+ All Categories
Home > Documents > UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan...

UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan...

Date post: 01-Feb-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
37
UNIVERSITI PUTRA MALAYSIA IMPACT OF SALINITY ON SEED GERMINATION AND ANTIOXIDATIVE PROFILE OF TOMATO LEAVES (Solanum lycopersicum L. cv.MT1) ASMA ABUBAKER A. SHANAB FS 2016 23
Transcript
Page 1: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

UNIVERSITI PUTRA MALAYSIA

IMPACT OF SALINITY ON SEED GERMINATION AND ANTIOXIDATIVE PROFILE OF TOMATO LEAVES (Solanum lycopersicum L. cv.MT1)

ASMA ABUBAKER A. SHANAB

FS 2016 23

Page 2: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

IMPACT OF SALINITY ON SEED GERMINATION AND ANTIOXIDATIVE PROFILE OF TOMATO LEAVES (Solanum lycopersicum L. cv.MT1)

By

ASMA ABUBAKER A. SHANAB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of

Master of Science

January 2016

Page 3: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

COPYRIGHT

All materials contained within the thesis, including without limitation text, logos, icons, photograph and all other artworks, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Master of Science

IMPACT OF SALINITY ON SEED GERMINATION AND ANTIOXIDATIVE PROFILE OF TOMATO LEAVES (Solanum lycopersicum L. cv.MT1)

By

ASMA ABUBAKER A.SHANAB

January 2016

Chairman : Rosimah binti Nulit, PhD Faculty : Science Salinity is a serious problem in many parts of the world that limits the productivity of agricultural crops. Even though, it is one of the major abiotic stresses that affect almost every aspect of physiology and biochemistry of plants but at certain amount could be beneficial to plant. Many studies had been done to determine the effects of salt stress towards the morphology, physiology, biochemistry and productivity of tomato plant but study on germination and antioxidant activity on tomato plants is still limited. This work aimed to study the effects of NaCl on the germination, histological of seedling leaves, and antioxidant profiling of Solanum lycopersicum cv. MT1. A 20 surface sterilized of tomato MT1 seeds were germinated in sterilized petri dishes and treated with 6 ml of 1, 3, 5, 10, 15, 30 mM NaCl separately and deionized water used as a control to study the effects of NaCl on tomato seed germination. Plates were sealed with parafilm to prevent evaporation followed by placed in Random Block Design in the growth room at 25˚C and 16/8 h (light / dark) for 10 days. Seeds were considered germinated when radicle had extended at least 2 mm. The water uptake, germination percentage (% GP), seed vigor, salt tolerance, length of hypocotyl and radical, and biomass of seedlings were measured. Results found that the germination of MT1 seed adversely delayed and decreased as NaCl concentration increased. The water uptake, germination percentage, seed vigor and salt tolerance decreased when the concentration of NaCl increased except 3 mM NaCl showed the highest germination percentage (87.5%) and vigor (11.4). The water uptake, seed vigor and salt tolerance decreased when as the increased of NaCl. The response of hypocotyls and radical under NaCl treatment are different which is not significantly (ANOVA, P<0.05) affected the length of hypocotyl but significantly reduced the radical length (ANOVA, P<0.05) except in 3 mM NaCl. NaCl increase the seedling length up to 3 mM (13 cm). Increased NaCl concentration not significantly (ANOVA, P<0.05) reduced the shoot dry weight (ANOVA, P<0.05), on other hand, the root dry weight reduce significantly (ANOVA, P<0.05) as NaCl concentration higher. At day 10, seedling leaves were collected from control, 10 and 30 mM NaCl and fixed for histological studies. Histological of seedlings leaves highly affected by NaCl concentration. The entire structural of histological seedling leaves highly disrupted as NaCl

Page 5: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

ii

concentration increased as can be compared between 10 mM and 30 mM NaCl. The structure of epidermis cells on both epidermal layers totally changed. Moreover, the arrangement of mesophylls tissues was also in disorder. A major reduction in veins tissue dimensions were observed and this lead on its ability to conduct water and nutrients into seedlings system. To study the effects of NaCl to the antioxidant profiling of tomato plant. Four different concentration of NaCl treatment which is 5, 10, 15 and 30 mM and deionized water as a control was used. 21 days old seedlings were planted in the pots containing 1 kg of mix soil (3 top soil: 1 sand). Each treatment has 6 replicates. The seedlings were watered with 100 ml of NaCl and alternate with 100 ml ultra-pure water every 3 days for six weeks. After 6 six weeks, total chlorophyll, total phenolic, flavonoid and proline and anti-oxidative activity were measured. Results showed that NaCl increase total chlorophyll, total phenolic, flavonoid and proline and anti-oxidative activity. Total chlorophyll found higher in 15 and 30 Mm NaCl which is 41.7 mg and 39.6 mg/0.1 g compared with control plant only 24.1 mg/0.1 g. Results showed an increasing of total phenolic, flavonoid, and proline content with increasing of NaCl. The highest amount of phenolic and flavonoid achieved at 15 mM NaCl higher than the control plant and other treatment. Results also found that total proline increase as NaCl increased. 15 and 30 mM NaCl show higher total proline content which is 0.041 and 0.044 mg/0.1g compared with control (0.016 mg/0.1g) and other NaCl treatment. The maximum of DPPH and reducing power activity were observed in the 5 mM NaCl while antioxidant reduced as NaCl increase up to 30 mM NaCl. As conclusion, raising the concentration of NaCl had adversely affected on the germination and early growth of seedlings (except 3 mM NaCl). The histological of MT1 seedlings leaves highly affected by NaCl. Treatment tomato plants with moderate concentration of NaCl able to increase the anti-oxidative properties and activity of tomato plant.

Page 6: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

KESAN KEMASINAN KE ATAS PERCAMBAHAN BIJI BENIH DAN PROFIL ANTIOKSIDAN DAUN TOMATO (Solanum lycopersicum L. cv. MT1)

Oleh

ASMA ABUBAKER A.SHANAB

Januari 2016

Pengerusi : Rosimah binti Nulit, PhD Fakulti : Sains Kemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman. Walaupun, kemasinan salah satu faktor abiotik yang memberi kesan kepada hampir setiap aspek fisiologi dan biokimia tumbuhan tetapi pada amaun tertentu bermenfaat kepada tumbuhan. Kesan tegasan kemasinan terhadap morfologi, fisiologi, biokimia dan produktiviti ke atas tomato telah banyak tetapi kajian ke atas percambahan dan aktiviti antioksidan pada tanaman tomato masih terhad. Kajian ini bertujuan untuk mengkaji kesan NaCl pada percambahan, histologi anatomi, dan profil antioksidan tomato (Solanum lycopersicum cv. MT1). Satu siri kepekatan NaCl iaitu 1, 3, 5, 10, 15, 30 mM dan air ternyahion sebagai kawalan telah digunakan untuk mengkaji kesan NaCl ke atas percambahan benih tomato. Sejumlah 20 biji benih tomato MT1 dimana permukaannya disteril terlebih dahulu disemai di dalam piring petri dan diberi rawatan dengan 6 ml larutan NaCl pada kepekatan 1, 3, 5, 10, 15, 30 mM NaCl dan air ternyahion digunakan sebagai kawalan. Semua piring petri dimeterai dengan parafilm untuk mengelakkan penyejatan dan ditempatkan secara blok rawak dalam bilik kultur pada suhu 25°C dan 16/8 h (terang/gelap) selama 10 hari. Biji benih dianggap bercambah apabila radikel telah tumbuh sekurang-kurangnya 2 mm. Peratusan percambahan (% GP), vigor bijibenih, toleransi terhadap kemasinan, panjang hipokotil dan radikel serta biomas anak benih diukur. Kajian mendapati, percambahan dan vigor biji benih MT1 tomato adalah lambat dan menurun dengan meningkatnya kepekatan NaCl kecuali pada rawatan 3 mM NaCl dimana peratus percambahan (87.5%) and vigor adalah yang tertinggi (11.4). Kajian juga mendapati gerakbalas hipokotil dan radikel terhadap NaCl berbeza dimana NaCl tidak memberikan kesan yang signifikan (ANOVA, P<0.05) ke atas kepanjangan hipokotil dan biomas pucuk tetapi mengurangkan pemanjangan radikel dan biomas akar (ANOVA, P<0.05) kecuali pada rawatan 3 mM NaCl. Pada hari ke sepuluh, daun anak-anak benih daripada kawalan, 10 mM dan 30 mM NaCl telah di awet untuk kajian histologi. Hasil kajian ini juga mendapati histologi daun anak benih sangat dipengaruhi oleh kepekatan NaCl. Keseluruhan struktur histologi daun anak benih tomato berubah apabila kepekatan NaCl meningkat seperti yang ditunjukkan pada kepekatan 10 mM dan 30 mM NaCl. Struktur dan bentuk sel-sel epidermis

