+ All Categories
Home > Documents > University of Colorado Boulder - DepartmentofElectrical...

University of Colorado Boulder - DepartmentofElectrical...

Date post: 25-Feb-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
28
R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder
Transcript
Page 1: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

R.  W.  Erickson  Department  of  Electrical,  Computer,  and  Energy  Engineering  

University  of  Colorado,  Boulder  

Page 2: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Another Compensator Design Example

+

L

iL(t)

+ +

C

Iout

R

Power stage parameters

• Switching frequency: fs = 1MHz

– Vg

_

vo

_

V

C

Dead-time control

+

_

+PWM Compensator

fs = 1 MHz

errorduty-cyclecommand

R

• Vref = 1.8 V

• Iout = 0 to 5 A

• Vg = 5 V

• L = 1 PH

• RL = 30 m:Gc(s)1/VM

ECEN5797

Vref

• C = 200 PF

• Resr = 0.8 m:

• VM = 1 V

• H = 1

Point-of-Load Synchronous Buck Regulator

c( )M

Buck Averaged Small-Signal Model

L

+

Vg d iL

Resr

RL

1� sdvsG o

vd ˆˆ

)(

+–

C

R v

vg+– D vg

Io d

D iL2

11

)(

¸̧¹

·¨̈©

§��

oo

esrgvd

ssQ

VsG

ZZ

Z

kHz 112

1

CLfo S dB1451G

Pair of poles: Low-frequency gain (including PWM gain):

ECEN5797

MHz 12

1

esresr CR

fS

2 CLS

dB 2.73.2/o

Lesrloss RR

CLQ 5/

! CL

RQload

dB 2.73.2|| o��

loadloss

loadlossloadloss QQ

QQQQQ

dB145o M

vdo VG

ESR zero:

Page 3: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Another Compensator Design Example

+

L

iL(t)

+ +

C

Iout

R

Power stage parameters

• Switching frequency: fs = 1MHz

– Vg

_

vo

_

V

C

Dead-time control

+

_

+PWM Compensator

fs = 1 MHz

errorduty-cyclecommand

R

• Vref = 1.8 V

• Iout = 0 to 5 A

• Vg = 5 V

• L = 1 PH

• RL = 30 m:Gc(s)1/VM

ECEN5797

Vref

• C = 200 PF

• Resr = 0.8 m:

• VM = 1 V

• H = 1

Point-of-Load Synchronous Buck Regulator

c( )M

Buck Averaged Small-Signal Model

L

+

Vg d iL

Resr

RL

1� sdvsG o

vd ˆˆ

)(

+–

C

R v

vg+– D vg

Io d

D iL2

11

)(

¸̧¹

·¨̈©

§��

oo

esrgvd

ssQ

VsG

ZZ

Z

kHz 112

1

CLfo S dB1451G

Pair of poles: Low-frequency gain (including PWM gain):

ECEN5797

MHz 12

1

esresr CR

fS

2 CLS

dB 2.73.2/o

Lesrloss RR

CLQ 5/

! CL

RQload

dB 2.73.2|| o��

loadloss

loadlossloadloss QQ

QQQQQ

dB145o M

vdo VG

ESR zero:

Page 4: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Uncompensated loop gain Tu

+–

L

iL(t)

+

Vg

+

voC

Iout

Rg

_ _

Vref

Dead-time control

+

_

+PWM Compensator

fs = 1 MHz

errorduty-cyclecommand

Gc(s) = 1

Hsense = 1 (in this example)

1/VM

Gvd(s)

ECEN5797

Tu(s) = Hsense(1/VM)Gvd(s)

Plot magnitude and phase responses of Tu(s) to plan how to design Gc(s)

Magnitude and phase Bode plots of Tu

40dB

60dB

80dB

Tu(s) = Hsense(1/VM)Gvd(s)

0dB

20dB

-20dB

0o

oQ f2/110�

kHz11 of

dB145)/1( o senseMvdouo HVGT

dB/dec40�

dB2.73.2 o Q

t t f

2

¸̧¹

·¨̈©

§

c

ouo f

fT

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

MHz1 esrf

esrf10/1o

Q f2/110�

dB/dec20�

target fc

Page 5: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Magnitude and phase Bode plots of Tu

0

50

[db]

Uncompensated loop gain, Tu = Gvd*Hsense*(1/VM) Exact magnitude and phase responses (MATLAB)

103

104

105

106

-100

-50

0

magnitude

Target cross-over frequencyfc = fs/10 = 100 kHz

ECEN5797

103

104

105

106

-200

-100

0

frequency [Hz]

phase [

deg]

No phase margin: a lead (PD) compensator is required

Lead (PD) compensator design

om 53 MT

kHz 100 cf1. Choose:

kHz 33

kHz 003

2. Compute:

3. Find Gco to position the crossover frequency:

ECEN5797

12

¸̧¹

·¨̈©

§

z

pco

c

ouo f

fG

ff

T dB 1545.512

o ¸̧¹

·¨̈©

§

p

z

o

c

uoco f

fff

TG

Magnitude of Tu at fc

Magnitude of Gc at fc

Page 6: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Uncompensated loop gain Tu

+–

L

iL(t)

