+ All Categories
Home > Documents > UNIVERSITI PUTRA MALAYSIA PRODUCTION AND …psasir.upm.edu.my/id/eprint/8356/1/FSMB_1992_3_A.pdf ·...

UNIVERSITI PUTRA MALAYSIA PRODUCTION AND …psasir.upm.edu.my/id/eprint/8356/1/FSMB_1992_3_A.pdf ·...

Date post: 15-Aug-2019
Category:
Upload: dangthuy
View: 216 times
Download: 0 times
Share this document with a friend
24
UNIVERSITI PUTRA MALAYSIA PRODUCTION AND CHARACTERIZATION OF THERMOSTABLE AMYLASES FROM BACILLUS CIRCULANS ISOLATED FROM A LOCAL HOT SPRING SHARIFAH SHAHRUL RADIAH DT. SYED ALWEE FSMB 1992 3
Transcript

 

UNIVERSITI PUTRA MALAYSIA

PRODUCTION AND CHARACTERIZATION OF THERMOSTABLE AMYLASES FROM BACILLUS CIRCULANS ISOLATED

FROM A LOCAL HOT SPRING

SHARIFAH SHAHRUL RADIAH DT. SYED ALWEE

FSMB 1992 3

PRODUCTION AND CHARACTERIZATION OF THERMOSTABLE AMYLASES FROM BACILLUS CIRCULANS ISOLATED

FROM A LOCAL HOT SPRING

By

SHARIFAH SHAHRUL RADIAH DT. SYED ALWEE

Thesis Submitted i n Ful f i lment o f the Requirements for the Degree of Mas te r of Science in the Faculty of

Food Science and Biotechnology, Universiti Pertanian Malaysia

Sep tembe r 1992

ACINOWLEDGEttENTS

The author wishes to express her sincere appreciation to

the following:

Dr. Baharuddin Abdul Ghani and Dr. Hohd. Ismail Abdul

Karim for their guidance, support and encouragement throughout

the author's graduate studies and in the preparation of this

thesis.

Hr. Hohd. Khalid Sikas, Hiss Rosmah Jaafar, and Puan siti

Junaidah for their technical assistance and advice.

Hr. Abdul lIadi for typing this thesis.

Finally, the author would like to thank her parents for

being so patient throughout her graduate studies.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. . . . • • • • • • . . . . • . • • • • • • • . • • • • • • • • • • • • • • • i i

LIST OF TABLBS......................................... vii

LIST OF FIGURES........................................ vii i

LIST OF PLATES......................................... x

ABSTRACT. . . . . . . . . . . . . . • • . . . . . . . . • • . . • • . • . • • • • • . • • . . . . . • xi

ABSTRAK.. . . . . . . . . . . . . • . • . • . . . . . . • • • . . . • . • • • • . . . . . . . . . • • xiii

CHAPTER

I

II

INTlODU<:'I'ION' • • . • . . • . • • e, • • • • • • • • • • • • • • • • • • • • • 1

LITERATURE REVIEW . . . . • . . . . . . . . . . . . . . . . . . • . . . 5

Starch: The Substrate . . . . . . • • • • • . . . • • • • • . 5

Production of a-Amylase . . . . . . . . . . . • • . . . . • • 10

Amylase-Producing Bacteria • . • . • • • • . • . . • 10

Effects of Environmental Factors on a-Amylase Production . . . . . • • . • . • . . . • . . . • 13

Genetic Regulations to Increase a-Amylase Production . . • . . . • • . . . • . . . . • • • 17

Hode of Action of a-Amyl ase • • • • • • • • • • • • • • • 20

Properties of a-Amylase . . . . • . • • . . . • . • . . . . . 26

Molecular Weight of a-Amylase . • . • • . • . . . 26

Thermal Stability of a-Amylase . • • • • • • . . 27

Effects of pH on Stability of a-Amylase 31

Effects of Metal Ions on Stability and Activity of a-Amylase . . . • • • • • • • • • • • 32

iii

Page

Purification and Homogeneity of Purrified a-Amylase • • • • . . . • . . . . . • . . • • • • 34

Regulation of Thermostable a-Amylase in Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Catabolite Repression • . . • . . • . . • . • . • . . . . 36