Page 7: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

iv

pada kedua-dua lapisan epidermis juga berubah. Kajian juga mendapati susunan kedua-dua jenis tisu mesofil tidak teratur. Di samping itu, pengurangan saiz tisu veina sangat ketara pada rawatan 10 mM dan 30 mM NaCl dan ini mengurangkan keupayaan pengangkutan air dan nutrient ke dalam anak benih. Untuk mengkaji kesan NaCl ke atas profil antioksidan pokok tomato, empat kepekatan NaCl iaitu 5, 10, 15 dan 30 mM dan air ternyahion sebagai kawalan digunakan. Anak benih yang berumur 21 hari ditanam di dalam pot yang mengandungi 1 kg tanah campuran (3 tanah atas:1 pasir). Setiap rawatan mengandungi 6 replikasi. Anak-anak benih disiram dengan 100 NaCl dan diselangi dengan 100 ml air ternyahion setiap 3 hari selama 6 minggu. Jumlah klorofil, jumlah fenolik, flavonoid, prolina dan aktiviti antioksidan diukur. Hasil kajian mendapati rawatan NaCl meningkatkan kandungan klorofil, fenolik, flavonoid dan prolina. Kandungan klorofil didapati tinggi pada rawatan 15 dan 30 mM NaCl iaitu 41.7 mg/0.1g dan 39.6 mg/0.1g berbanding tumbuhan kawalan hanya 24.1 mg/0.1g dan lain-lain rawatan. Jumlah tertinggi fenolik dan flavonoid ditunjukkan pada 15 mM NaCl. Hasil kajian mendapati kandungan prolina meningkat dengan peningkatan NaCl (ANOVA, p<0.05) dimana 15 dan 30 mM NaCl menunjukkan kandungan prolina 0.041 mg/0.1g dan 0.044 mg/0.1g berbanding kawalan hanya 0.016 mg/0.1g. Hasil kajian menunjukkan bahawa aktiviti DPPH dan kuasa penurunan adalah tertinggi dalam 5 mM NaCl dan semakin menurun pada kepekatan NaCl yang tinggi. Kesimpulannya, peningkatan kepekatan NaCl menyebabkan percambahan dan pertumbuhan awal anak benih lambat dan menurun (kecuali pada 3 mM NaCl). NaCl menjejaskan histologi daun anak benih tomato MT1. Rawatan garam dapat meningkatkan nilai antioksidan dan juga aktiviti pokok tomato MT1.

Page 8: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENTS The name of Allah, first and foremost, all praise to Allah Subhanahu wa ta‘ala for bestowing me with health, opportunity, patience and knowledge to complete this thesis smoothly and the peace and blessings of Allah Subhanahu wa ta‘ala be upon Prophet Mohammed (peace be upon him). I would like to express my very great appreciation to my supervisor Dr Rosimah Nulit اfor helping, supporting and guiding me for the completion of this thesis as well for all the knowledge she had pass to me in all aspects of her guidance and supervision enabled me to complete my work successfully. I am indebted to her where, without her gaudiness this study could not be completed smoothly. I am also indebted to Dr. Mashitah Maidin my co-supervisor for her time and advice, as well as for her encouragement. My appreciation and honest thanks are due to all lecturers and staff members in department of Biology. I would like to offer my deep thanks to my husband Marwan for his continuous encouragement and in particular my beloved sons Abdul Malek and Abdul Aziz and my grateful thanks are also extended to my beloved parents and my parents in law for their continuous support and motivation, I pray to Allah to bless them, I would like to offer my deep thanks to my father for his continuous encouragement and helping me, also, I wish to express my sincere gratitude to my sister Sanaa and my brothers for their constant encouragement, love and ever ready to give helping hands. Finally yet importantly, special thanks to my friends for their generous support and encouragement in particular, Mabrokah, Nahid, Atiqah, Azia, Najlaa, Azimah and Mona and others whom not listed along.

Page 9: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

Page 10: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

vii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows: Rosimah binti Nulit, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Chairman) Mashitah Binti Shikh Maidin, PhD Senior Lecturer Faculty of Science Universiti Putra Malaysia (Member)

BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia Date:

Page 11: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

viii

Declaration by graduate student I hereby confirm that: this thesis is my original work; quotations, illustrations and citations have been duly referenced; this thesis has not been submitted previously or concurrently for any other

degree at any other institutions; intellectual property from the thesis and copyright of thesis are fully-owned

by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________ Name and Matric No.: Asma Abubaker A. Shanab, GS36547

Page 12: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

ix

Declaration by Members of Supervisory Committee This is to confirm that: the research conducted and the writing of this thesis was under our

supervision; supervision responsibilities as stated in the Universiti Putra Malaysia

(Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: Name of Chairman of Supervisory Committee:

Rosimah binti Nulit, PhD

Signature:

Name of Member of Supervisory Committee:

Mashitah Binti Shikh Maidin, PhD

Page 13: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i ABSTRAK iii ACKNOWLEDGEMENTS v APPROVAL vi DECLARATION viii LIST OF TABLES xii LIST OF FIGURES xiii LIST OF APPENDICES xiv LIST OF ABBREVATIONS xv CHAPTER 1 INTRODUCTION 1.1 Background of study 1 1.2 Problem statements and objectives 2 2 LITERATURE REVIEW 2.1 Tomato 3 2.1.1 Introduction 3

2.1.2 Solanum lycopersicon L. cv. MT1 3 2.2 Salts in soils and plants 4 2.3 Salinity effects on the production of tomato 5 2.4 Effects of Salt Stress on Plants 6 2.5 Abiotic and biotic stress and their impact on plant

growth and productivity 7

2.6 Salinity Effects on seed germination 8 2.7 Effects of salinity on plant growth 9 2.8 Salinity effects on physiological, biochemical and anti-

oxidative profiling of plants 9

2.8.1 Physiological and biochemical changes as response to salinity

9

2.8.2 Anti-oxidative profiling affected by salinity 10 2.9 Salinity effects on the anatomy of plant 11 3 MATERIALS AND METHODS 3.1 Seed materials and seed sterilization 13 3.2 Preparation of sodium chloride (NaCl) solution 13 3.3 Experimental setup 13

3.3.1 Water uptake 13 3.3.2 The effect of salinity on germination 13

3.3.3 Measurement of growth of tomato seedlings 14 3.4 The effect of salinity on the histological leaves 14 3.4.1 Plant materials 14 3.4.2 Dehydration 14 3.4.3 Paraffin bath 15 3.4.4 Embedding and sectioning 15

