+ All Categories
Home > Documents > Universidade Federal do Rio Grande do Sul – UFRGS ... · June 2011 . Griselda Barrera Galland ....

Universidade Federal do Rio Grande do Sul – UFRGS ... · June 2011 . Griselda Barrera Galland ....

Date post: 17-Dec-2018
Category:
Upload: tranquynh
View: 214 times
Download: 0 times
Share this document with a friend
87
June 2011 Griselda Barrera Galland Universidade Federal do Rio Grande do Sul – UFRGS Instituto de Química Laboratório de Catálise Ziegler-Natta CHALLENGES ON THE SYNTHESIS AND CHARACTERIZATION OF POLYOLEFINS
Transcript

June 2011

Griselda Barrera Galland

Universidade Federal do Rio Grande do Sul – UFRGS Instituto de Química

Laboratório de Catálise Ziegler-Natta

CHALLENGES ON THE SYNTHESIS AND CHARACTERIZATION OF

POLYOLEFINS

PORTO ALEGRE, RIO GRANDE DO SUL, BRAZIL

PORTO ALEGRE, RIO GRANDE DO SUL

UFRGS

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS

Students • Under-graduated (75%) 24.707 • Graduation (25%) 8.415

Master 4.694 Ph D 3.290 Profissional Master 431 33.122

Professors 2.247 Staff 2.460

INSTITUTO DE QUÍMICA

(CHEMICAL INSTITUTE) -UFRGS

Bacharelado em Química (BS in Chemistry)

Química Industrial (Industrial Chemist)

Licenciatura em Química (Degree in Chemistry)

Tecnólogo em Química (Chemical Technologist)

Under-graduated studies:

Graduated studies:

Master degree

Doctorate degree

Professors: 84

Students: undergraduated (470), graduated (161)

Staff: 44

Elementar Analysis (CHN) Nitrogen Adsorption Analysis

Micrometrics Tristar® II 3020

- Gas Chromatograph with Flame Ionization Detector, Varian 3400 - Gas Chromatograph with Electron Capture Detector, Varian 3400 - Gas Chromatograph with Flame Ionization, Shimadzu

Chromatographs

- Light Scattering Spectrophotometer Brookhaven Instruments (BI) 9000

Fluorimeter

- Infrared Spectrophotometer (FTIR) Shimadzu Prestige-21

- High Resolution Mass Spectrometer Micromass QTOF Waters 3200

Shimadzu, model UV1601PC

Ultraviolet Spectrophotometer (UV)

Chemistry Institute Facilities

Nuclear Magnetic Resonance Laboratory

Varian Inova e Varian VNMRs operating at 300MHz 1H, 13C, 31P, 15N, 17O

-DSCQ2000 + RCS90 – Differential Scanning Calorimeter; - AutoDSCQ20 + RCS40 – Differential Scanning Calorimeter; - TGAQ5000IR – Thermogravimetric Analyzer; - SDTQ600 (TGA-DTA-DSC Simultaneous); - DMAQ800 – Dynamic Mechanic Analyzer; - TGA2050 - Thermogravimetric Analyzer; - DSC2010 + RCS and Gas Chromatograph/mass spectrometer(CG-MS) Shimatzu model QP 2010 with interface for TGA – Thermogravimetric Analyzer. - DSC 4, Perkin Elmer, temperature range: -40 to 400 0C - DSC 2910, DuPont, temperature range: -150 to 400 0C - Melt Index, Ceast Junior

Thermal Analysis Sector

- Scanning Electronic Microcope JEOL JSM 5800 - Scanning Electronic Microcope JEOL JSM 6060 - Transmission Electronic Microcope JEOL JEM 1200FxII - Transmission Electronic Microcope JEOL JEM 2010 - X Ray Diffraction Phillips – X´Pert MRD - Confocal Fluorescence Microscope OLYMPUS

Electronic Microscopy Center

SYNTHESIS OF NEW

POST-METALLOCENE

CATALYSTS FOR OLEFIN

POLYMERIZATION

PYRONE COMPLEXES (Maltol Derivates)

Sobota, P.; Przybylak, K.; Utko, J.; Jerzykievicz, L.B.; Pombeiro, A.J.L.; Silva, M.F.G.; Szczegot, K. Chem Eur. J. 2001, 7, 951-958.

Carone, C., De Lima, V.; Albuquerque, F.; Nunes, P.; de Lemos, C.; Dos Santos, J.H.Z.; Galland, G.B.; Stedile, F.C.; Einloft, S.; Basso, N.R.S. J. Molecular Catalysis A: Chem. 2004, 208, 285-290.

Fim, F.C.; Machado, T.; De Sá, D.S.; Livotto, P.R.; Da Rocha, Z.N.; Basso, N.R.S.; Galland, G.B. J. Polym. Sci.: Part A: Polym. Chem., 2008, 46, 3830-3841.

O

O

O

R

M

ClCl

O

OR

OMCl4/THF

M=Ti, ZrO

OOH

R

R= Me, Et

1 2 3 430 C

40 C60 C

0

100

200

300

400

500

Cat

alyt

ic A

ctiv

ities

(K

gPE/

nM.h

.atm

)

1 R=Me; M=Ti

3 R=Me; M=Zr

2 R=Et; M=Ti

4 R=Et; M=Zr

[Zr] = 1µmol Al/Zr = 2500 Cocatalyst=MAO PE = 1.6atm time=1h

O

O

O

R

M

ClCl

O

OR

O

O

O

O

O

OO

ClCl

Ti

[Ti] = 3 × 10-6 mol; MAO (Al/Ti = 1000); solvent: toluene; T = 40°C.

SUPPORTED

Greco, P.P.; Brambilla, R.; Einloft, S.; Stedile, F.C.; Galland, G.B.; Dos Santos, J.H.Z.; Basso, N.R.S. J. Molecular Catalysis A: Chemical , 2005, 240, 61-66

O

O

O

OO

ClCl

Zr SUPPORTED

Zr] = 1x10-6; MAO (Al/Zr= 2500); solvent: toluene;

POLYOLEFIN

NANOCOMPOSITES

BY IN SITU POLYMERIZATION

CHRYSOTILE/POLYETHYLENE

NANOCOMPOSITES

Asbestos Serpentine Group

Amosite

Crocidolite

Antofilite Tremolite

Actinolite

Amphibole group

Chrysotile

Main asbestos mines in the world

Countries Production (m. ton.)

