK, M.D.S.; SOBRAL, M.E.G.; ROCHA, C.T.V.; LANDAU, E.C.; STEHMANN, J.

R. Distribution and endemism of angiosperms in the Atlantic Forest. Natureza &

Conservação, v. 9 p. 188–193, 2011.

WHITTAKER, R.J.; FERNÁNDEZ-PALACIOS, J.M. Island biogeography: ecology,

evolution, and conservation. Oxford, UK. Oxford University Press, 2007.

ZAPPI, D.C.; RIBEIRO-SILVA, S.; AONA, L.; TAYLOR N. Aspectos ecológicos e Biologia

reprodutiva. In: Ribeiro-Silva S et al. (ed). Plano de Ação Nacional para a Conservação

das Cactáceas - Série Espécies Ameaçadas. Instituto Chico Mendes de Conservação da

Biodiversidade. Brasília, Brasil, 2011.

ZAPPI, D.C.; TAYLOR N. 2018. Cactaceae in Flora do Brasil 2020 em construção. Rio de

Janeiro, Brasil. Jardim Botânico do Rio de Janeiro. Disponível em:

http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/ FB1758. Acesso em: 06 mar. 2019.

ZHANG, H.X.; ZHANG, M.L.; SANDERSON, S.C. Spatial genetic structure of forest and

xerophytic plant species in arid Eastern Central Asia: insights from comparative

phylogeography and ecological niche modelling. Biological Journal of the Linnean Society,

v. 120, p. 612–625, 2016.

Page 39: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

39

ANEXO A - NORMAS DA REVISTA JOURNAL OF PLANT ECOLOGY

General information

Journal of Plant Ecology (JPE) is a peer-reviewed international journal of plant ecology,

which serves as an important medium for Chinese and international ecologists to present

research findings and discuss challenging issues in the broad field of plant ecology. Research

and review articles published in JPE will be of interest to all types of plant ecologists. JPE

includes special issues/features focusing on the frontiers in plant ecology with invited reviews

written by the leading ecologists in the field.

Thank you for your interest in Journal of Plant Ecology. Please read the complete Author

Guidelines carefully prior to submission, including the section on copyright. To ensure fast

peer review and publication, manuscripts that do not adhere to the following instructions will

be returned to the corresponding author for technical revision before undergoing peer review.

Manuscript preparation

Original manuscripts must be provided as Microsoft Word. References, Figure Legends and

Tables should be included in the Word file. The main text should be typewritten using size 12

Times New Roman on one side only of A4 size, aligned left and double-spaced with margins

of at least 3 cm. All pages should be numbered sequentially. Each line of the text should also

be numbered consecutively. Manuscripts should be written in clear, concise and scientific

language, nomenclature and standard international units should be used. Authors are advised

to follow the JPE style carefully (see the sample copy for format). Manuscripts that do not

meet these standards will be returned to authors without reviewing.

Please organize your manuscripts in the following order:

Title page, Abstract, Introduction, Materials and methods, Results, Discussion, Funding,

Acknowledgments, References, Tables, Figures and figure legends, Supplementary data, Title

page

The title page should contain:

(a) the title (not exceeding 100 characters)

(b) the name(s) of the author(s)

Page 40: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

40

(c) the name(s) and address(es) of the institution(s) where the work was carried out, followed

by the contact details of the author to whom correspondence should be sent (address,

telephone, fax, and e-mail).

Any acknowledgements or any footnotes referring to the title, including sources of financial

support, should be inserted into the Acknowledgements section, which precedes the

References. Authors should also supply a running title which will appear at the top of the

page, this should not exceed 50 characters, including spaces.

Abstract

Each paper must begin with a structured abstract of no more than 450 words, including three

parts: Aims, Methods and Important Findings (reviews and forums should

omit Methods). Aimsshould briefly state the context and primary objectives of the

study. Methods should concisely state the location (for field studies) and major techniques

and procedures used in the study. Important Findings should take up no more than half of the

abstract and summarize only the most important results and their significance. Three to

five Key Words should be supplied after the abstract for indexing purposes.