Page 14: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

xi

3.4.5 Staining 15 3.4.6 Slides mounting 15 3.5 The effects of NaCl on the tomato plant 15 3.5.1 Salinity treatment 15 3.6 Measurement of chlorophyll a, b and carotenoid 16 3.7 Measurement of total phenolic content 16 3.8 Measurement of flavonoid content 16 3.9 Measurement of proline content 16 3.10 Measurement of antioxidant activity assay 17 3.10.1 DPPH radical scavenging activity 17 3.10.2 Reducing power assay 18

3.11 Analysis of data 18

4 RESULTS 4.1 Water uptake percentage 19 4.2 Germination percentage 19

4.3 Seed vigor 21 4.4 Salt tolerance 21 4.5 Effects of salinity on early seedling growth 22 4.6 The effect of NaCl on histology of tomato seedling

leaves 24

4.7 The effects of NaCl on the photosynthetic pigments 26 4.8 The effects of NaCl on the total phenol, flavonoid and

proline 27

4.9 The antioxidant activity as respond to NaCl 28 4.9.1 2, 2- diphenyl- 1 picrylhydrazyl (DPPH)

Radical-scavenging activity assay 28

4.9.2 Reducing power assay 30 5 DISCUSSION

5.1 Effect of NaCl on germination of tomato seed 32 5.2 Effect of NaCl on the histological of MT1 seedling

leaves 34

5.3 Effect of salinity on anti-oxidative profiling of MT1 tomato plants

34

6 CONCLUSION AND RECOMMENDATION Conclusion 38 Recommendation 38 REFERENCES 39 APPENDICES 56 BIODATE OF STUDENT 73

Page 15: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

xii

LIST OF TABLES

Table

Page

4.1 Effects of NaCl on the water uptake and seed germination of tomato seed

20

4.2 Effects of different levels of salt stress on seed vigor and salt tolerance of tomato

21

4.3 Effects of NaCl on hypocotyl length, radical length, and seedling length of tomato seedlings

23

4.4 Effects of NaCl on shoot and root dry weights of tomato seedlings

24

4.5 Chlorophyll a, chlorophyll b, total chlorophyll and carotenoid on week 6 in tomato plants as respond to different concentration of NaCl

27

4.6 The contents of phenolic, flavonoid, and proline of tomato leaves under different NaCl concentration

28

4.7 IC50 values of MT1 tomato leaves as respond to salinity

29

4.8

Comparison of Reducing Power between different Concentrations of NaCl of tomato leaf extracts at concentration of 10 mg/ml samples

31

Page 16: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

xiii

LIST OF FIGURES

Figure

Page

2.1 Categorization of the world soils in terms of salinity

6

4.1 Germination of tomato seeds under different concentration of NaCl on day 10

20

4.2 Lengths of hypocotyls and radicles of tomato seedlings germinated in NaCl after 10 days of treatment

22

4.3a Cross-sections of the leaves of tomato seedlings in control

25

4.3b Cross-sections of the leaves of tomato seedlings in 10 mM NaCl

25

4.3c Cross-sections of the leaves of tomato seedlings in 30 mM NaCl

26

4.4 DPPH radical scavenging activity of tomato leaves extract under different concentration of NaCl

29

4.5 The reducing power assay of tomato leaf extracts under different concentrations of NaCl

30

Page 17: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

xiv

LIST OF APPENDICES

Appendix

Page

1 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons of Water Uptake.

56

2 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple Comparisons of Germination Percentage.

57

3 One way ANOVA, Tukey HSD and Duncan multiple comparison for Seed Vigor

58

4 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons for Salt Tolerance.

59

5 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons for Shoot, Root and Seedling Length

60

6 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons for Shoot and Root Dry Weight.

63

7 One way ANOVA, Tukey HSD, Tukey B and Duncan Multiple Comparisons for Chlorophyll a, b, total Chlorophyll and Carotenoid.

65

8 One way ANOVA, Tukey HSD, Tukey B and Duncan Multiple comparisons of Flavonoids and Phenolic.

68

9 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons of Proline.

70

10 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons of IC50

71

11 One way ANOVA, Tukey HSD, Tukey B and Duncan multiple comparisons of Reducing Power Assay

72

Page 18: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

xv

LIST OF ABBREVATIONS

% percentage ˚C degree Celsius µl Microliter AlCl3 Aluminium chloride ANOVA Analysis of Variance Ca2+ Calcium ion Cl- Chloride ion Cm Centimetre CO2 Carbon Dioxide Cu Copper DPPH 2, 2- diphenyl-1-picrylhidrazy DPX Diputal petroleum xylene DW Dry weight Fe Iron FW Fresh Weight G Gram Mg Milligram Mg2+ magnesium ion MgCl2 Magnesium chloride mg/µl milligram per microliter mg/l milligram per liter ml Milliliter mM miliMolar Na+ Ammonia Na2co3 Sodium carbonate NaCl Sodium Chloride NADH nicotinamide adenine dinucleotide reduced Nm Nanometre PSI Photosystem I ROS Reactive Oxygen Species v/v volume per volume w/v weight per volume

Page 19: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION 1.1 Background of study Nowadays, the phenomenon of the salinity is one of the most serious problems facing soil and also effecting seed germination and plant growth. It is becoming one of the issues that hamper the economy in most countries of the world. Salinity is a common term used to describe the presence of elevated levels of different salt content such as sodium chloride, magnesium and calcium sulphates in soil and water. It has become a major problem in agriculture as high concentration of minerals in soil that causes salt stress to plant. Salinization of soil is one of the major factors limiting crop reproduction particularly in semi-arid and arid regions of the world (Ahmed, 2009). Salt stress can be defined as excess in ions especially in sodium ions (Na+) and chloride ions (Cl-). This salt stress reduces the ability of the plant to take up water which can reduce the growth rate as well as causes metabolic changes similar to water stress conditions (Munns, 2002). Salinity is a common environmental challenge all around the world. Soil salinity significantly reduces the productivity of economical important plants. Salts in the soil water prevent the growth of plants because of two reasons. First, the presence of salt in the soil solution reduces the ability of the plant to absorb water, and consequently growth rate will be decreased. This is called the osmotic or water-deficit effect of salinity. Secondly, if excessive amounts of salt enter the plant in the transpiration stream, the cells can be damaged in the transpiring leaves and this may cause more reductions in growth. This is called the salt-specific or ion-excess effect of salinity (Yao & Fang, 2009). In general, seed germination is considered as an important stage in plants growth cycle. In fact, it controls the beginning of seedling growth. Salinity factor’s has a critical influence on the seed germination which is the most sensitive step in plant growth (Ahmad et al., 2009) and the seeds exposed to unfavorable conditions like salinity may have to compromise the seedlings development (Albuquerque & Carvalho, 2003). Tomato (Solanum lycopersicum) belongs to the family Solanaceae that includes several additional economically important crops such as potato, pepper and eggplant. Tomato is native to Southern North America, Central and South and it is the most popular and second important frequently consumed vegetable crop grown throughout the world after potato (Dorais et al., 2008). It is recognized as a highly valuable and nutritious food. These days, tomato is one of the major vegetable throughout the world. It is grown both in the open and green house. Moreover, it is fruit contain a number of health-beneficial

Page 20: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

2

compounds, such as high potassium content, iron, vitamins A, B, C and lycopene (Preedy, 2008). 1.2 Problem Statements and Objectives of Study The main aim of this work is to study the effects of salt stress on tomato plant. Many studies had been conducted regarding the effects of salt stress towards growth, physiology and productivity of tomato plant but study on the effect of salinity on seed germination and antioxidant activity of tomato plant in response to salt stress is still limited. Thus, this present research was conducted because seed germination is a critical stage in the life cycle of plants and salt tolerance during germination is crucial for the establishment of plants that grow in saline soils. In addition, study on the effects of NaCl on the germination and antioxidant activity has never been conducted of tomato MT1. Salt stress study also contributes to productivity of agriculture and ways to overcome the problem of salinity in agriculture. This is important to increase food production and fulfill food demand worldwide. The objectives of study are:

1. To study the effects of different concentrations of NaCl on the germination and early seedling growth of tomato.

2. To study the effects of different concentrations of NaCl on the histological leaves of tomato seedlings

3. To study the effects of different concentrations of NaCl on anti- oxidative profiling of tomato plant

Page 21: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

39

REFERENCES Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean

seed by multiple criteria. Crop science, 13(6): 630-633. Abdullah, Z., Khan, M. A., & Flowers, T. (2001). Causes of sterility in seed set

of rice under salinity stress. Journal of Agronomy and Crop Science, 187(1): 25-32.