Russia 920.000

China 360.000

Brazil 290.000 Kazakhstan 210.000

Canada 200.000

Zimbabwe 130.000

Others 15.000

Total 2.125.000

http://www.sama.com.br/empresa/seguranca.htm

Chrysotile Characteristics

Main Chemical and Physic properties

Good Mechanical Resistance

Incombustibility

Electrical and Acoustic isolant

Good Chemical Resistance

Flexibility and durability

Thermal Stability No oxidation

Chrysotile

Structure:

Tetrahedral silica layer

+

Octahedral brucite layer

Nanotube

Quím. Nova vol.26 no.5 São Paulo Sept./Oct. 2003.

Fórmula: Mg3(Si2O5) (OH)4

Morphology: Fibrous

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

HO

O O

Si SiOOO O

Si

O

OSi

O O

O

Si

O

OAcid Leached0,1N HCl

Acid Leached 3M HCl

Thermal Treatment 800°C

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

HO

O O

Si SiOOO O

Si

O

OSi

O O

O

Si

O

O

Si SiOOO O

SiO

SiO O

SiO

OH OH OH OH OH

Mg

OH

Mg

OH

Mg

OH

Mg

OHO O

Si SiOOO O

Si

O

OSi

O O

O

Si

O

O

O O O O O

200°C

400°C

Si SiOOO O

SiO

SiO O

SiO

OHO O

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

OH

Mg

OH

HO

O O

Si SiOOO O

Si

O

OSi

O O

O

Si

O

O

O O

Neat Chrysotile

CHRYSOTILE SURFACE TREATMENTS

METHOD A

METHOD C

METHOD B

Transmission Electron Microscopy images of the samples of (a) neat chrysotile, (b) chrysotile modified by the acid treatment 0.1N HCl, (c) chrysotile modified by the acid treatment 3M HCl and (d) chrysotile after thermal treatment.

Mg/Si ratio of the neat and treated chrysotile. Neat

Chrysotile

Chyisotile treat. 0. 1 N

Chrysotile treat. 3M

Chrysotile thermal treat.

Ratio Mg/Si

1.07 0.80 0.0017 1.16

X RAY DIFFRACTION (XRD) OF CHRYSOTILE AND NANOCOMPOSITES

Neat chrysotile Chrysotile modified by the acid treatment 0.1N HCl

Chrysotile modified by the acid treatment 3M HCl Chrysotile after thermal

treatment at 800 C

Amorphous Silica Fosterite Mg2SiO4 Structure

Method Theoretical percentage

of the chrysotile

(%)

Experimental percentage of the chrysotile

(%)

Weight of the

polymer(g)

neat PE 0.0 0.0 6.72 A 1.0 1.72 3.48 B 1.0 0.59 10.07 C 1.0 1.67 3.44

METHOD A:

CHRYSOTILE SUPPORTED ON C2ZrCl2/MAO

METHOD B:

TREATED CHRYSOTILE ADDED DIRECTLY INTO THE REACTOR

METHOD C:

THERMAL TREATED CHRYSOTILE SUPPORTED OVER THE CATALYST.

IN SITU POLYMERIZATION OF PE/CHRYSOTILE NANOCOMPOSITES

Neat polyethylene PE/chrysotile nanocomposite with chrysotile treated with 0.1NHCl

PE/chrysotile nanocomposite with chrysotile treated with 3M HCl

PE/chrysotile nanocomposite with chrysotile treated at 800oC.

SEM images of Polyethylene nanocomposites

ETHYLENE/CHRYSOTILE NANOCOMPOSITES

450

460

470

480

490

500

0 2 4 6 8 10 12

% Chrysotile

Ethy

lene

Deg

rada

tion

Tem

pera

ture

(o C

)

DEGRADATION TEMPERATURE OF PE INCREASED WITH THE AMOUNT OF CHRYSOTILE IN THE NANOCOMPOSITE

MECHANICAL PROPERTIES

POLYETHYLENE BECAME MORE ELASTOMERIC WITH THE INCREASE OF THE AMOUNT OF CHRYSOTILE.

PARCIAL CONCLUSIONS

IT IS POSSIBLE TO OBTAIN POLYETHYLENE/CHRYSOTILE NANOCOMPOSITES BY IN SITU POLYMERIZATION USING METALLOCENE CATALYSTS WITH GOOD ACTIVITIES

THE NANOCOMPOSITES HAVE BETTER THERMAL STABILITY THAN POLYETHYLENE

NANOCOMPOSITES ARE MORE ELASTOMERIC THAN POLYETHYLENE

GRAPHITE / POLYETHYLENE NANOCOMPOSITES

GRAPHITE: CHEMICALLY INERT

HEAT-RESISTANT

ELECTRICAL CONDUCTIVITY

THERMAL CONDUCTIVITY

POLYETHYLENE: HIGH INSULATING PROPERTIES

HIGH DUCTILITY

GOOD PROCESSABILITY

TO LOAD AN INSULATING POLYMER WITH AN ELECTRICALLY CONDUCTING FILLER SHOULD INCREASE THE RANGE OF APPLICATIONS OF PE

APPLICATIONS:

ELECTROMAGNETIC RADIATION SHIELDING

PREVENTION OF CROWN DISCHARGE IN HIGH VOLTAGE CABLES

LOW-TEMPERATURE HEATERS

TRANSDUCERS

PREPARATION OF NANOCOMPOSITES

Melt processing Solvent processing In situ polymerization

Potts, J. R., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S., Polymer, 2011, 52, 5.

MELT PROCESSING

Direct inclusion of the nanofiller into the melted polymer using an extruder.

LLDPE/GNS – Kim, S.; Do, I.; Drzal, L.T. Macromolecular Materials and Engineering 2009, 294, 196-205

HDPE/EG composites - Li, Y. C.; Chen, G. H. Polym Eng Sci 2007, 47,

882-888. iPP/GNS – Polypropylene: Steurer, P.; Wissert, R.; Thomann, R.;

Mulhaupt, R.,Macromol. Rapid Commun., 2009, 30, 316-327.

iPP/GNS – Polypropylene: Kalaitzidou, K.; Fukushima, H.; Drzal, L. T. Composites, Part A 2007, 38, 1675-1682.

SOLVENT PROCESSING

Dispersion of the nanofiller in a suitable solvent, addition of the polymer and removal of the solvent.

HDPE/GNS: Du, J.; Zhao, L.; Zeng, Y.; Zhang, L.; Li, F.; Liu, P. Carbon 2011, 49, 1094-1100.