Text

The body of the text should be subdivided into the following main headings:

(a) Introduction should be concise and define the scope of the work in relation to other work

done in the same field.

(b) Materials and methods should be brief but informative enough for reproduction of the

work; when methods published in standard journals are followed without any modification, a

reference to the work should be listed.

(c) Results and Discussion should be presented with clarity and precision.

Funding

This section should list funding sources. The following rules should be followed:

(a) The sentence should begin: ‘This work was supported by …’

(b) The full official funding agency name should be given, i.e. ‘the National Cancer Institute

Page 41: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

41

at the National Institutes of Health’ or simply 'National Institutes of Health' not ‘NCI' (one of

the 27 subinstitutions) or 'NCI at NIH’ – see the full RIN-approved list of UK funding

agencies for details

(c) Grant numbers should be complete and accurate and provided in brackets as follows:

‘[grant number ABX CDXXXXXX]’

(d) Multiple grant numbers should be separated by a comma as follows: ‘[grant numbers ABX

CDXXXXXX, EFX GHXXXXXX]’

(e) Agencies should be separated by a semi-colon (plus ‘and’ before the last funding agency)

(f) Where individuals need to be specified for certain sources of funding the following text

should be added after the relevant agency or grant number 'to [author initials]'.

An example is given here: This work was supported by the National Institutes of Health [P50

CA098252 and CA118790 to R.B.S.R.] and the Alcohol & Education Research Council [HFY

GR667789].

Oxford Journals will deposit all NIH-funded articles in PubMed Central. See Depositing

articles in repositories – information for authors for details. Authors must ensure that

manuscripts are clearly indicated as NIH-funded using the guidelines above.

Acknowledgements

This section may acknowledge contributions from non-authors, and it should include a

statement of any conflicts of interest. Amendments or corrections are not allowed after

publication.

References

We highly recommend the use of a reference software such as EndNote

(http://www.endnote.com) for reference management and formatting (click to download the

JPE Endnote reference style file).

For review articles, there is no limitation on the number of references cited, although we

strongly suggest citing only publications in which original knowledge was presented. For

other types of articles, the maximum number of cited references is 50.

Page 42: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

42

All references in the text should have the authors immediately followed by the date to

facilitate the electronic linkages which are available on-line, for example: (Shen and Ma

2001) or Shen and Ma (2001). If several papers by the same author in the same year are cited,

they should be lettered in sequence (2000a, 2000b), etc. When papers are by more than two

authors they should be cited thus: (Shen et al. 2001).

Only papers published or in press should be cited in the literature list. Unpublished results,

including submitted manuscripts and those in preparation, should be cited as unpublished in

the text. Citation of articles from e-journals and journal articles published ahead of print

should have the author names, year, title, journal title followed by the assigned digital object

identifier (DOI). All citations mentioned in the text, tables or figures must be listed in the

reference list

Names of journals should be abbreviated according to the Serial Sources for the Biosis Data

Base, available in most libraries or from http://www.biosis.org. The list of reference must be

typed double-spaced throughout and checked thoroughly before submission. If the list is not

in the correct form it will be returned to the author for amendment and publication of the

paper may be delayed.

Journals:

Kennedy T, Jones R (1985) Effect of obesity on esophageal transit. Am J Surg 149:177–81.

Chen MJ, Fu YW, Zhou QY, et al. (2015) Simulation of Cd2+ and Zn2+ migration among

water, soil and Paspalum distichum. Environ Sci Technol 38:65–70.

Book:

Long HC, Blatt MA, Higgins MC, et al. (1997) Medical Decision Making. Boston, MA:

Butterworth-Heinemann.

Chapter in book:

Page 43: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

43

Manners T, Jones R, Riley M (1997) Relationship of overweight to haitus hernia and reflux

oesophagitis. In Newman W (ed). The Obesity Conundrum. Amsterdam, The Netherlands:

Elsevier Science, 352–74.