Abeysinghe, P. D., Triest, L., De Greef, B., Koedam, N., & Hettiarachi, S.

(2000). Genetic and geographic variation of the mangrove tree Bruguiera in Sri Lanka. Aquatic Botany, 67(2): 131-141.

Achakzai, A. (2009). Effect of water stress on imbibition, germination and

seedling growth of maize cultivars. Sarhad Journal of Agriculture, 25(2): 165-172.

Acquaah, G. (2008). Horticulture: principles and practices (No. Ed. 4). Pearson

Education, Inc. Agarwal S, & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress

in Cassia angustifolia. Biologia Plantarum, 48:555-560. Agastian, P., Kingsley, S., & Vivekanandan, M. (2000). Effect of salinity on

photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38(2): 287-290.

Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., & Waraich, E. A. (2009).

Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41(2): 647-654.

Ahmad, S., Khan, N., Iqbal, M., Hussain, A., & Hassan, M. (2002). Salt

tolerance of cotton (Gossypium hirsutum L.). Asian Journal of Plant Sciences, 1(6), 715-719.

Ahmed, S. (2009). Effect of soil salinity on the yield and yield components of

mungbean. Pakistan Journal of Botany, 41(1): 263-268. Akbar, M., & Ponnamperuma, F. (1982). Saline soils of South and Southeast

Asia as potential rice lands. Riche Strategies for the Future. IRRI, Los Banos, Philippines, 265-281.

Akram, M., Ashraf, M. Y., Ahmad, R., Waraich, E. A., Iqbal, J., & Mohsan, M.

(2010). Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pakistan Journal of Botany, 42(1): 141-154.

Alam, S. M., Ansari, R., Mujtaba, S. M. and Shereen, A. (2001). Salinization of

millions of hectares of land continues to reduce crop productivity Severely worldwide. Pakistan Economist, 17: 60-71.

Page 22: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

40

Albuquerque, F., & De Carvalho, N. M. (2003). Effect of type of environmental stress on the emergence of sunflower (Helianthus annuus L.), Soybean (Glycine max (L.) Merril) and maize (Zea mays L.) seeds with different levels of vigour. Seed Science and Technology, 31: 465-469.

Alebrahim, M. T., Janmohammadi, M., Sharifzade, F. and Tokasi,. S. (2008).

Evaluation of salinity and drought stress effects on germination and early growth of Maize inbred lines (Zea mays L.). Electronic Journal of Crop Production, 1(2): 35-43.

Ali, H. E. M., & Ismail, G. S. M. (2014). Tomato fruit quality as influenced by

salinity and nitric oxide. Turkish Journal of Botany, 38: 122-129. Ali, R. M., & Abbas, H. M. (2003). Response of salt stressed barley seedlings

to phenylurea. Plant Soil and Environment, 49 (4):158-162. Ali, Y., Aslam, Z., Ashraf, M., & Tahir, G. (2004). Effect of salinity on chlorophyll

concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science and Technology, 1(3): 221-225.

Allen, A. (2008). A passion for tomatoes. Smithsonian magazine. Al-Mutawa, M. (2003). Effect of salinity on germination and seedling growth of

chickpea (Cicer arietinum L.) genotypes. International Journal of Agriculture and Biology, 5(3): 226-229.

Al-Shara, Y. (2010). Effect of salinity and irrigation frequency on seed

germination, seedling growth and mineral content of five forest tree species. Ph.D.Thesis. Faculty of Forestry, University of Khartoum, Sudan.

Al-Zhrani, M. G. (1996). Effect of drought and salinity on the germination and

growth of Sweet Basel (Ocimum basilicum L.). M.Sc.Thesis, Faculty of Science, King Abdulaziz University, Saudi Arabia.

Anonymous, (2009). Global Statistics. http://www.geohive.com. Accessed on 9

August 2009. AR, S. S., & Saleh, N. (2011). Inhibitory Effect of Kanamycin on In Vitro Culture

of Lycopersicon esculentum Mill cv. Mt11. Journal Of Agrobiotechnology, 1, 79-86.

Aroca, R., Ruiz-Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García-Mina, J.

M., Pozo, M. J., & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 170(1): 47-55.

Page 23: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

41

Ashagre, H., Hamza, I., Fasika, E., & Temesgen, F. (2013). Effect of salinity stress on germination and seedling vigour of chickpea (Cicer arietinum L.) cultivars. Academia Journal of Agricultural Research, 1(9): 161-166.

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance

using antioxidants as markers. Biotechnology advances, 27(1): 84-93. Ashraf, M., McNeilly, T., & Bradshaw, A. (1986). The response to NaCl and

ionic content of selected salt–tolerant and normal lines of three legume forage species in sand culture. New phytologist, 104(3): 463-471.

Ashraf, M., & Wu, L. (1994). Breeding for salinity tolerance in plants. Critical

Reviews in Plant Sciences, 13(1): 17-42. Astorga, G. I., & Alcaraz-Meléndez, L. (2010). Salinity effects on protein

content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electronic journal of biotechnology, 13(5): 13-14.

Atak, M., Kaya, M. D., Kaya, G., Cikili, Y., & Ciftci, C. Y. (2006). Effects of NaCl

on the germination, seedling growth and water uptake of triticale. Turkish Journal of Agriculture and Forestry, 30(1): 39-47.

Ayaz, F. A., Kadioglu, A., & Turgut, R. (2000). Water stress effects on the

content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Canadian Journal of Plant Science, 80(2), 373-378.

Baâtour, O., Mahmoudi, H., Tarchoun, I., Nasri, N., Trabelsi, N., Kaddour, R.,

Lachaâl, M. (2013). Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots. Journal of the Science of Food and Agriculture, 93(1): 134-141.

Bates, L., Waldren, R., & Teare, I. (1973). Rapid determination of free proline

for water-stress studies. Plant and Soil, 39 (1): 205-207. Bettaieb, I., Sellami, I., H, Bourgou, S., Limam, F., Marzouk, B. (2011) Drought

effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum, 33:1103–1111

Bhattacharjee, S. (2008). Triadimefon pretreatment protects newly assembled

membrane system and causes up-regulation of stress proteins in salinity stressed Amaranthus lividus L. during early germination. Journal Environmental Biology, 29: 805-810.

Bhowmik, D., Kumar, K.P.S, Paswan, S., & Srivastava, S. (2012). Tomato-A

natural medicine and its health benefits. Journal of Pharmacognosy and Phytocemistry, 1(1): 33-43.

Page 24: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

42

Binzel, M. L., Hasegawa, P. M., Handa, A. K., & Bressan, R. A. (1985). Adaptation of tobacco cells to NaCl. Plant Physiology, 79(1): 118-125.