UHMWPE/GNS: Pang, H.; Chen, T.; Zhang, G.; Zeng, B.; Li, Z-M. Material Letters 2010, 64, 2226-2229.

LDPE/Functionalized Graphene: Wang, J.; Xu, C.; Hu, H.; Wan, L.; Chen, R.; Zheng, H.; Liu, F.; Zhang, M.; Shang, X.; Wang, X. J. Nanopart Res 2011, 13, 869-878.

IN SITU POLYMERIZATION

The nanofillers are mixed with the monomer in the presence of a solvent and then the polymerization reaction proceeds to make

the nanocomposite.

HDPE – High Density Polyethylene: Fim, F. C., Guterres, J. M., Basso, N. R.. S., Galland, G. B., J. Polymer Science, Part A: Polymer Chemistry, 2010, 48, 692.

PP – Polypropylene: Montagna, L.S., Fim, F. C., Galland, G. B., Basso, N. R.. S. Macromolecular Symposia, 2011,299, 48.

Monomer of the a-olefin

Exfoliated nanocomposite

Nanofiller with lamelar structure

CRYSTALINE STRUCTURE OF GRAPHITE

basal plane

Covalent bond

Van der Waals forces

- Layer - Anisotropic

GRAPHENE

PREPARATION OF THE GRAPHENE NANOSHEETS (GNS)

H2SO4/HNO3

1000°C ultrason

(a) Natural graphite flake

(b) Intercalated graphite flake

(c) Expanded graphite (d) Graphite after the ultrason treatment

Sample 2θ (°)

d002 (nm)

C (nm)

Graphite Flake 26.67 0.333 58.38

GNS 26.52 0.336 28.15

Bragg’s Law:

θβλ

cos9,0

=C

θλ dsen2=

Scherrer’s Eq.:

STRUCTURE OF GRAPHITE CRYSTAL - XRD

16 24 32

0

400000

Inten

sity

Graphite flake

GNS

(002)

GRAPHENE NANOSHEETS- TEM

10 nm

200 nm

SYNTHESIS OF THE NANOCOMPOSITES BY IN SITU POLYMERIZATION

do banho

1 10 2 3

4 5 6 7

8

9 1 10

2

3

45 6

7

8

9

controller of temperature and

stirring

2.8 bar of ethylene pressure

Cocatalyst MAO - Al/Zr = 1000

Cp2ZrCl2 –

2 µmol of Zr

graphite treated

with MAO

PARR Reactor

To prevent the metallocene from being deactivated by the functional groups at the

graphene surface.

NANOCOMPOSITES NANOMETRIC - TEM

6.6 wt.% GNS

5.4 wt.% GNS

THERMAL PROPERTIES – DSC and TGA

SAMPLE (vol.%)

Tm

( C)

Xc

(%)

Tonset (°C)

Tmax (°C)

Neat PE 132 74 442±1 480±2

PE/1.4% GNS 132 68 454±1 487±1

PE/5.4% GNS 131 84 471±1 494±2

PE/6.6% GNS 131 71 472±1 495±1

PE/15.3% GNS 131 59 463±1 510±1

0 2 4 6 8 10 12 14 16

480

485

490

495

500

505

510

Degr

adati

on T

empe

ratu

re (o C)

Graphite Content (wt.%)

Increase of thermal stability

DYNAMIC MECHANICAL PROPERTIES

Storage Modulus Mechanical Damping

Storage modulus is similar to stiffness

Sample Tg (°C)

Neat PE -119

PE/1.4% GNS -108

PE/5.4% GNS -108

PE/6.6% GNS -107

-150 -100 -50 0 50 100 1500

500

1000

1500

2000

2500

3000 Neat PE PE/1.4% GNS PE/5.4% GNS PE/6.6% GNS

E' (M

Pa)

Temperature (oC)

-150 -100 -50 0 50 100 150

0,05

0,10

0,15

0,20

0,25

0,30 Neat PE PE/1.4% GNS PE/5.4% GNS PE/6.6% GNS

Tan

Delta

Temperature (oC)

MECHANICAL PROPERTIES

Tensile Strength E = σ/ε

0 1 2 3 4 5 6 7

0

50

100

150

200

250

300

Elon

gatio

n at

brea

k (%

)

GNS Content (wt.%)

0 1 2 3 4 5 6 7520530540550560570580

Elas

tic M

odul

us (M

Pa)

GNS Content (wt.%)

0 10 20 30 400

5

10

15

20

25

Neat PE PE/1.4% GNS PE/5.4% GNS PE/6.6% GNSSt

ress

(MPa

)

Strain (%)

MORPHOLOGY OF FRACTURE SURFACES

A C

B F

E

D

SEM images tensile broken section in the same magnification of A) neat polyethylene, B) PE/1.4% GNS, C) PE/5.4% GNS, D) PE/6.6% GNS; and

in a greater magnification: E) PE/5.4% GNS and F) PE/6.6% GNS.

0 2 4 6 8 10 12 14 160

10x10-13

2x10-12

3x10-121x10-8

2x10-8

3x10-8

Elec

trica

l Con

ducti

vity

(Ohm

-1. c

m-1)

Graphite Content (wt.%)

insulating

semiconductor

ELECTRICAL PROPERTIES – IMPEDANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE

APPLIED TO POLYOLEFINS

13C NMR applied to polymers

Advantages:

Chemical shifts are spread in 200 ppm while 1H are concentrated in 10 ppm

Spectra are simpler due to the inexistence of couplings

Limitations:

Less sensible than 1H (lower magnetic moment (µ1H=2.29; µ13C=0.70) and natural abundance of the isotope (13C =1.1%).Sensibility & µ3, the carbon is less sensible than 1H in a fator of ~64.

It is not quantitative: special conditions of analyses are required

INTRODUCTION

PROBLEMS OF

QUANTITATIVE 13C NMR

ANALYSIS

Relaxation of nuclear spin

α → β energy absorption β → α energy relaxation

The spin population follows the Boltzmann distribution

Nα > Nβ NβNα

= exp(hυ/kT)

E

α

β

T1 relaxation spin-matriz

Quantitative analysis: Relaxation Delay=

5xT1 (α=90o)

Increase analysis times!