Articles published online but not yet in print:

Qiao D, Chen W, Stratagoules E, et al. (2000) Bile acid-induced activation of activator

protein-1 requires both extracellular signal-regulated kinase and protein kinase C signaling. J

Biol Chem, doi:10.1074/jbc.M908890199.

Conference proceedings:

Hou Y, Qiu Y, Vo NH, et al. (2003) 23-O derivatives of OMT: highly active against H.

influenzae. In: Programs and Abstracts of the Forty-third Interscience Conference on

Antimicrobial Agents and Chemotherapy, Chicago, IL. Abstract F-1187, p.242. American

Society for Microbiology, Washington, DC.

Thesis:

N'tchobo H (1998) Sucrose unloading in tomato fruits. II. Subcellular distribution of acid

invertase and possible roles in sucrose turnover and hexose storage in tomato fruit. PhD

thesis. Laval University, Canada.

Tables

Tables should be self-contained and complement, but not duplicate information in the text.

Tables should be on a separate page, and should be numbered in Arabic numerals with an

appropriate legend at the head. All tables should have three horizontal lines, with the upper

and the lower lines in bold. No vertical lines are allowed (see the sample copy for format).

They should be included in the text file (in the Word file).

Figures

Figures should be self-explanatory and contain as much information as is consistent with

clarity. All figures must carry the figure number in Arabic numerals. Citation in the text

should take the form Fig. 1a etc. The minimum resolution for the figures is 300 dpi (dots per

inch) for tone or colour, 1200 dpi for line art at approximately the correct size for publication.

Page 44: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

44

Colour figures should be CMYK (Cyan-Magenta-Yellow-Black). All figures must be supplied

in electronic format as .TIF.

Line drawings should be clear: faint shading or stippling will be lost upon reproduction and

should be avoided and heavy shading or stippling may appear black. Lines and symbols

should be drawn boldly enough to stand reduction to the desired size. For graphs where

reduction to one-half in linear dimensions is intended, a suitable thickness for the axis would

be 0.3 mm and for the other lines 0.4 or 1.0 mm depending on the complexity of the graph.

The preferred symbols are closed circle, open circle, closed square, open square, closed

triangle, and open triangle and should be no smaller than 2 mm (height/diameter) for

reduction to one-half. The symbols x and + should be avoided.

Photographs not supplied electronically, must be of high quality, printed on glossy paper and

mounted neatly on a thin white card base, leaving a narrow gap between each print. Irregular

and asymmetrically distributed groups of photographs will not be accepted. Individual figures

should be lettered, a, b, c, etc. on the photograph using a lettering set. Other lettering, arrows,

etc. may be put on the photograph by the author; otherwise they should be indicated in the

exact position required on a transparent or translucent self-locating overlay. On no account

should any marks be made on the photograph itself.

Colour figures: If the manuscript is accepted for publication, authors will be asked to cover

the cost of reproduction, which is ¥1500/£170/$240/€200 per colour figure. Colour plates

should be combined to make a single composite figure whenever possible. A scale should be

included; otherwise the scale of the original should be stated in the legends so that the final

scale can be calculated.

Legends: A separate typewritten, double-spaced list of legends of all figures must be supplied

and included in the text file. Each legend should contain sufficient explanation to be

meaningful without cross-referencing. A scale of the original should be included in the legend

unless already indicated in the picture. A description of the symbols used in the figures should

be written out in full. (Please do not include the character symbol in the legend.)

Please be aware that figure legends may be used by search engines for figure searches.

Figure font requirements (see the sample copy for format): Typeface: Arial Figure labels (a, b,

Page 45: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

45

c, etc.) font size: 12 pt, bold Figure caption font size: 12 pt, no bold X-axis, y-axis labels font

size: 12 pt, no bold X-axis, y-axis units: 10 pt, no bold All other text inside figures: 10 pt, no

bold

Cover illustrations will be taken from, or be associated with, an article that appears in the

journal, where possible. Authors wishing to submit a potential cover illustration should

indicate it at the time of submission. The potential cover illustration figures must be supplied

in electronic format as .TIF, and resolution must be above 300 dpi at publication size. Please

supply a short concise caption to appear inside the journal.