Substrate Induction . . . . . . . . . . . • . . • • . . . • 39

Applications of Thermostable a-Amylase 41

III MATERIALS AND METHODS

Equipments . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 45

Chemicals . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 47

Reagen ts • • • . . • . • • • . . • • . • • • • • • • • • • . • • • • • 47

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Isolation of Amylolytic Bacteria 52

Screening and Purification of Amylolytic Bacteria • • . . . . . . . • • • • . . • • • • • 53

Maintenance of Amylolytic.Bacteria . • • . . 53

Identification of Isolates . • • • • . . . • • • . . 53

CuI ture Conditions . . . . . . • • • • • • • • • . • • • • • • • • 55

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 55

Assay of Amylase Activity ............. . 55

Reducing Sugar Content . • . . • • • . . . . . . . . . • 56

Protein Content Determination • . • . . . . • . • 57

Determination of Growth . . . . . . . . . . . • . . • . 57

iv

Page

Production of Amylase • • . • • • • • • • • • • • • • . • • • • 51

Effect of Time on Amylase Production 51

Effect of Temperature and pH on Amylase Production • • • • . • • • • • • • • • • • . • • . • 58

Effect of Carbon Sources on Amylase Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Purification of Amylase • • . • • • • • • • . • • . • • • • • 59

Determination of Molecular Weight by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis • • • • • • • • • • • • • • • . • • • . • . • 60

Properties of Purified Amylase • • • • • • • • • • • 61

pH Activity Profile 61

Temperature Activity Profile • . • • • • • . . • • 62

Effect of pH on Amylase Stability . . . . . . 62

Thermal Stability of Amylase . . • . . • • • • . • 62

Substrate Preference of Amylase . . • • . . • • 62

Thin-layer Chromatography of Hydrolysis Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 63

IV RESULTS AND DISCUSSIONS

Isolation, Screening and Identification of Amylolytic Bacteria • . • • • • • • • • • • • • • • • • • • 65

Growth Characteristics of Bacillus circulans strains SB-l and SB-2l • . . • . • • • . • 10

Amylase Production Profile of Bacillus circulans strains SB-l and SB-2l • . . . . . • . • . 13

Effect of Time on Amylase Production 7 3

Effect of Temperature and pH on Amylase Production . . . . • . . . • . . . • . . • • . • • • 75

v

v

Page

Effect of Carbon Sources on Amylase Production .. . . . . .. . .. . . ...... . ... . .. . .. 77

Purification of Bacillus circulans strain SB-l Amylase . . . . . . . . . . . . �................. 85

Characterization of the Purified Bacillus circulans Strain SB-l Amylase . . • • • . • • • • • • • 81

pH and Temperature Activity Profile of Purified Amylase . . • • . . . • • • • . • • • • . • . • • . • 81

pH and Thermal Stability of Purified Amylase . . .. .. . .. .. .. ...... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. . ...... 89

Substrate Specificity of Purified Amylase .. .. .. .. .. .. .. . -. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 94

Thin-layer Chromatography Profile of Hydrolysis Products of Purified Amylase 98

CONCLUSION ........... .................................................. .. 105

BIBLIOGRAPHY .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 108

APPENDIX .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 116

BIOGRAPHICAL SKETCH . . • • • • • . . . • . • • • • . • • • • . • • . • • • . . . • • • • 126

vi

LIST OF TABLES

Table

I Properties of Starch Granules • • • • • • • • • • • • • • • • •

2 Amylose and Amylopectin Content of Various

Page

6

Starches .. . . . '................................. 7

3 Preliminary Tests for the Identification of Gram Positive Bacteria • • • • • • . • • • • • • • • • • • • • • • • • 68

4

5

6

Results of Biochemical Tests for the Determination of Bacillus sp • • . • • • • • • • • • . • • • • •

Results from the API 50 CHB Test • • • . • • • • • • • • • .