Differential relaxation times in 13C NMR Variations in the relaxation times of different carbons

CH2 CH2 CH2CH2CH2CH2 CH2 CH2

CH2

CH2

CH2

_ _ _ _CH CH3

CH3

___ __ (CH2)n ___

CH2

4,42,0

1,11,7

1,1

1,31,3 1,8 2,9

7

78

Ex.: Relaxation times (in sec) of a copolymer ethylene-1-hexene (97/3)

Solution:

•To use time delay 5T1: (ex.: 5x7=35s) VERY HIGH ANALYSIS TIMES

•To use paramagnetic substances (0.05M) Ex. Cr+3 Acetyl acetonate

It can broaden the spectrum

Pham, Quang Tho. Etude de la Microstructure des polymères par RMN 1H - 13C “Liquide”. Annales des Composites, Techniques Analytiques et Caractérisation des Materiaux Macromoléculaires, Paris 16 - 17, pp 49-69, décembre 1985.

Differential Nuclear Overhauser Effect

Secondary effect due to 13C-1H decoupling

Solution: Inversed Gated Decoupling

S/N increases until 3 times

Spectrum without NOE, without increased in sensibility!!!

Most of researchers prefer to use NOE

INFLUENCE OF NOE IN ETHYLENE-1-OCTENE COPOLYMER

13C NMR

NOE increases S/N in 1485/592=2.5 times and

reduces the analyses time in a factor of 629/100=6.3

Adriaensens, PJ., Karssenberg, F.G., Gelan, J.M., Mathot, V.B.F. Polymer 44, 3483-3489 (2003)

Entry NOE S/N ratio Time index

1 No 592 100 2 Yes 1485 100 3 No 1485 629

Time index of 100 correspond to an experimental time of about 2h40min (175 scans)

Using an integral precision of 90% instead of 100% it is possible to increase S/N 31%

It is possible to obtain an integral precision of 90% with a pulse angle of 74o and a pulse delay of 2xT1

Traficante, Daniel D, Concepts in Magnetic Resonance, 3, 13 - 26 (1991).

QUANTITATIVE 13C NMR ANALYSIS

INTRODUCTION

Solution NMR of polyolefins Additional problem

High temperatures of analysis (till 140oC)

Special Solvents

Solvent Boiling Point Vapor Pressure

1,1,2,2-tetrachloroethane-d2 145-146º C 400mm a 124.0o C

760mm a 145.9o C

1,2-dichlorobenzene 179-180º C 400mm 155.8o C

1,2,4-trichlorobenzene 214º C 100mm a 140o C

Benzene-d6 79.1o C 760 mm a 80.1oC

Dalton + Raoult Laws=

Ptotal = Pbenzene + Podcb = Pobenzene x 0.2 + Po

odcb x 0.80 =

760 x 0.2 + 400 x 0.8 = 472 mm

Temperature and Solvents

Sequence Percentage (mol%) Spectrum obtained at 90oC*

Spectrum obtained at 130oC*

Spectrum obtained at

140oC* (1600 scan)

Spectrum obtained at 140oC* (960 scan)

Spectrum obtained at

140oC (Solvent C2Cl4D2, 3968

scan) [PPP] 28,1 37,5 76,8 76,1 75,1 [EPP] 20,7 19,3 5,7 8,0 8,0 [EPE] 7,9 6,3 3,0 2,5 2,7 [EEE] 15,7 14,3 6,4 6,3 6,1 [PEP] 11,0 10,2 4,4 3,5 2,6 [PEE] 16,6 12,5 3,6 3,5 5,5 [P] 56,7 63,1 85,6 86,7 85,8 [E] 43,3 36,9 14,4 13,3 14,2

Influence of Temperature, Solvent and No of transients (EP high amount of P)

Robinson, Danieli. Trabalho de Conclusão, IQ-UFRGS, 07/2010

*Solvent: o-dichloro-benzene +20% C2Cl4D2

Type and amount of branches

Comonomer distribution in the polymer chain (sequences of

comonomers)

Determination of the regio and the stereorregurarity in

poly- α-olefins

Monomer reactivity ratios

Mecanism of the polymerization

INTRODUCTION

NUCLEAR MAGNETIC RESONANCE APPLIED TO POLYOLEFINS:

COPOLYMERS

RANDOM AAABAABBBABAABAA

BLOCK AAAAAAAAABBBBBBB

ALTERNATED ABABABABABABABAB

DIADS (XX, XY, YY)

CH2 CH CH2 CHX X

_ _X

CHCH2CHCH2 CH2 CH CH2 CH_

Y Y Y

XX XY YY

YX

_

XYCHCH2CHCH2 CH2 CH

YY

XX _XXCHCH2CHCH2 CH2 CH

YY

XXCHCH2CH2 CH CH2 CH

X X_XX

XYYXCHCHCH2 CH2 CH

XX

YYYYCHCH2CHCH2 CH2 CH

XX

YYCHCH2CH2 CH CH2 CH

Y Y_YY

_

_CH2

TRIADS

INTRODUCTION

STUDY OF BRANCHED POLYOLEFINS USING 13C NUCLEAR MAGNETIC RESONANCE

SPECTRUM

Chemical Shifts

Integrals

TRIADS EEE PPP EEP PPE PEP EPE

TRIAD: PEP

P P E

= CH2CH2 (ethylene)

= CH2CHCH3

(propylene)

TRIADS COMONOMER AVERAGE SEQUENCE LENGTH

-PEEEEEEP- -EPPPPPE-

nEP = [EEE] + [EEP+PEE] + [PEP] nPE = [PPP] + [EPP+PPE] + [EPE] [PEP] + ½ [EEP+PEE] [EPE] + ½ [EPP+PPE]

nEP =6 nPE =5

TRIADS

MONOMER REACTIVITY RATIOS

rEP = 2 [EE] rPE = 2 X1 [PP] X1 [EP] [PE]

being: [EE] = [EEE] + ½ [EEP + PEE] [PP] = [PPP] + ½ [EPP + PPE] [EP] = [PEP] + ½ [EEP + PEE] [PE] = [EPE] + ½ [EPP + PPE]

X1 = [E] / [P] in the feed

E* + E E*kEE

E* + P E*kEP

P* + E E*kPE

P* + P P*kPP

rEP= kEE/kEP rPE= kPP/kPE

13C NMR OF ETHYLENE-PROPYLENE-α-OLEFINS TERPOLYMERS

OBJETIVE

Determination of all chemical shifts

Quantitative determination of all comonomer sequences

Determination of reaction ratios

Determination of average comonomer sequence lengths

13C NMR OF COPOLYMERS

a) Ethene-propene copolymer, E = 64.7 mol%, P = 35.3 mol %

b) Propene-1-decene copolymer, P = 95.1 mol% D = 4.9 mol%;

c) Ethene-1-decene copolymer, E = 85.6 mol%, D = 14.4 mol %

d) 1-decene homopolymer,

ETHYLENE-PROPYLENE-1-DECENE

13C NMR spectra of Ethene-propene-1-decene terpolymers

E = 86.8 mol%, P = 6.3 mol %, D = 6.9

E = 67.7 mol%, P = 28.9 mol%, D = 3.4 mol%;