For useful information on preparing your figures for publication, go

to http://cpc.cadmus.com/da. Please note that all labels used in figures should be in lower case

in both the figure and the legend. The journal reserves the right to reduce the size of

illustrative material. All micrographs must carry a magnification bar.

Supplementary data

There are facilities for publishing data on the Internet (e.g. appendices, additional tables,

graphics and other material useful for enhancing the understanding of the manuscript) as

supplementary data. This section should include all the legends of the supplementary

materials.

Submission of manuscripts

Manuscripts should be submitted via the web-based submission system.

Suggesting reviewers

Please also include the names of 3–5 individuals that are qualified to review your manuscript.

Indicate the name, institution and email address of each individual. We will try to have at

least one reviewer from the set that you have requested. You may also request a member of

the editorial team that you think is best suited to handle your manuscript.

Cover letters

All authors must include a cover letter when submitting a manuscript to JPE. Cover letters

should include the following sections:

Page 46: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

46

(a) Title, names of authors, and numbers of tables, figures and pages in the main text, and

supplementary materials;

(b) The importance and novelty of the research findings in the study;

(c) Authors need to promise that manuscripts submitted to JPE are considered on the

understanding that they have not been published elsewhere, nor are under consideration for

publication;

(d) In addition, agreement for submission and email address from all the authors are needed.

Language Editing

Particularly if English is not your first language, before submitting your manuscript you may

wish to have it edited for language. This is not a mandatory step, but may help to ensure that

the academic content of your paper is fully understood by journal editors and reviewers.

Language editing does not guarantee that your manuscript will be accepted for publication.

For further information on this service, please click here.

Revised manuscripts

Revised manuscripts should be returned via the online submission system within three months

(major revision) or one month (minor revision) of the date from when the invitation was sent;

revised manuscripts received after this time will be considered as new submissions. Revised

manuscripts should be accompanied by a detailed response letter on how all the concerns of

the editor and referees have been addressed. Please give the exact page number(s),

paragraphs(s) and line number(s) where each revision was made. Please copy this letter in

“Response to reviews” during submission and as well as upload a word file of your response.

Format: Original source files are required to avoid delays if the manuscript is accepted. The

main text must be provided as Microsoft Word. All the changes should be highlighted (in red

colour or with track changes using the “revision mode” in Microsoft Word). References,

Figure Legends and Tables should be included in the Word file.

Figures should be provided as .TIF files. The minimum resolution for the figures is 300 dpi

for tone or colour, 1200 dpi for line art at approximately the correct size for publication.

Colour figures should be CMYK (Cyan-Magenta-Yellow-Black).

Page 47: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

47

Supplementary material for online-only publication

Supplementary data may be submitted for online only publication if it adds value for potential

readers. The hard copy of the manuscript should stand alone, but it should be indicated at an

appropriate point in the text that supplementary material is available on-line. Please name

your supplementary material and cite it within the manuscript as Figure S1, Table S1, Video

S1, etc, and provide a detailed legend.

Electronic files of supplementary material are preferable as one complete .PDF file. If images

are supplied as .GIFs or .JPEGs, the minimum acceptable resolution for viewing on screen is

120 dpi.

Videos: The preferred formats for video clips are .MOV, .MPG, .AVI, and animated .GIF

files. Authors are advised to use a readily available program to create movies so that they can

be viewed easily with e.g., Windows Media Player or QuickTime.

Authors should carefully check the supplementary data as this information is not

professionally copy edited or proofread. Once the manuscript is accepted and has been sent to

production, Authors are no longer allowed to revise the supplementary materials, including at

the proof stage.