Blaylock, A. D. (1994). Soil salinity, salt tolerance, and growth potential of

horticultural and landscape plants: University of Wyoming, Cooperative Extension Service, Department of Plant, Soil, and Insect Sciences, College of Agriculture.

Blum, A. (1996). Crop responses to drought and the interpretation of

adaptation. Plant Growth Regulation, 20(2): 135-148. Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to

environmental stresses. The plant cell, 7(7): 1099-1111. Bolarín, M. C., Santa-Cruz, A., Cayuela, E., & Perez-Alfocea, F. (1995). Short-

term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. Journal of Plant Physiology, 147(3): 463-468.

Borgognone, D., Cardarelli, M., Rea, E., Lucini, L., Colla, G. (2014). Salinity

source-induced changes in yield, mineral composition, phenolic acids and flavonoids in leaves artichoke and cardoon in floating system. Journal of the Science of Food and Agriculture, 94(6): 1231-1237.

Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical

method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1): 25-30.

Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination

and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2): 71-76.

Caicedo, A., & Peralta, I. (2013). Basic information about tomatoes and the

tomato group. Genetics, Genomics and Breeding of Tomato. Edited by Liedl, BA; Labate, JA, 1-36.

Carvajal, M., Martínez, V., & Alcaraz, C. F. (1999). Physiological function of

water channels as affected by salinity in roots of paprika pepper. Physiologia plantarum, 105(1): 95-101.

Çavuşoğlu, K., Kiliç, S., & Kabar, K. (2008). Effects of some plant growth

regulators on leaf anatomy of radish seedlings grown under saline conditions. Journal of Applied Biological Sciences, 2(2): 47-50.

Çavuşoğlu, K., Kılıç, S., & Kabar, K. (2007). Some morphological and

anatomical observations during alleviation of salinity (NaCI) stress on seed germination and seedling growth of barley by polyamines. Acta physiologiae plantarum, 29(6): 551-557.

Page 25: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

43

Chartzoulakis, K., Patakas, A., & Bosabalidis, A. (1999). Changes in water relations, photosynthesis and leaf anatomy induced by intermittentdrought in two olive cultivars. Environmental and Experimental Botany, 42(2): 113-120.

Chaves, M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought

and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560.

Cheema, D., & Dhaliwal, M. (2005). Hybrid tomato breeding. Journal of New

Seeds, 6(2-3): 1-14. Chehregani, A., Mohsenzade, F., & Ghanad, M. (2011). Male and female

gametophyte development in Cichorium intybus. International Journal of Agriculture and Biology, 13, 603-606.

Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant

Science, 168(1), 241-248. Córdoba, A., Seffino, L. G., Moreno, H., Arias, C., Grunberg, K., Zenoff, A., &

Taleisnik, E. (2001). Characterization of the effect of high salinity on roots of Chloris gayana Kunth: carbohydrate and lipid accumulation and growth. Grass and Forage Science, 56(2): 162-168.

Cuartero, J., Bolarin, M., Asins, M., & Moreno, V. (2006). Increasing salt

tolerance in the tomato. Journal of Experimental Botany, 57(5): 1045-1058.

Daneshmand, F., Arvin, M. J., & Kalantari, K. M. (2010). Physiological

responses to NaCl stress in three wild species of potato in vitro. Acta physiologiae plantarum, 32(1): 91-101.

Daoud, S., Koyro, H. W, Harrouni, M. C. (2001). Salinity tolerance of beta

vulgaris ssp. Maritima I. Biomass production and osmotic adjustment. In H. Lieth, (Ed). Cash Crop halophytes: Recent studies. Kluwer academic publishers. Dordrecht, 41-49.

Darwish, E., Testerink, C., Khalil, M., El-Shihy, O., & Munnik, T. (2009)

Phospholipid signaling responses in salt-stressed rice leaves. Plant and Cell Physiology, 50(5): 986-997.

De Felipe, M., & Sanchez Conde, M. (1984). Mineral composition and

ultrastructure of leaves of tomato plants (Lycopersicon esculentum Mill.) subjected to different osmotic pressures and calcium levels. Anales de Edafologia y Agrobiologia, 43:269-282.

Dhindsa, R., S. & W. Matowe. (1981). Drought tolerance in two mosses:

Correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 32: 79-91.

Page 26: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

44

Department of Agriculture (1999). Planting area of vegetable crops in Peninsular Malaysia. http://agrolink.moa.my/doa. Accessed on 14 May 2002.

Desingh, R., & Kanagaraj, G. (2007). Influence of salinity stress on

photosynthesis and antioxidative systems in two cotton varieties General and Applied Plant Physiology, 33(3-4): 221-234.

Dhanapackiam, S., & Ilyas, M. M. (2010). Effect of salinity on chlorophyll and

carbohydrate contents of Sesbania grandiflora seedlings. Indian Journal of Science and technology, 3(1): 64-66.

Dionisio-Sese, M. L., & Tobita, S. (2000). Effects of salinity on sodium content

and photosynthetic responses of rice seedlings differing in salt tolerance. Journal of Plant Physiology, 157(1): 54-58.

Dixon, R.A. and N.L. Paiva. (1995). Stress induced phenylpropanoid

metabolism. Plant Cell, 7: 1085-1097. Doganlar, Z. B., Demir, K., Basak, H., & Gul, I. (2010). Effects of salt stress on

pigment and total soluble protein contents of three different tomato cultivars. African Journal of Agricultural Research, 5(15): 2056-2065.

Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum

lycopersicum) health components: from the seed to the consumer Phytochemistry Reviews, 7(2): 231-250.

Egan, T. P., & Ungar, I. A. (1998). Effect of different salts of sodium and

potassium on the growth of Atriplex prostrata (Chenopodiaceae) Journal of Plant Nutrition, 21(10): 2193-2205.

Egli, D., & Rucker, M. (2012). Seed vigor and the uniformity of emergence of

corn seedlings. Crop science, 52(6): 2774-2782. Evans, J., & Loreto, F. (2000). Acquisition and diffusion of CO2 in higher plant

leaves. In ‘Photosynthesis: physiology and metabolism’.(Eds RC Leegood, TD Sharkey, S von Caemmerer) pp. 321–351: Kluwer Academic Publishers: The Netherlands.

Evelin, H., Kapoor, R., & Giri, B. (2009). Arbuscular mycorrhizal fungi in

alleviation of salt stress: a review. Annals of botany, 104(7): 1263-1280.

FAMA. (2002). Harga Borong Sayur-sayuran di Semenanjung, Malaysia. FAOSTAT.(2012). http://faostat. Fao.org/site/567/ Desktop Default. aspx? Page

ID =567#anor?PageID=5673ancr. Access in 14 May 2012. Fedina, I., Georgieva, K., & Grigorova, I. (2002). Light-dark changes in proline

content of barley leaves under salt stress. Biologia Plantarum, 45(1): 59-63.

Page 27: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

45

Foolad, M. (2004). Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue and Organ Culture, 76(2): 101-119.

Foolad, M., & Lin, G. (1997). Genetic potential for salt tolerance during

germination in Lycopersicon species. HortScience, 32(2): 296-300. Foolad, M., & Lin, G. (1998). Genetic analysis of low‐temperature tolerance

during germination in tomato, Lycopersicon esculentum Mill. Plant breeding, 117(2): 171-176.

Fung, L., Wang, S., Altman, A., & Hütterman, A. (1998). Effect of NaCl on

growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecology and Management, 107(1): 135-146.

Gairola, K., Nautiyal, A., & Dwivedi, A. (2011). Effect of temperatures and

germination media on seed germination of Jatropha curcas Linn Advanced Biomedical Research, 2, 66-71.

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D.,

Muir, J. F., Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. science, 327(5967): 812-818.