E = 12.8 mol%, P = 85.9 mol% D = 1.3 mol %

E = 4.4 mol%, P = 93.3 mol%, D = 2.3 mol%

peak no. chemical shift exp. (ppm)

chemical shift calc. (ppm)

triad assignments

9 24.30 25.08 DED ββΒ8 10 10a 10b 10c 10d

24.35-24-85 24.40 24..57 24.63 24.80

24.58 PEP PPEPP

EPEPE(m) PPEPE+EPEPP

EPEPE(r)

ββΒ1

DED

E = 28.9 mol%, P = 70.2 mol %, D = 0.9

E = 64.7 mol%, P = 35.3 mol%

E = 86.8 mol%, P = 6.3 mol% D = 6.9 mol %

E = 73.6 mol%, P = 9.0 mol%, D = 17.4 mol%

E = 85.6 mol%,D = 14.4 mol%

PPEPP

EPEPEm PPEPE+EPEPP

EPEPEr

Calculated and observed 13Carbon Chemical Shifts and Assignments for Ethylene-propylene and 1-decene Terpolymers

peak no.

chemical shift exp. (ppm)

chemical shift calc.

(ppm)

triad assignments

1 14.13 13.86 EDE EDD+DDE DDD PDP PDD+DDP 1Β8

2 19.40-20.30 19.58

20.61 PPP (rr) PPP(mrrm)

1Β1

3 19.87 19.63 EPE 1Β1

4 20.55 20.12 EPP+PPE 1Β1

5 20.30-21.00 20.90

20.61 PPP(mr+rm) PPP (mmrr)

1Β1

6 21.00-21.50 21.40

20.61 PPP(mmmr+rmmm + rmmr) PPP(mmmr+rmmm)

1Β1

7 21.71 20.61 PPP(mmmm) DPD PPD+DPP 1Β1

8 22.88 22.65 DDP+PDD PDP DDD EDE EDD+DDE 2Β8

9 24.30 25.08 DED ββΒ8

10 10a 10b 10c 10d

24.35-24-85 24.40 24..57 24.63 24.80

24.58 PEP PPEPP

EPEPE(m) PPEPE+EPEPP

EPEPE(r)

ββΒ1

11 11a 11b

26.9-27.1 26.97 27.03

27.52 PDP PDD+DDP DDD PDP(mr) PDP(mm)

7Β8

12 27.15 27.52 EDE EDD+DDE DEE+EED

7Β8 βΒ8

13 13a 13b 13c

27.18-27.43 27.18 27.24 27.41

27.27 EEP+PEE PPEE+EEPP(r) PPEE+EEPP(m)

EPEE+EEPE

βΒ1

14 28.16 -28.53 28.38 PPP DPD DPP+PPD brΒ1

EQUATIONS RELATING TRIADES AND 13C NMR SPECTRUM INTEGRALS

Equations for the quantitative Analysis of Ethylene–Propylene–1-Decene Terpolymers

Equation of triads centered in E

Equation of triads centered in P

Equation of triads centered in D

[EEE] = (I16+I17-I22)/2

[EEP+PEE] = I13

[PEP] = I10

[EED+DEE] = I12-I22+I11

[DED] = I9

[EPE] = I23

[EPP+PPE] = I20

[PPP] = I14-I37+I29-I36

[DPP+PPD]+[DPD] = I37-I29+I36

[PDP] = I29-I34-I36

[DDD] = I36

[DDP+PDD] = I34

[EDE] = I33 ou (I25-(I12-I22+I11)/2)/2

[EDD+DDE] = (2*(I26+I27-I9))/5

Triad sequence distribution of the terpolymers obtained by 13C NMR using the 1-decene concentration in the feed of 0.176 M.

ED 30 EPD 14 EPD 13 EPD 17 EPD 19 EPD 21 EPD 28 EPD 24 PD 33

[EEE] 57.9% 69.7% 64.1% 24.0% 5.7% 3.2% 1.2% 0.3% 0.0%

[EEP+PEE] 0.0% 4.5% 9.3% 27.1% 12.4% 9.7% 4.1% 0.0% 0.0%

[PEP] 0.0% 0.3% 1.0% 8.5% 14.6% 16.6% 9.1% 4.1% 0.0%

[EED+DEE] 23.9% 14.2% 12.0% 6.5% 7.0% 1.7% 0.0% 0.0% 0.0%

[DED] 3.8% 0.6% 0.4% 0.9% 0.8% 0.0% 0.0% 0.0% 0.0%

[EPE] 0.0% 2.3% 5.1% 19.3% 17.5% 11.7% 1.5% 1.5% 0.0%

[EPP+PPE] 0.0% 0.0% 1.2% 5.3% 23.6% 24.8% 16.9% 4.9% 0.0%

[PPP] 0.0% 0.0% 0.0% 2.9% 9.8% 27.0% 64.3% 82.3% 92.3%

[DPP+PPD]+[DPD] 0.0% 0.0% 0.0% 0.0% 1.6% 2.6% 2.1% 4.6% 2.8%

[PDP] 0.0% 0.0% 0.0% 0.0% 0.4% 0.9% 0.8% 2.3% 4.9%

[DDD] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

[DDP+PDD] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

[EDE] 12.3% 7.7% 6.1% 3.6% 4.7% 1.7% 0.0% 0.0% 0.0%

[EDD+DDE] 2.1% 0.7% 0.8% 1.8% 1.9% 0.0% 0.0% 0.0% 0.0%

[E] 85.6% 89.3% 86.8% 67.1% 40.5% 31.3% 14.5% 4.4% 0.0%

[P] 0.0% 2.3% 6.3% 27.6% 52.5% 66.1% 84.8% 93.3% 95.1%

[D] 14.4% 8.4% 6.9% 5.4% 7.0% 2.6% 0.8% 2.3% 4.9%

Comonomer average sequences lengths (nXY) and reactivity ratios (rXY) calculated by 13C NMR