Manuscript style

Abbreviations

Standard chemical symbols may be used in the text where desirable in the interests of

conciseness. For long chemical names and other cumbersome terms, widely accepted

abbreviations may be used in the text (e.g. ATP, DNA); the list of standard abbreviations

published by The Biochemical Journal (http://www.biochemj.org/bj/bji2a.htm) is an

acceptable guide. Abbreviations for the names of less common compounds may be used, but

the full term should be given on first mention. It is confusing and unnecessary to use

abbreviations for common English words (e.g. L for light).

Scientific names

The complete scientific name (genus, species, and authority, and cultivar where appropriate)

must be cited for every organism at the first mention. The generic name may be abbreviated to

the initial thereafter except where intervening references to other genera with the same initial

Page 48: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

48

could cause confusion. If vernacular names are employed, they must be accompanied by the

correct scientific name on first use.

Chemical and molecular biology nomenclature

Follow Chemical Abstracts and its indexes for chemical names. The IUPAC and IUBMB

recommendations on chemical, biochemical, and molecular biology nomenclature should be

followed (see http://www.chem.qmw.ac.uk/iupac and http://www.chem.qmw.ac.uk/iubmb).

Units of measurement

The metric system is adopted as standard. The system of units known as 'SI' should be used. If

non-standard abbreviations must be used they should be defined in the text. Units of

measurement should be spelled out except when preceded by a numeral, when they should be

abbreviated in the standard form: g, mg, cm3, etc. and not followed by full stops. Use negative

exponents to indicate units in the denominator (i.e. mmol m-2 s-1).

Numbers up to ten should be spelled out in the text except when referring to measurements.

Numbers higher than ten are to be represented as numerals except at the beginning of a

sentence. Fractions are to be expressed as decimals.

Dates should be cited thus: 7 June 2001 and the 24 hour clock should be used.

Sequence data

Deposition of amino acid sequences of proteins or nucleotide sequences is required before

publication, and the database accession number must be given in the text of the manuscript.

Microarray Gene Expression Data should comply with the minimum information about

microarray experiments standard (MIAME; see http://fged.org/projects/miame/ for more

information.)

Equations

If equations require more than one level of subscript or superscript, please use either

'Microsoft Equation Editor' or 'Math Type'. If anything else is used, the equation has to be re-

typed which makes it vulnerable to errors.

Permission to reproduce figures

Please note that if your manuscript includes any data in tables or figure(s) modified or re-

drawn from another publication, you will need permission from the original publisher to

Page 49: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

49

reproduce it before your manuscript can be published. This includes figures adapted in any

way from other publications. Permission to reproduce figures or data from other publications

must be sought by authors at the time of acceptance. Please note that obtaining copyright

permission could take some time. A copy of the permission document should be sent to the

Production Editor, Journal of Plant Ecology, Oxford University Press, Great Clarendon Street,

Oxford OX2 6DP. Email: [email protected].

To seek copyright permission please contact the copyright permission department of the

relevant journal/publisher.

Proofs

Proofs will be sent electronically to the corresponding author as a .PDF file. The author

should reply to the proof email with their corrections, and should send an annotated PDF.

Corrections should be limited to typographical errors and corrections should be returned

within three days of receipt; otherwise the Editor reserves the right to correct the proofs and to

send the material for publication. This is essential if all the material in a given issue is not to

be delayed by the late receipt of one corrected proof.

Page charges

Manuscripts that are more than ten pages in length when typeset will incur a charge

of £120/$192/€156 per extra page after the tenth page. The first ten pages are free of charge.

Unique URL

On publication of an article, the corresponding author will receive a unique URL that gives

access to both PDF and HTML versions of the paper. The URL links visitors to the JPE site

and the complete version of the paper online with all functionality retained is accessible

regardless of subscription status.

If you would like to subscribe in print, please contact the JPE editorial office

([email protected]).

Licence to publish

Page 50: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

50

It is a condition of publication in the journal that authors grant an exclusive licence to the

Institute of Botany, Chinese Academy of Sciences (IBCAS) and the Botanical Society of

China (BSC). This ensures that requests from third parties to reproduce articles are handled

efficiently and consistently and will also allow the article to be as widely disseminated as

possible. In assigning the licence, authors may use their own material in other publicat ions

provided that the journal is acknowledged as the original place of publication, and Oxford

University Press, on behalf of the Institute of Botany, Chinese Academy of Sciences (IBCAS)

and the Botanical Society of China (BSC), is notified in writing and in advance.