Greenway, H., & Munns, R. (1980). Mechanisms of salt tolerance in

nonhalophytes. Annual review of plant physiology, 31(1): 149-190. Grieve, C., & Suarez, D. (1997). Purslane (Portulaca oleracea L.): a halophytic

crop for drainage water reuse systems. Plant and Soil, 192(2): 277-283.

Hakim, M., Juraimi, A. S., Begum, M., Hanafi, M., Ismail, M. R., & Selamat, A.

(2010). Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9(13): 1911-1918.

Hamada, A. M. (1996). Effect of NaCl, water stress or both on gas exchange

and growth of wheat. Biologia plantarum, 38(3): 405-412. Hanen, F., Ksouri, R., Megdiche, W., Trabelsi, N., Boulaaba, M., & Abdelly, C.

(2008). Effect of salinity on growth, leaf-phenolic content and antioxidant scavenging activity in Cynara cardunculus L biosaline agriculture and high salinity tolerance (pp. 335-343): Springer.

Harborne, J. (1989). General procedures and measurement of total phenolics.

Methods in plant biochemistry, 1, 1-28. Harrouni, M., Daoud, S., & Koyro, H.-W. (2003). Effect of seawater irrigation on

biomass production and ion composition of seven halophytic species in Morocco Cash Crop Halophytes: Recent Studies (59-70): Springer.

Page 28: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

46

Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. Ecophysiology and responses of plants under salt stress (pp. 25-87): Springer.

Haque, S. A. (2006). Salinity problems and crop production in coastal regions

of Bangladesh. Pakistan Journal of Botany, 38(5), 1359-1365. Higbie, S. M., Wang, F., Stewart, J. M., Sterling, T. M., Lindemann, W. C.,

Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy. 10: 1155-1167.

Holmberg, N., & Bülow, L. (1998). Improving stress tolerance in plants by gene

transfer. Trends in plant science, 3(2): 61-66. Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms

in glycophytes: An overview with the central focus on rice plants. Rice, 5: 1- 11.

Hu, Y., Fromm, J., & Schmidhalter, U. (2005). Effect of salinity on tissue

architecture in expanding wheat leaves. Planta, 220(6): 838-848. Hu, Y., & Schmidhalter, U. (1997). Interactive effects of salinity and

macronutrient level on wheat. II. Composition. Journal of Plant Nutrition, 20(9): 1169-1182.

Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant

capacity assays. Journal of agricultural and food chemistry, 53 (6): 1841-1856.

Huang, J., & Redmann, R. (1995). Responses of growth, morphology, and

anatomy to salinity and calcium supply in cultivated and wild barley Canadian Journal of Botany, 73(12): 1859-1866.

Hussein, M., Abo-Leila, B., Metwally, S., & Leithy, S. (2012). Anatomical

structure of Jatropha leaves affected by proline and salinity conditions Journal of Applied Sciences Research (January), 8: 491-496.

Hwang, Y.-H., & Chen, S.-C. (1995). Anatomical responses in Kandelia candel

(L.) Druce seedlings growing in the presence of different concentrations of NaCl. Botanical Bulletin of Academia Sinica, 36: 181-188.

International Seed Testing Association. (1995). Understanding seed vigour.

Retrieved April 15 ,2014 from https://www.seedtest.org/upload/prj/product/. Understanding Seed Vigour Pamphlet. Pdf.

Page 29: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

47

Isla, R., Aragüés, R., & Royo, A. (1998). Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crops Research, 58(2): 97-107.

Jamil, M., DEOG BAE, L., KWANG YONG, J., ASHRAF, M., SHEONG CHUN,

L., & EUI SHIK, R. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. Journal of Central European Agriculture, 7(2): 273-282.

Jamil, M., Lee, K. J., Kim, J. M., Kim, H.-S., & Rha, E. S. (2007). Salinity

reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola, 64(2): 111-118.

Jayaprakasha, G. K., Negi, P. S., Sikder, S., Mohanrao, L. J., & Sakariah, K. K.

(2000). Antibacterial activity of Citrus reticulata peel extracts. Zeitschrift für Naturforschung C, 55(11-12): 1030-1034.

Jones Jr, J. B. (2007). Tomato plant culture: in the field, greenhouse, and home

garden: CRC press. Jones, R. (1986). High salt tolerance potential in Lycopersicon species during

germination. Euphytica, 35(2): 575-582. Kalaji, H. M., & Pietkiewicz, S. (1993). Salinity effects on plant growth and other

physiological processes. Acta Physiologiae Plantarum, 15(2): 89-124. Kandil, A., Sharief, A., Abido, W., & Ibrahim, M. . (2012). Effect of salinity on

seed germination and seedling characters of some forage sorghum cultivars. International Journal of Agriculture Sciences, 4: 306-311.

Kaydan, D., & Yagmur, M. (2008). Germination, seedling growth and relative

water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. African Journal of Biotechnology, 7(16): 2862-2868.

Kaymakanova, M. (2009). Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnology and Biotechnological Equipment, 23(1): 326-329.

Keles, Y., & Öncel, I. (2004). Growth and Solute Composition in Two Wheat

Species Experiencing Combined Influence of Stress Conditions1 Russian Journal of Plant Physiology, 51(2): 203-209.

Keshavarzi, M., Mehrnaz, S., Ohadi, R., Mohsen, M., & Amir, L. (2011). Effect

of salt (NaCl) stress on germination and early seedling growth of Spinach (Spinacia oleracea L.). Annals of Biological Research, 2(4): 490-497.

Khajeh-Hosseini, M., Powell, A., & Bingham, I. (2003). The interaction between

salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology, 31(3): 715-725.

Page 30: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

48

Khan, M. A., & Gulzar, S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. Journal of Arid Environments, 53(3): 387-394.

Khan, M. A., Shirazi, M.U., Alikhan, M., and Ashraf, M. (2009). Role of proline,

K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pakistan Journal of Botany, 41, 633- 638.

Kiliç, S., K. Cavuşoğlu & K., Kabar. (2007). Effects of 24-epibrassinolide on

salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. Art and Science Journal, 2: 41-52.

Kirst, G. (1989). Salinity tolerance of eukaryotic marine algae. Annual Review

of Plant Biology, 40(1): 21 53. Kishor, P. K., Sangam, S., Amrutha, R., Laxmi, P. S., Naidu, K., Rao, K.,

Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 88(3): 424-438.

Koleva, I.I., T.A. van Beek, J.P.H. Linssen, A. de Groot and L.N. Evstatieva,

(2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 13: 8-17.

Krauss, S., Schnitzler, W. H., Grassmann, J., & Woitke, M. (2006). The

influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Journal of Agricultural and Food Chemistry, 54(2): 441-448.

Krishnamurthy, R., Anbazhagan, M., & Bhagwat, K. (1987). Effect of sodium

chloride toxicity on chlorophyll breakdown in rice. Indian Journal of Agricultural Sciences, 57: 567-570.

Ksouri, R., W. Megdiche, A. Debez, H. Falleh, C. Grignon and C. Abdelly,

(2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiology and Biochemistry, 45: 244-249.

Lu, Z., and Neumann, P. M. (1998). Water-stressed maize, barley and rice

seedlings show species diversity in mechanisms of leaf growth inhibition. Journal of Experimental Botany, 49(329): 1945-1952.

Magalhães, L. M., Segundo, M. A., Reis, S., & Lima, J. L. (2008)

Methodological aspects about in vitro evaluation of antioxidant properties. Analytica chimica acta, 613(1): 1-19.

Page 31: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

49

Mandhania, S., Madan, S., & Sawhney, V. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50(2): 227-231.