Parameters Observed During the Purification of Bacillus strain SB-l Amylase • • • . • • • . • • • • • • •

vii

70

71

89

Figure

1

2

3

LIST OF FIGURES

structure of Amylose

Structure of Amylopectin

62-a-maltosylmaltotriose

Page

7

9

4 Liquefaction and Saccharification of Starch

2 2

43

5 Characteristics for the Identification of Gram Positive Bacteria . . . • • • • • . . . . • • • . • • . • • • • • . 54

6 Growth Profile of Bacillus circulans strains 8B-l and 8B-21 . . • . . . • . . . . . • • • • • • . . . . . . • . • . . • • • . 72

7 Profile of Amylase synthesis by Bacillus circulans ...................................... 74

8 Effect of Temperature on Amylase Synthesis by Bacillus circulans strains SB-l and SB-21 . . . . • . 76

9 Effect of pH on Amylase Synthesis by Bacillus circulans strains SB-l and SB-2l . . . . • . . . . . . • • • . 78

10 Effect of Carbon Sources on Amylase Synthesis by Bacillus circulans . • . . . • . . . . • . . • • . . • . . . • . • • . 80

11 Effect of Glucose and Maltose on'

Amylase Synthesis by Bacillus circulans • . . . • • . . • • • • • • • . 82

12 Induction and Repression of Amylase Synthesis by Bacillus circulans . . . . . . . . . . . . . . . . . . . '.......... 84

13 First Purificatioll Profile of Bacillus circulans strain 8B-l Amylase . . • . . . . . . . . . . . . . • • . • • . . . . . • . 86

14 Second Purification Profile of Bacillus circulans strain SB-l Amylase . . . . . • . . . • . . . . . . • . 88

15 Determination of Molecular Weight of Purified Bacillus circulans strain 8B-l Amylase • . . . • . . • . 91

16 Temperature Activity Profile of Purified Bacillus circulans strain SB-l Amylase . • • . • . . • . 92

viii

17 pH Ac tivity Profile of Purified Bacillus circulans s t rain 8B-l Amylase . . . . . • • • . . . . . . • . . . 93

18 Thermal Stability of Purified Bacillus circulans strain SB-l Amylase . . . . . . . • • . . . . . . . . . . . . . . . . . . . 95

19 pH Stability -of Purified Bacillus circulans st rain SB-l Amylase . . . . . . . . . . . . . . . . . . . . . . • . . . . . 96

20 Subs trate Specifity of Purified Bacillus circulans s train 8B-l Amylase . . . . ..... . . . . . . . . . 97

21 Affinity of Purified Bacillus circulans s t rain SB�l Amyl ase Towards Mal todext rins . . . . . . . . . . . . . 99

ix

LIST OF PLATES

Plate

I Clearing Zone Formed by the Selected Colonies

2 Sodium Dodecyl Sulfate-Polyacrylamide Gel . • •

3 Thin-Layer Chromatography Plates showing Profile of Hydrolysis Products from Various

Page

67

90

Dextrins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Thin-layer Chromatography Plates Showing Profile of Hydrolysis Products from Various Starches . • • • . • • . • . . . . • • • • • • . • • • . • • • • 101

x

Abs tract of the s i s submi tted to the S enate of Universi t i Pertanian Malays i a as fulf i lment of the requirements f o r the degree of Master of Science .

Chairman

Faculty

PRODUCTION AND CHARACTERIZATION OF THERMOSTABLE AMYLASES FROM BACILLUS CIRCULANS ISOLATED

FROM A LOCAIJ 1I0T SPRING

By

SHARIFAH SRAHRUL RABIAH BTE SYED ALiEE

SEPTEMBER 1992

Dr. Baharuddin Abdul Ghani

Food Science and Biotechnology .

Two strains of amylol ytic Baci l lus were i solated from a

hot spring in Negeri Sembi lan and were ident i fi ed as Bac i l lus

ci rculans and desi gnated as stra ins 8B-l and SB-2 1 .

The optimal tempe rature and p H f o r g rowth a n d e n z y m e

production by both s trains were found t o b e at 5 5 ° C and pH

7 . 0 , respectively . The enzyme was produced f rom the beginning

of g rowth and reached max imum p r oduc t i on a t 7 2 hou r s . The

production of amylase was partially induced and production

occurred only in the presence of 1% s tarch . The presence of 20

mM m a l tose or mal tot r i os e enha n c e d e n z ym e p rodu c t i on . The

production was found to be repressed b y 20 mM glucos e .

The crude enzyme preparation of 88-1 was pur i f ied through

i on-exchange chromatography after 20- 4 0% ammon i um s u l f a t e

xi

precipitation and ultrafiltration. A single activity peak and

31 .6\ yield was obtained with a 53.9 fold purification . Using

SDS-PAGE the enzyme was shown to be homogenous and the

molecular weight of the purified amylase was estimated to be

about 60 , 000 dalton. The optimum temperature and pH for the

activity of the purified amylase were shown to be 70°C andd pH

5 - 9 respectively. The purified enzyme was les s s table at

higher temperature but 1 mM CaCl2 s tabilizes it significantly.