nEP = [EEE]+[EEP+PEE]+[PEP] (EP=)[PEP] + ½ [EEP+PEE] nPE =[PPP]+[EPP+PPE]+[EPE] (PE=)[EPE]+ ½ [EPP+PPE]

nED = [EEE]+[EED+DEE]+[DED] (ED=)[DED]+ ½[EED+DEE] nDE =[DDD]+[EDD+DDE]+[EDE] (DE=)[EDE]+ ½ [EDD+DDE]

nPD =[PPP]+[DPP+PPD]+[DPD] (PD=)[DPD]+½ [DPP+PPD] nDE =[DDD]+[PDD+DDP]+[PDP] (DP=)[PDP] + ½ [DDP+PDD]

rEP = 2 [EE] rED = 2 [EE] rPD = 2 [PP] X1 [EP] X2 [ED] X3 [PD] rPE = 2 X1 [PP] rDE = 2 X2 [DD] rDP = 2 X3 [DD] [PE] [DE] [DP] X1= [E]/[P] in the feed X2= [E]/[D] in the feed X3= [P]/[D] in the feed

[D] = 0.088 M in the liquid phase

nEP nPE rEP rPE rEPrPE nED nDE rED rDE rEDrDE nPD nDP rPD rDP rPDrDP ED26 - - - - - 30.5 1.0 24.3 0.1 2.7 - - - - -

EPD16 32.8 1.0 10.3 0.0 0.0 35.7 1.1 30.2 0.1 3.5 - - - - -

EPD15 13.1 1.1 8.3 0.4 3.2 37.7 1.0 33.8 0.1 2.3 - - - - -

EPD18 2.9 1.2 3.8 0.5 1.8 33.6 1.2 36.0 0.3 11.9 - - - - -

EPD20 1.6 1.8 3.9 0.5 1.9 20.3 1.6 31.2 0.7 22.4 - - - - -

EPD23 1.4 3.3 6.6 0.5 3.3 - - - - - 75.8 1.0 55.4 0.0 0.0

EPD27 1.3 6.5 15.1 0.4 6.0 - - - - - 62.8 1.0 38.2 0.0 0.0

EPD25 1.1 10.8 10.8 0.3 3.7 - - - - - 90.5 1.0 52.4 0.0 0.0

PD32 - - - - - - - - - - 90.4 1.1 33.4 0.7 23.6

ZrCl Cl

rac-EtInd2ZrCl2/MAO

Al/Zr=1500

P=1 atm

SILVA. A. A. da; GALLAND. G. B. Study of propylene-1-butene-ethylene terpolymer and reactor blend by TREF and 13C-NMR. J. Applied Polymer Science. 2001. 80. 1880.

DA SILVA. M.A.. GALLAND. G.B. Synthesis and Characterization of Ethylene-Propylene-1-Pentene Terpolymers. J. Polymer Science:Part A: Polymer Chem.. 2008. 46. 947.

GALLAND. G. B.; ESCHER. F. F. N.. 13Carbon nuclear magnetic resonance of ethylene-propylene-1-hexene terpolymers. J. Polymer Science Part A-Polymer Chemistry. 2004. 42. 2474.

GALLAND. G. B.; SANTOS. J. H. Z. dos; DALL´AGNOL. M.; BISATTO. R.. Study of Ethylene-Propylene-1-Hexene Co- and Terpolymers obtained with homogeneous and supported metallocene catalysts. Macromolecular Symposia. 2006. 245-246. 42. ESCHER. F. F. N.; GALLAND. G. B.; FERREIRA. M.. 13Carbon Nuclear Magnetic Resonance of Ethylene-propylene-1-decene Terpolymers. J. Polymer Science Part A-Polymer Chemistry. 2003. 41. 2531. GALLAND. G. B.; ESCHER. F. F. N.. 13Carbon Nuclear Magnetic Resonance Characterization of ethylene-propylene-1-octadecene terpolymers and comparison with ethylene-propylene-1-hexene and 1-decene terpolymers. Polymer. 2006. 47. 2634.

CHARACTERIZATION OF ETHYLENE-PROPYLENE-α-OLEFIN TERPOLYMERS

BY 13C NMR

Peak Integrals

Type of branch

Amount of branch

BROOKHART CATALYSTS

Galland, G.B.; de Souza, R.F.; Mauler, R.S.; Nunes, F.F. Macromolecules, 1999, 32 1620-1625. Galland, G.B.; Da Silva, L.P.S.; Dias, M.L.; Crossetti, G.L.; Ziglio, C.M,; Filgueiras, C.A.. J. Polym. Sci .: Part A: Polymer Chem., 2004, 42, 2171-2178.

Methyl

Ethyl

Propyl

Butyl

Pentyl

Long

1,4-methyl

1,6-methyl

1,2-ethyl

iso-butyl

2-methyl-hexyl

POLYETHYLENE STRUCTURES OBTAINED WITH DADNi(NCS)2 CATALYST

NN

O

NiBr Br

MAO, toluene

RR = H, CH3, C4H9

poly(α-olefin)

Poly(1-hexene) homopolymers obtained using 1/ΜΑΟ.

13C NMR CHARACTERIZATION OF POLY-α-OLEFINS OBTAINED WITH AN α-KETO-β-DIIMINE NICKEL INITIATOR

1

Azoulay, Jason D., Schneider, Yanika, Galland, Griselda B., Bazan, Guillermo C. Chemical Communications 1996, 6177 - 6179, 2009. Azoulay, Jason D., Rojas, Rene S., Serrano, Abigail V., Ohtaki, Hisashi, Galland, G. B., Wu, Guang, Bazan, Guillermo C. Angewandte Chemie (International Edition), 48, 1089 - 1092, 2009.

Entrya Conditionsb TOFc Mnd PDI Tg

e

1/10 25 °C, 10 mL 1-hexene 356 120 2.0 -56

2/10 0 °C, 10 mL 1-hexene 89 157 1.2 -55

3/12.5f -10 °C, 15 mL 1-hexene 300 120 1.05 -62

[a] µmoL of 1; [b] entries 1-2 carried out in a Schlenk flask in 10 mL toluene at a [1-hexene] = 4 M, In entry 3 [1-hexene] = 0.85 M; [c] hr-1 [d] × 10-3 g mol-1 determined by GPC in o-dichlorobenzene at 135 °C as determined by GPC versus polystyrene standards; Mn values calculated on the basis of TOF are lower than those shown and indicate that the use of polystyrene standards substantially overestimates the Mn for entries 1- 3. [e] oC; [f] In entry 3, the volatiles were removed from a commercially available MAO solution.