Mansour, M. (2000). Nitrogen containing compounds and adaptation of plants

to salinity stress. Biologia Plantarum, 43(4): 491-500. Massai, R., Remorin, D. and Tattini, H. (2004) Gas exganges, water relation

and osmotic adjustment in two scion rootstock combinations of pronus under water vrious salinity. Plant and Soil, 259, 153-162.

Masood, A., N.A. Shah, M. Zeeshan, G. Abraham. (2006). Differential response

of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla tilieuloides). Environmental and Experimental Botany, 58, 216-222.

Matyssek, R., Agerer, R., Ernst, D., Munch, J. C., Osswald, W., Pretzsch, H.,

Treutter, D. (2005). The plant's capacity in regulating resource demand. Plant Biology, 7(6): 560-580.

Meloni, D. A., Oliva, M. A., Martinez, C. A., & Cambraia, J. (2003)

Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany, 49(1): 69-76.

Melor. R., Ramli. M. N. (1988). Varieti sayur-sayuran tanah rendah yang

berpotensi. Teknologi Sayur-sayuran, Jilid 4. Miladinova, K., Ivanova, K., Georgieva, T., Geneva, M., & Markovska, Y.

(2013). The Salinity Effect on Morphology and Pigments Content in Three Pau-Lownia Clones Grown Ex vitro. Bulgarian Journal of Agricultural Science, 19(2): 52-56.

Misra, A., Sahu, S., Misra, M., Singh, P., Meera, I., Das, N., Sahu, P. (1997).

Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum, 39(2): 257-262.

Mohamed, A. A., & Aly, A. A. (2008). Alterations of some secondary

metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. American-Eurasian Journal of Scientific Research, 3(2): 139-146.

Mohamed, A. N., & Ismail, M. R. (2011). Changes in organic and inorganic

solutes of in vitro tomato cultivars under NaCl stress. Australian Journal of Crop Science, 5(8), 939.

Mohammadi, H., Poustini, K., & Ahmadi, A. (2008). Root nitrogen

remobilization and ion status of two alfalfa (Medicago sativa L.) cultivars in response to salinity stress. Journal of Agronomy and Crop Science, 194(2), 126-134.

Page 32: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

50

Moradi, P., & Zavareh, M. (2013). Effects of salinity on germination and early seedling growth of chickpea (Cicer arietinum L.) cultivars. International Journal of Farming and Allied Sciences, 2: 70-74.

Mousavi, S. G., Jouyban, Z., Moosavi, S. G. R., Kandi, M. A. S., Tobeh, A.,

Golipouri, A., Fazeli-nasab, B. (2011). Effect of salinity stress on germination and growth parameters of seedlings of basil (Ocimum basilicum L.). Technical Journal of Engineering and Applied Sciences. 2: 84-87.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell

& Environment, 25(2): 239-250. Munns, R. (2005). Genes and salt tolerance: bringing them together. New

phytologist, 167(3): 645-663. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual

Review of Plant Biology, 59: 651-681. Murillo‐Amador, B., López‐Aguilar, R., Kaya, C., Larrinaga‐Mayoral, J., &

Flores‐Hernández, A. (2002). Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. Journal of Agronomy and Crop Science, 188(4): 235-247.

Muscolo, A., Panuccio, M. R., & Sidari, M. (2003). Effects of salinity on growth,

carbohydrate metabolism and nutritive properties of kikuyu grass (Pennisetum clandestinum Hochst). Plant Science, 164(6): 1103-1110.

Musyimi, D., Netondo, G., & Ouma, G. (2007). Effects of salinity on growth and

photosynthesis of avocado seedlings. International Journal of Botany, 3(1): 78-84

Muthukumarasamy, M., Gupta, S. D., & Panneerselvam, R. (2000).

Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biologia Plantarum, 43(2): 317-320.

Nandwal, A., Godara, M., Sheokand, S., Kamboj, D., Kundu, B., Kuhad, M.,

Sharma, S. (2000). Salinity induced changes in plant water status, nodule functioning and ionic distribution in phenotypically differing genotypes of Vigna radiata L. Journal of Plant Physiology, 156(3): 350-359.

Nasim, M., Qureshi, R., Aziz, T., Saqib, M., Nawaz, S., Sahi, S. T., & Pervaiz,

S. (2008). Growth and ionic composition of salt-stressed Eucalyptus camaldulensis and Eucalyptus tereticornis. Pakistan Journal of Botany, 40(2): 799-805.

Navarro, J.M., P. Flores, C. Garrido and V. Martinez, (2006). Changes in the

contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chemistry., 96: 66-73.

Page 33: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

51

Nemoto, Y., & Sasakuma, T. (2002). Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry, 61(2): 129-133.

Norhaiza, M., Maziah, M., & Hakiman, M. (2009). Antioxidative properties of

leaf extracts of a popular Malaysian herb, Labisia pumila. Research Journal of Medicinal Plant , 3, 217-223.

Ortega, L, Fry S. C., Taleisnik, E. (2006). Why are Chloris gayana leaves

shorter in salt-affected plants? Analyses in the elongation zone. Journal of Experimental Botany. 57: 3945-3952.

Osakabe, Y., Kajita, S., & Osakabe, K. (2011). Genetic engineering of woody

plants: current and future targets in a stressful environment. Physiologia Plantarum, 142 (2):105-117.

Otles, S., & Yalcin, B. (2012). Phenolic compounds analysis of root, stalk, and

leaves of nettle. The Scientific World Journal, 2012. Oyaizu, M. (1986). Studies on products of browning reaction: antioxidative

activity of products of browning reaction. Japanese Journal of Nutrition, 44, 307-315.

Papadopoulos, A. P. (1991). Growing greenhouse tomatoes in soil and in

soilless media: Available from Communications Branch, Agriculture Canada. 18: 79.

Parida, A. K., Das, A., & Mittra, B. (2004). Effects of salt on growth, ion

accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera Parviflora. Trees, 18(2): 167-174.

Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants:

a review. Ecotoxicology and environmental safety, 60(3): 324-349. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical

responses of plants-a review. Plant Soil and Environment, 54(3): 89-99.

Parvaneh, R., Shahrokh, T., & Meysam, H. S. (2012). Studying of salinity

stress effect on germination, proline, sugar, protein, lipid and chlorophyll content in purslane (Portulaca oleracea L.) leaves. Journal of Stress Physiology & Biochemistry, 8(1):182-193.

Pessarakli, M. (2001). Physiological responses of Cotton (Gossypium hirsutum

L.) to salt stress. Handbook of plant and Crop Physiology.(Ed.): M. Pessarakli. Marcel Dekker, New York, 681-696.

Petridis, A., Therios, I., Samouris, G., Tananaki, C. (2012). Salinity induced

changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37–43.

Page 34: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

52

Pinheiro, H. A., Silva, J. V., Endres, L., Ferreira, V. M., de Albuquerque Câmara, C., Cabral, F. F., dos Santos Filho, B. G. (2008). Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Industrial Crops and Products, 27(3): 385-392.

Porcel, R., Aroca, R., & Ruiz-Lozano, J. M. (2012). Salinity stress alleviation

using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 32(1): 181-200.

Preedy, V. R. (2008). Tomatoes and tomato products: nutritional, medicinal and

therapeutic properties: Science Publishers, 27-45. Qados, A. M. A. (2011). Effect of salt stress on plant growth and metabolism of

bean plant Vicia faba (L.). Journal of the Saudi Society of Agricultural Sciences, 10 (1): 7-15.

Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M.,

Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72 (1): 35-42.

Rahman, M., & Ungar, I. A. (1990). The effect of salinity on seed germination

and seedling growth of Echinochloa crus-galli. Ohio Journal of Science, 90:13-15.