The purified enzyme has higher a f finity towards longer chain

dextrins and more complex substrates such as starch . Thin-layer

chromatography of enzymatic hydrolysis on various starches and

dextrins indicated that the purified amylase behaves similar to

that of a-amylase.

xii

Abstr ak tesis yang dikemukakan kepada Senat Uni vers iti Pertanian Mal ays ia sebagai memenuhi keperluan untuk Ijazah Master Sa ins .

Pengerusi

Fakulti

PENGHASILAN DAN PENCIRIAN AMILAS E TERMASTABIL DARI BACILI,US CIRCULANS YANG DIPENCILKAN

DAR! IOI,AM AIR PANAS

Oleh

SIIARIFAH SHAHRUL RABIAH BTE SYED ALWEE

SEPTEMBER 1992

Dr . Baharuddin Abdul Ghani

Sains Makanan dan Bioteknologi .

Dua s t rain bacteria penghasil ami lase telah dipenci lkan

dad kolam air panas dari Negeri Sembilan dan dikenalpast i

s ebagai Bacillus c i r c u l ans d a n s t r a i n-s t r a i n i n i t e 1 alt

dinamakan sebagai strain SB-l dan SB- 2 1 .

S u hu d a n p H o p t i m a u n t u k p e n g h a s i l a n a m i l a s e d a n

p e rtumbuhan m i k roorgani sma d i d a p a t i p a d a 5 5 ° C d a n p H 7 . 0 .

Enzim ini dihas i lkan dari pe rmulaan pertumbuhan dan mencapai

penghasilan yang maksimum pada 72 j am . Amil ase ini adalah enz im

yang separa aruhan dimana penghasi lan berlaku hanya apabila

t e rdap a t kanj i 1% . Kehadi ran m a l t o s a d a n m a l t o t r i o s a 20 mM

dapat meningka tkan lagi penghasilan enzim . Kehadi ran glukosa

didapati menindas penghas i lan enzim .

xii i

Enzim daripada Bacillus circulans strain 8B-l kemudianttya

ditulenkan melalui kromatografi turus pertukaran ion selepas

pemendakan ammonium sui fat 20-40\ dan penurasan ultra . Satu

puncak aktiviti dan 31 . 6\ hasil penulenan didapati dengan

faktor penulenan sebanyak 53 . 9 kali ganda . Dengan menggunakan

8DS-PAGE, enzim ini didapati homogen dan beberat molekul

dianggarkan 60,000 dalton . 8uhu dan pH optimum bagi enzim yang

ditulenkan ini adalah 70°C dan pH 5 - 9 . Walaubagaimanapun ,

enzim ini didapati kurang stabil pada suhu yang tinggi tetapi 1

mM CaClz dapat menstabilkannya . Amilase yang telah ditulinkan

ini mempunyai keafinan yang lebih tinggi terhadap dekstrin

berantai panjang dan subs trat kompleks seperti kanji.

Kromatografi lapisan nipis bagi hidrolisis enzim terhadap

berbagai jenis kanji menunjukkan bahawa amilase yang ditulenkan

ini bertindak seperti a-amilase.

xiv

CHAPTER I

INTRODUCTION

Amylases are classified as 'hydrolases' (BC 3. 2. l) and are

enzymes that catalyze the hydrolys is of O-glycosyl compounds

(Yamamoto, 1988) . They are divided into three main types namely

exo-acting, endo-acting or deb ranching enzymes according to

thei r mode of action. Exo-acting amylases degrade amylose and

amylopectin of sta rch by the success ive removal of low

molecular weight products f rom the non-reducing chain ends.

Rxo-acting amylase include �-amylase (Rxo-a-l, 4-g1ucan

maltohydro1ase, EC 3. 2. 1. 2) and glucoamy1ase (Exo-a-1, 4-g1ucan

glucanohydrolase, EC 3. 2. 1. 3) which produce maltose and glucose

respectively (Fogarty and Kelly, 1980) . Endo-acting amylase,

which is the mos t widel y occuring form of amylase, cons ists of

only a-amylase (Endo-a-I, 4-glucan glucanohydrolase, BC

3. 2. 1. 1 ) . It catalyzes the random hydrolysis of starch-type

polysaccharides, which results in a rapid reduction of iodine

blue value and viscosity of substrate depending on the

specific number of bonds broken. Compared with �-amylase or

glucoamylase, the reduction of molecular weight of subs trate is

much faster with a-amylase than ei ther �-amylase or

glucoamylase. Debranching enzymes which include pullulanase (EC

3. 2. 1. 41) and i soamyla se (EC 3. 2. 1.68) hydrolyse only a-l, 6-

glycosidic bonds.