13C NMR spectrum of the poly(1-hexene) obtained in entry 1.

Azoulay, Jason D., Bazan, Guillermo C., Galland, Griselda B. Macromolecules, 43,.2794 - 2800, 2010.

Poly(1-hexene) 13C Nuclear Magnetic Resonance results, calculated and observed chemical shifts and assignments.

Peak No

Chem. Shift Calc. (ppm)

Chem. Shift Exp. (ppm)

Assignments Sequences

1 11.36 11.10 1B2 [EBE] 2 13.86 14.15 1B4, 1Bn [EHE]+[HHH]+[HHE+EHH]+[PHH]+[PHE]+[ELE] 3 14.35 14.60 1B3 [EAE] 4 19.63 19.85 1B1 [EPE]

20.21 20.00 2B3 [EAE] 5 20.12 20.30 1B1 [EPH] 6 22.65 22.86 2Bn [ELE] 7 22.90 23.30-

23.45 2B4 [EHE]+[HHH]+[HHE+EHH]+[PHH] ]+[PHE]

8 25.08 24.1-24.4

ββB4 [HEH]

9 27.16 26.51 2B2 [EBE] 10 27.52 26.9-

27.1 βB4 [EEHH+HHEE]

11 27.52 27.17 βB2, βB3, βB4, βBn, (n-1)Bn,

[EEB+BEE]+[EEA+AEE]+[EEH+HEE]+[EEL+LEE]

[E]= [EEE]+[HEH]+[PEE+EEP]+[EEH+HEE]+[EEB+BEE]+[EEA+AEE]+[EEL+LEE]= I16/2+ I8+ I10+I11+I12

[HEH]=I8

[EEH(H)+(H)HEE]= I10 [EEB+BEE]+[EEA+AEE]+[EEH+HEE]+[EEL+LEE] = I11

[EEP+PEE]= I12 [HEEP*]+[PEEP*]=I13/2 [EEE]=I16/2 [EH*H]=I20/2 [P]= [EPE]+[EPH]= I4-I3+I5

[EPE]= I4-I3 [EPH]= I5

[B]=[EBE]=(I1+ I30)/2 [A]=[EAE]=(I3+ I26)/2 [H]= [EHE]+[HHH]+[HHE+EHH]+[PHH]+[PHE]=(I7+I14)/2 or I23-I1-I26+I22-I4+I3+I25 [EHE]=I23-I1-I26 [HHH]+[PHH]=I22-I4+I3 [HHH]= I22-I4+I3-I35

[(H)HHH]= I33

[(E)HHH]= I22-I4+I3- I35-I33

[HHE+EHH]=(E)HHE + (H)HHE= (I25 -I34) [PHH]= I35 [PHE]=I34

[L]= [ELE]=(I6+I21)/2

Equations used in the quantitative analysis of the poly(1-hexene)

Methyl branches

Ethyl branches Propyl branches

Butyl branches

Long branches

13C NMR Spectra of entry 1- 3.

250C

00C

-100C

Sequences

25OC/4M 0OC/4M 10OC/0.85M [E] 48.7% 41.7% 56.5% [HEH] 0.0% 0.0% 8.6% [EEHH+HHEE] 10.9% 14.3% 6.5% [EEB+BEE]+[EEA+AEE]+[EEH+HEE]+[EEL+LEE]+[EEP+PEE] 6.3% 4.8% 15.0% [EEP+PEE] 12.8% 8.1% 10.4% [PEEP*]+[HEEP*] 4.8% 2.7% 0.6% [EEE] 18.6% 14.4% 16.0% [EEP] 7.0% 4.2% 6.4% [EEB]+[EEH]+ [EEA] + [EEL] 15.1% 18.2% 13.9% [EH*H] 1.4% 1.4% 2.0% [P]= [EPE]+[EPH] 11.7% 6.6% 7.1% [EPE] 5.4% 3.3% 4.7% [EPH] 6.2% 3.3% 2.4% [B]=[EBE] 0.3% 0.8% 0.3% [A]=[EAE] 0.7% 0.4% 0.9% [H]= [EHE]+[HHH]+[HHE+EHH]+[PHH]+[PHE] 37.0% 48.6% 33.9% [EHE] 4.4% 4.2% 14.3% [HHH]+[PHH] 14.3% 27.2% 6.0% [HHH]=[(H)HHH+(E)HHH) 10.8% 25.2% 6.0% [(H)HHH] 8.0% 18.0% 2.1% [(E)HHH] 2.8% 7.3% 4.0% [(H)HHE]+EHH 13.5% 12.7% 7.5% [(E)HHE 2.1% 3.2% 4.8% [HHE+EHH]=(E)HHE + (H)HHE+EHH 15.6% 16.0% 12.3% [PHH] 3.5% 2.0% 0.0% [PHE]= 2.7% 1.2% 1.2% [L]= [ELE] 1.7% 2.0% 1.2% [E]+[P]+[B]+[A]+[H]+[L] 100.0% 100.0% 100.0%

Percentage of monomer sequences in mol % of the poly(1-hexene) obtained at different reaction temperatures and concentrations

Butyl branches decrease with the increase of temperature 1,2-insertion becomes less

favored at 25oC

Methyl branches increase with the temperature increase

showing acceleration of 2,6-enchainment and chain working

processes

The significant decrease of the

1,2-insertion of 1-hexene is

attributed to the low concentration

of 1-hexene

LNiP

1 5

4

3

2 61,2-insertionLNi

1 5

4

32

6P

1,2-insertion2,6-enchainment

LNi P

1

5

4

32

62,1-insertion

LNi P

1

5

4

2

6

5'

4'3'

6'

1'

2'

"chain-walking"

1' 2'

3'4'

5'6'

1,2-insertion

LNi P

1

5

4

26

5'

4' 3'

6'

1'2'

3

3LNi

2,6-enchainment

P6'

5'

4'

3'2'

1'

1

5

4

2

6

3

2,6-enchainment

2,1-insertionLNi 5

P

4

2

6

3

1

1,6-enchainmentLNi 15

4

3

26 P

β-hydride elimination

LNi

5

P

4

2

3

1H

6

LNi

154

2P3

LNi

54

2

31H

6

LNi1

54 2

6

3

PLNi

54

2

31H

6

P

1

5

43

2

6

LNiP

1

5

43

2

6

LNiP

Methyl BranchesPHHEPHEEP

Butyl BranchesHHH

HEEP* PEEP* Long BranchesELE

(EEE)n

6

Propyl BranchesEAE

β-hydride elimination

Ethyl BranchesEBE

β-hydride elimination

LNi P

Methyl BranchesEPE

1

54 2

63

(2)(3)