Upon receipt of accepted manuscripts at Oxford Journals authors will be invited to complete

an online copyright licence to publish form.

Please note that by submitting an article for publication you confirm that you are the

corresponding/submitting author and that Oxford University Press ("OUP") may retain your

email address for the purpose of communicating with you about the article. You agree to

notify OUP immediately if your details change. If your article is accepted for publication

OUP will contact you using the email address you have used in the registration process.

Please note that OUP does not retain copies of rejected articles.

Oxford Open articles are published under Creative Commons licences. Authors publishing in

Journal of Plant Ecology can use the following Creative Commons licences for their articles:

Creative Commons Attribution licence (CC-BY)

Creative Commons Non-Commercial licence (CC-BY-NC)

Creative Commons non-Commercial No Derivatives licence (CC-BY-NC-ND)

Please click here for more information about the Creative Commons licences.

Author self-archiving/public access policy

For information about this journal's policy, please visit our Author Self-Archiving policy

page.

Conflict of interest

Page 51: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

51

Journal policy also requires that all authors sign a conflict of interest statement. If the

manuscript is published, such information may be communicated in a note following the text

and reference.

Open access option for authors

Journal of Plant Ecology authors have the option to publish their paper under the Oxford

Open initiative; whereby, for a charge, their paper will be made freely available online

immediately upon publication. After your manuscript is accepted the corresponding author

will be required to accept a mandatory licence to publish agreement. As part of the licensing

process you will be asked to indicate whether or not you wish to pay for open access. If you

do not select the open access option, your paper will be published with standard subscription-

based access and you will not be charged.

Oxford Open articles are published under Creative Commons licences. Authors publishing in

the journal can use the following Creative Commons licences for their articles:

Creative Commons Attribution licence (CC-BY)

Creative Commons Non-Commercial licence (CC-BY-NC)

Creative Commons non-Commercial No Derivatives licence (CC-BY-NC-ND)

Please click here for more information about the Creative Commons licences.

You can pay Open Access charges using our Author Services site. This will enable you to pay

online with a credit/debit card, or request an invoice by email or post. Open Access charges

for Journal of Plant Ecology are:

Standard charge: £1900/ $3040 / €2470

Reduced rate developing country charge*: £950/ $1520 / €1235

Free developing country charge*: £0 / $0 / €0

*A list of qualifying developing countries can be found here.

Please note that these charges are in addition to any page charges that may apply.

Page 52: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS ...repositorio.ufc.br/bitstream/riufc/43708/3/2019_dis_lfsoares.pdf · À minha turma da Geografia 2012.1 da Universidade Estadual

52

Orders from the UK will be subject to the current UK VAT charge. For orders from the rest of

the European Union, OUP will assume that the service is provided for business purposes.

Please provide a VAT number for yourself or your institution and ensure you account for your

own local VAT correctly.

Third-party content in open access papers

If you will be publishing your paper under an Open Access licence but it contains material for

which you do not have Open Access re-use permissions, please state this clearly by supplying

the following credit line alongside the material:

Title of content Author, Original publication, year of original publication, by permission of

[rights holder] This image/content is not covered by the terms of the Creative Commons

licence of this publication. For permission to reuse, please contact the rights holder

Crossref funding data registry

In order to meet your funding requirements authors are required to name their funding

sources, or state if there are none, during the submission process. For further information on

this process or to find out more about the CHORUS initiative please click here.

Crossref funding data registry

JPE is published on a bi-monthly basis. To subscribe or to order a single copy of the journal,

please contact the editorial office at [email protected]. The cost per issue is ¥150, or ¥900 for

an annual subscription. Make sure to inform us if you wish to receive a specific issue or a full

subscription. The editorial office will contact you within several days to arrange for payment.


Recommended