1

a-Amylases are found in mammals, higher plants, fungi, and

bacteria . Bacteria are the most widely used and versatile

source of a-amylase . In addition, this source i s easily

amenable to genetic manipulation thus providing an opportunity

for the development of enzymes with more des i rable operational

parameters . To date most of the a-amylases used in industry are

produced by Bacillus sp . , especially Bacillus amyloli quefaciens

and Bacillus licheniformis. Bacillus sp . produce both

saccharifying and liquefying a-amylases which are

di s tinguishable by thei r mechani sms of s tarch degradation . For

example, Bacillus subtilis var . amylosacchariticus, Bacillus

subtilis Harburg and Bacillus natto all produce sacchari fying

a-amylase ( Hatsuzaki et al . , 1974) . Bacillus amyloliquefaciens,

on the other hand, p roduces large quantities of liquefying a­

amylase (Welker and Campbell, 1967) .

Thermostable amylases have been isolated f rom various

strains of Bacillus spp . These include Bacillus

stearothermophilus ( Manning and Campbell, 1961) , Bacillus

licheniformis ( Horgan and Priest, 1981) , Bacillus coaqulans

( Hedda and Chandra, 1960) and Bacillus acidocaldarius

( Buonocore et al . , 1976) . Four interesting observations have

been made on the comparative biochemistry of thermos table

enzymes. First, the heat stability of these enzymes may be

associated with increased hydrophobic bonding at the core of

the molecule ( Doig, 1974 ) . Second, the thermostable a-amylase

was found to have an unfolded s tructure as opposed to a more

3

typical globular structure of the mesophilic enzyme ( Manning

and Campbell, 1961) . Third , an increase in hydrogen bonding may

be involved in heat stability. Finally , these enzymes appea r to

lack cysteine residues and as a consequence cannot contain

disulfide linkages (Amelunxen , 1967) .

Alpha-amylases have numerous biotechnological

applications , for example, in starch conversion proces ses a­

amylase are used to produce syrups containing oligosaccharides ,

maltose and glucose , in the brewery , food and textile

industries . Bioconversion of starch into sugars and other

alternative food products makes up the major part of the

starch-processing industry. In the industrial production of

glucose syrup, gelatinized starch is subjected to hydrolysis by

a-amylase to produce dextrins. This process is called

'liquefaction'. The dextrins are then hydrolysed by

glucoamylase in the ' saccharification' process to produce

glucose (Swinkel , 1986) .

The enzymatic hydrolysis of starch is widely used because

it offers many advantages over the older technology of acid

conversion . Enzymes are more specific and efficient as

catalysts when compared to acid. According to Swinkel (1985) ,

the enzymatic process resulted in the following benefits : 1)

by-product formation is reduced more than IO-fold; 2) the

finished syrup only contain half the ash content; 3) less color

formation and easier refining; 4) Na+ and Cl- level is reduced

4

5-fold; 5) lower quality starch can be used: and 6) lower

energy costs.

Thi s project was done mainly for academic reasons, to

learn about local amylolytic thermophilic bacteria and the

enzymes produced by them. The knowledge gained in thi s study

would further contribute towards the utilization of local

substrates by biotechnology.

CHAPTER II

LITERATURE REVIEW

S tarch The Substrate

Starch occurs as the major reserve carbohydrate in all

higher plants in the form of water insoluble granules. It is

readily as similated in the human diet; in fact , a very high

p roportion of the world food intake is s tarch. Microscopic

examination reveals that starch is composed of tiny, white

granules, ranging from about 2 to 100 um in diameter. The size

and shape of the granules are peculiar to each variety of

starch (Table 1) . other than cellulose, starch is the next most

abundant compound synthesized by p lant cells. It is a

'renewable' substance; a new supply of starch is grown annually

(Swinkel, 1985) . 'The properties of starch vary with the plant

source f rom which it is derived.