(4) (5)

(6) (7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Proposed mechanism of branch formation

T=-20oC T=-60oC

ISOTACTIC PROPYLENE OBTAINED WITH AN α-KETO-β-DIIMINE NICKEL INITIATOR

13C NMR chemical shifts of regioirregular polypropylene Peak Chemical shift

Exp.(ppm) Chemical shift

Calc.(ppm) Sequence Assignment 1 14.57 16.64 PP*P W Pαγ 7 2 15.72 17.13 PP*P*+PPP*(head-to-head) O Pαβ 4 3 19.80-20.10 20.61 PPP(rr) CH3 3a 19.82 20.61 PPPPP(mrrm) CH3 3b 19.92 19.63 EPE F Pδδ 2

19.63 EPP*E+EP*PE Pγδ 8 19.98 19.61 PPPPP(mrrr) CH3

3c 20.08-20.30 19.61 PPPPP(rrrr) CH3 4 20.69 20.61 PPPPP(mrmr) CH3

P*P*PP+ P*P*PP (tail-to-tail) V Pβγ 6 5 20.86 20.61 PPPPP(mmrm+rmrr) CH3

20.12 EPP+PPE E Pβδ 1 6 21.02 20.61 PPPPP (mmrr) CH3 7 21.15-21.50 20.61 PPPPP(rmmr) CH3 8 21.59 20.61 PPPPP(mmmr) CH3 9 21.82 20.61 PPPPP(mmmm) CH3 10 24.58 24.58 PEP S Sββ 5 11 27.16 27.27 EEPP+PPEE L Sβδ 3 12 27.32 27.52 PPEE (r) A Sβγ 1 13 27.54 27.52 PPEE (m) A Sβγ 1 14 27.73 27.52 PEE+EEPE I Sβγ 2 15 28.2-28.9 28.38 PPP CH

28.72 PPPPP(mmmm) CH 16 29.87 29.96 EEE N Sδδ 3 17 30.29 30.21 EEEP+PEEE M Sγδ 3 18 30.77 30.45 EPP+PPE+ C,J, Tβδ 1,3 19 31.01 30.45

31.53 P*P*PP+ P*P*PP (tail-to-tail)

PP*P U Y

Tβδ Sβαβδ

6 7

Quantitative equations Percentages of sequences obtained from equations

Sequence Calculation from integrals [PPP] I15 [EPP+PPE] I18 [EPE] I20 [EEE] I16/2 [EEP+PEE] I11+ I12+ I13+ I14 [PEP] I10 [PP*P*+PPP*] (I23 +I26)/2 [P*PP+P*P*PP] I19-I1 [PP*P] I1 [EP*PE+EP*PE] I21 mmmm I9 mmmr I8 rmmr I7 mmrr I6 mmrm+rmrr I5-I18 mrmr I4- (I19-I1) rrrr I3c mrrr I3b- I21-I20 mrrm I3a

Sequence -20oC -60oC [PPP] 70.90% 100.00% [EPP+PPE] 12.86% 0.00% [EPE] 0.72% 0.00% [EEE] 0.49% 0.00% [EEP+PEE] 9.15% 0.00% [PEP] 1.50% 0.00% [PP*P*+PPP*] 1.25% 0.00% [P*P*PP]+P*P*PP 1.31% 0.00% [PPP*P] 0.85% 0.00% [EP*PE+EP*PE] 0.98% 0.00% [P] 84.48% 100.00% [E] 11.14% 0.00% [P*] 4.38% 0.00% mmmm 62.7% 85.0% mmmr 19.8% 3.6% rmmr 2.5% 0.9% mmrr 5.0% 3.4% mmrm+rmrr 0.0% 2.1% mrmr 1.8% 1.4% rrrr 2.3% 1.3% mrrr 3.2% 1.2% mrrm 2.8% 1.0% mm 84.9% 89.5% mr+rm 6.8% 6.9% rr 8.3% 3.5% m 88.3% 93.0% r 11.7% 7.0%

Statistical models

Pm σ Pmm Pmr Prr Pmmmm

Enantiomorphic Site model

0.964 0.896 0.069 0.035 0.833

Chain End model 0.930 0.865 0.130 0.005 0.748

Experimental 0.93 0.895 0.069 0.035 0.850

Structure 1

Isolated 3,1-enchainment

(1,2)(3,1)(1,2)

Structure 2

Alternating 3,1-enchainment

(1,2)(3,1)(1,2)(3,1) Structure 3

Successive 3,1 enchainment

(1,2)(3,1)(3,1)

Structure 4

Head to head

(1,2)(1,2)(2,1)(2,1) Structure 5

Isolated 3,1-enchainment after inversion (2,1)(3,1)(1,2)

Structure 6

Tail to tail

(2,1)(2,1)(1,2)(1,2) Structure 7

Head to head +tail to tail

(1,2)(2,1)(1,2)

Structure 8

(3,1)(2,1)(1,2)(3,1)

Possible structures of isotactic regio- irregular polypropylene

Sequence -20oC -60oC

0 82,9% 100,0%

1 7,9% 0,0%

2 0,8% 0,0%

3 1,5% 0,0%

4 1,5% 0,0%

5 1,7% 0,0%

6 1,5% 0,0%

7 1,0% 0,0%

8 1,1% 0,0%

ACKNOWLEGMENTS

STUDENTS:

Adilson Arli da Silva Filho Adriane Gomes Simanke Fernanda Nunes Escher Marco Antonio da Silva

ACKNOWLEGMENTS

COLLABORATIONS:

Prof. Dr. Raul Quijada- Universidad de Chile- Chile

Prof. Dr. René Rojas Guerrero- Universidad Católica de Chile- Chile

Prof.a Dra. Maria Lujan Ferreira- Universidad de Bahia Blanca- Argentina

Prof. Dr. Marcelo Villar- Universidad de Bahia Blanca- Argentina

Prof. Dr. Guillermo Bazan- University of California at Santa Barbara- USA

Prof. Dr. Marcos Lopes Dias- Universidade Federal do Rio de Janeiro- Brazil

Prof. Dr. José Carlos Pinto- Universidade Federal do Rio de Janeiro- Brazil

ACKNOWLEGMENTS

THANK YOU FOR YOUR ATENTION!


Recommended