Rani, R. J. (2011). Salt stress tolerance and stress proteins in pearl millet

(Pennisetum glaucum (L.). Journal of Applied Pharmaceutical Science, 1(7):185-188.

Rao, P. S., Mishra, B., & Gupta, S. (2013). Effects of soil salinity and alkalinity

on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Science, 20(4): 284-291.

Rausch, T., Kirsch, M., Löw, R., Lehr, A., Viereck, R., & Zhigang, A. (1996) Salt

stress responses of higher plants: the role of proton pumps and Na+/H+-antiporters. Journal of Plant Physiology, 148(3): 425-433.

Rezazadeh, A., Ghasemnezhad, A., Barani, M., & Telmadarrehei, T. (2012).

Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plant, 6: 245-252.

Riaz, A., Martin, P., Riaz, S., Younis, A., & Hameed, M. (2011). Comparative

performance of two zinnia (Zinnia elegans) cultivars under high-temperature and limited water conditions in Pakistan. International Trials Conference: Assessment of Ornamental Plants 980 (69-78).

Rice‐Evans, C. A., & Miller, N. J. (1998). Structure—Antioxidant Activity

Relationship of Flavonoids and Isoflavonoids. ChemInform, 29(19).

Page 35: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

53

Rohman, A., Riyanto, S., Yuniarti, N., Saputra, W., Utami, R., & Mulatsih, W. (2010). Antioxidant activity, total phenolic, and total flavaonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). International Food Research Journal, 17(1): 97-106.

Saboora, A., Kiarostami, K., Behroozbayati, F., & Hajihashemi, S. (2006).

Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Sciencesi, 9 (11): 2009-2021.

Sairam, R., & Tyagi, A. (2004). Physiology and molecular biology of salinity

stress tolerance in plants. Current Science-Bangalore, 86(3): 407-421. Sardoei, A. S., & Mohammadi, G. A. (2014). Study of salinity effect on

germination of tomato (Lycopersicon esculentum L.) genotypes. European Journal of Experimental Biology, 4(1): 283-287.

Seed Catalog: A listing of recommended varieties for vegetables, for., field

crops, and spices. (1990). Malaysia Agricultural Research and Development Institute.

Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid

(Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30(2): 157-161.

Shannon, M. C. (1997). Adaptation of plants to salinity. Advances in Agronomy,

60(1):76-119. Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit

stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3): 215-225.

Sharma, O. P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food

chemistry, 113(4): 1202-1205. Shennan, C., Hunt, R., & Macrobbie, E. (1987). Salt tolerance in Aster tripolium

L.I. The effect of salinity on growth. Plant, Cell & Environment, 10(1): 59-65.

Stanisavljević, N., Savić, J., Jovanović, Ž., Miljuš-Djukić, J., Radović, S.,

Vinterhalter, D., & Vinterhalter, B. (2012). Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level. Acta Physiologiae Plantarum, 34(5): 1997-2006.

Sudhakar, C., Lakshmi, A., & Giridarakumar, S. (2001). Changes in the

antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3): 613-619.

Page 36: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

54

Summart, J., Thanonkeo, P., Panichajakul, S., Prathepha, P., & McManus, M. (2010). Effect of salt stress on growth, inorganic ion and proline accumulation in Thai aromatic rice, Khao Dawk Mali 105, callus culture. African Journal of Biotechnology, 9(2):145-152.

Taiz, L., & Zeiger, E. (2002). Plant Physiology. 3rd. Ed. Pub. Sinauer. Taylor, I. (1986). Biosystematics of the tomato. The tomato crop (1-34):

Springer. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher

plants. Annals of Botany, 91(5): 503-507. Tiwari, J. K., Munshi, A. D., Kumar, R., Pandey, R. N., Arora, A., Bhat, J. S., &

Sureja, A. K. (2010). Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta physiologiae plantarum, 32(1): 103-114.

Treutter, D. (2006). Significance of flavonoids in plant resistance: a review.

Environmental Chemistry Letters, 4(3): 147-157. Trovato, M., Mattioli, R., & Costantino, P. (2008). Multiple roles of proline in

plant stress tolerance and development. Rendiconti Lincei, 19(4): 325-346.

Tsegay, B. A., & Gebreslassie, B. (2014). The effect of salinity (NaCl) on

germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. African Journal of Plant Science, 8(5): 225-231.

United Nations, Department of Economic and Social Affairs, Population

Division (2013). World Population Prospects: The 2012 Revision, Vol II, (New York: United Nations).

Valia, R., Patil, V., Patel, Z., & Kapadia, P. (1993). Physiological responses of

drumstick (Moringa oleifera Lamk) to varying levels of ESP. Indian Journal of Plant Physiology, 36, 261-261.

a uero, M., P., Garc a-Arias, T., & Carbajal, A. (2002). Bioavailability of

micronutrients and minor dietary compounds. Research Signpost Velioglu,Y. S., Mazza, G., Gao, L. & Oomah, B. D. (1998). Antioxidant activity

and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural Food and Chemistry, 46, 4113–4117.

Vijayan, K., Chakraborti, S. P., Ercisli, S., & Ghosh, P. D. (2008). NaCl induced

morpho-biochemical and anatomical changes in mulberry (Morus spp.). Plant Growth Regulation, 56(1): 61-69.

Page 37: UNIVERSITI PUTRA MALAYSIApsasir.upm.edu.my/id/eprint/75483/1/FS 2016 23 - IR.pdfKemasinan merupakan masalah serius di kebanyakan tempat di dunia dimana menghadkan produktiviti tanaman.

© COPYRIG

HT UPM

55

Wang, D., Shannon, M., & Grieve, C. (2001). Salinity reduces radiation absorption and use efficiency in soybean. Field Crops Research, 69(3): 267-277.

Wang, T., Chen, L., Zhao, M., Tian, Q., & Zhang, W.-H. (2011). Identification of

drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 12(1): 367.

Wang, Y., & Nii, N. (2000). Changes in chlorophyll, ribulose bisphosphate

carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science and Biotechnology, 75 (6): 623-627.

Watanabe, S., Kojima, K., Ide, Y., & Sasaki, S. (2000). Effects of saline and

osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue and Organ Culture, 63 (3): 199-206.

Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., &

Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Environmental Science, 4(8): 2669-2681.

Witham, F. A. D. F. Blaydes, and R. M., Devlin. (1986). Chlorophyll absorption

spectrum and quantitative determination. In: Exercise in Plant Physiology. PWS Publishers, Boston.128-13.

Wu, Q.-X., Chen, J., & Shi, Y.-P. (2010). RP-HPLC and NMR study of

antioxidant flavonoids in extract from Gentiana piasezkii. Journal of Analytical Chemistry, 65(3): 298-304.

Yao, R., & Fang, S. (2009). Effect of NaCl stress on ion distribution in roots and

growth of Cyclocarya paliurus seedlings. Frontiers of Forestry in China, 4(2): 208-215.

Yazici, I., Türkan, I., Sekmen, A. H., & Demiral, T. (2007). Salinity tolerance of

purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environmental and Experimental Botany, 61(1): 49-57.

Yildirim, E. A. Dursun, I. Guvenc and A.M. Kumlay. (2002). The effects of different salt, biostimulant and temperature levels on seed germination of some vegetable species. Acta Agrobotanica. 55: 75-80.

Zhang, C. X., Ho, S. C., Chen, Y. M., Fu, J. H., Cheng, S. Z., & Lin, F. Y.

(2009). Greater vegetable and fruit intake is associated with a lower risk of breast cancer among Chinese women. International journal of cancer, 125(1): 181-188.

Zhang, Z. (2001). Agricultural weeding in conjunction with herbicide application

in rice. In: Proceedings of the 18th Asia Pacific Weed Science Conference, Beijing, China.211-214.


Recommended