Starch is a polymeric carbohydrate, composed of C , H and 0

atoms in the ratio 6:10:5. CCsHloOe)n. It is considered to be a

condensation of glucose polymers. The glucose units are present

as anhydroglucose units. If starch is treated with acids or

certain enzymes, it is broken down into its constituent glucose

molecules. The glucose units are linked to one another through

the Cl oxygen as glucoside bond. The glucoside bonds are stable

under alkaline conditions and hydrolyzable under acid

5

6

Table I

Properties of Starch Granule

Starch Type Size Range Shape ( Diameter)

( pm)

Corn Cereal 3 - 26 Round, Polygonal

Potato Tuber 5 - 100 Oval, Spherical

Wheat Cereal 2 - 35 Round, Renticular

Tapioca Root 4 - 35 Oval, Truncated

Rice Cereal 3 - 8 Polygonal, Angular

S ago Pith 5 - 65 Oval, Truncated

Source : Swinkels (1985)

conditions. The glucose unit at the end of the polymeri c chain

has a latent aldehyde group and is known as the reducing end

group .

Most starches are a mixture of two types of polymers : (1)

a linear cha in molecule termed amylose and (2) a branched

polymer of glucose termed amylopectin. Each of these polymers

have a wide range of molecular sizes. Starches of different

origin have different amylose and amylopectin ratios ( Table 2) .

Amylopectin made up about 75-85\ of starch.

Amylose, the linear polymer, contained up to 6000 glucose

units and is connected by a-I, 4-glucos idic linkages ( Figure 1 ) .

Enzyme studies also indicated a trace amount of branching in

Table 2

�ylose + A.ylopectin contents of Various Starches

S tarch

Corn

Potato

Wheat

Tapioca

Rice

Sago

Waxy ma ize

Amylose (!Its)

28

21

28

17

17

27

0

CHptt

OH

Amylopectin (!Its)

72

79

72

83

83

73

100

H OH

Ave . DP Amylose

800

3000

800

H OH

Rgure 1. Structure of Amylose Molecules

Ave. DP Amylopectin

2, 000 , 000

2, 000 , 000

2 , 000, 000

7

8

the amylose molecul e . The branched amylose may contain 3 to 20

chains, with an average chain length of about 500 glucose

units . The degree of polymerization (DP) of amylose covers a

wide range depending upon the source of the starch (Swinkel,

1985) . For example, the amylose molecules of potato and tapioca

starch have a substantially higher molecular weight than maize

and wheat starch amylose .

Amylose forms inclusion complexes with iodine and various

organic compounds such as butanol, fatty acids,

phenols and hydrocarbons. These complexes are

surfactants,

insoluble in

water. It is believed that amylose complexes by forming a helix

coil around the complexing agent (Swinkel, 1985). The complex

of amylose with iodine gave a characteristic blue colour,

which is used to establish the presence of amylose-containing

starch .

Amylopectin (Figure 2) is a highly branched structure

consisting of short linear chains with a DP ranging from 10-60

glucose units, with an average of about 22 . The glucose units

are connected to each other by a-l,4- and a-l,6-g1ucosidic

linkages . The glucose units with an a-l, 6-glucosidic linkages

are the branching points which cause the interlinkages of the

glucose residues that gave rise to a ramified or bushlike

structure of the amylopectin molecule. The branching points

make up about 5\ of the total glucose unit in amylopectin .

Amylopectin is one of the largest molecules in nature with an

average DP of about 2 mil lion . The molecular weight of

9

Figure 2. Structure of Amylopectin Molecules

amylopectin is about I 000 times as high as the molecular

weight of amylose (Swinkel, 1985) .

Starch granules are insoluble in water below 500e

(Fogarty , 1983) . When a suspension of starch in water is heated

beyond a cri ti cal temperature, the granule will swell many

times i ts original size. The critical temperature also known as

gelatinization temperature, va ries f rom 55°e to 800e depending

on the type of starch. When heating is continued , the swollen

starch granules will disintegrate into a viscous paste which is

the swollen starch aggregates. The process of transformation

f rom starch into the viscous starch paste is called

gelatinization. This hydrocolloidal property of starch makes i t

suitable for a great variety o f applications. starch and i ts

derivatives are widely used in the manufacture of foods,

paper, textiles, adhesive, pharmaceuticals and building

materials. Half of starch produced is used to produce syrups

and sugars .


Recommended