+

Vg

+

voC

Iout

Rg

_ _

Vref

Dead-time control

+

_

+PWM Compensator

fs = 1 MHz

errorduty-cyclecommand

Gc(s) = 1

Hsense = 1 (in this example)

1/VM

Gvd(s)

ECEN5797

Tu(s) = Hsense(1/VM)Gvd(s)

Plot magnitude and phase responses of Tu(s) to plan how to design Gc(s)

Magnitude and phase Bode plots of Tu

40dB

60dB

80dB

Tu(s) = Hsense(1/VM)Gvd(s)

0dB

20dB

-20dB

0o

oQ f2/110�

kHz11 of

dB145)/1( o senseMvdouo HVGT

dB/dec40�

dB2.73.2 o Q

t t f

2

¸̧¹

·¨̈©

§

c

ouo f

fT

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

MHz1 esrf

esrf10/1o

Q f2/110�

dB/dec20�

target fc

Page 7: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Magnitude and phase Bode plots of Tu

0

50

[db]

Uncompensated loop gain, Tu = Gvd*Hsense*(1/VM) Exact magnitude and phase responses (MATLAB)

103

104

105

106

-100

-50

0

magnitude

Target cross-over frequencyfc = fs/10 = 100 kHz

ECEN5797

103

104

105

106

-200

-100

0

frequency [Hz]

phase [

deg]

No phase margin: a lead (PD) compensator is required

Lead (PD) compensator design

om 53 MT

kHz 100 cf1. Choose:

kHz 33

kHz 003

2. Compute:

3. Find Gco to position the crossover frequency:

ECEN5797

12

¸̧¹

·¨̈©

§

z

pco

c

ouo f

fG

ff

T dB 1545.512

o ¸̧¹

·¨̈©

§

p

z

o

c

uoco f

fff

TG

Magnitude of Tu at fc

Magnitude of Gc at fc

Page 8: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Lead (PD) compensator summary

¸·

¨§

¸·

¨§

¸̧¹

·¨̈©

§�

1

1)( z

cocss

s

GsGZ

dB 1545.5 o coG

kHz 33 zf

¸¸¹

·¨¨©

§�¸

¸¹

·¨¨©

§�

2111

pp

ssZZ

kHz3001 pf

kHz 100 cf (=1/10 of fs)

High-frequency gain of the lead compensator: Gco fp1/fz = 49 (34 dB)

Lead compensator

HF pole

ECEN5797

MHz 12 pf (= fesr = fs in this example)Added high-frequency pole:

Practical implementation would require an op-amp with a gain bandwidth product of at least 49*fp2 = 49 MHz

Loop gain with lead (PD) compensator

40dB

60dB

80dB

¸·

¨§�¸

·¨§�

¸̧¹

·¨̈©

§�

1

1

1

1)( z

cocss

s

GsGZ

kHz10 zf

0dB

20dB

40dB

-20dB

0o

kHz300 pf

dB7.297.28 o couoGT

kHz33 zf

kHz 100 cf

¸¸¹

¨¨©�¸

¸¹

¨¨©�

2111

pp ZZ

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

om 53 M

Page 9: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Lead (PD) compensator summary

¸·

¨§

¸·

¨§

¸̧¹

·¨̈©

§�

1

1)( z

cocss

s

GsGZ

dB 1545.5 o coG

kHz 33 zf

¸¸¹

·¨¨©

§�¸

¸¹

·¨¨©

§�

2111

pp

ssZZ

kHz3001 pf

kHz 100 cf (=1/10 of fs)

High-frequency gain of the lead compensator: Gco fp1/fz = 49 (34 dB)

Lead compensator

HF pole

ECEN5797

MHz 12 pf (= fesr = fs in this example)Added high-frequency pole:

Practical implementation would require an op-amp with a gain bandwidth product of at least 49*fp2 = 49 MHz

Loop gain with lead (PD) compensator

40dB

60dB

80dB

¸·

¨§�¸

·¨§�

¸̧¹

·¨̈©

§�

1

1

1

1)( z

cocss

s

GsGZ

kHz10 zf

0dB

20dB

40dB

-20dB

0o

kHz300 pf

dB7.297.28 o couoGT

kHz33 zf

kHz 100 cf

¸¸¹

¨¨©�¸

¸¹

¨¨©�

2111

pp ZZ

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

om 53 M

Page 10: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Add lag (PI) compensator

Integrator at low frequencies

ECEN5797

Choose 10fL < fc so that phase margin stays approximately the same: fL = 8 kHz

Keep the same cross-over frequency: dB 1545.5 o f cmcoc GGG

Adding PI Compensator

40dB

60dB

80dB

0dB

20dB

-20dB

0o

kHz8 Lf

Lf10

kHz 100 cf

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

Lf 10/1

Lf

om 53 M

PI compensator phase

Page 11: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Add lag (PI) compensator

Integrator at low frequencies

ECEN5797

Choose 10fL < fc so that phase margin stays approximately the same: fL = 8 kHz

Keep the same cross-over frequency: dB 1545.5 o f cmcoc GGG

Adding PI Compensator

40dB

60dB

80dB

0dB

20dB

-20dB

0o

kHz8 Lf

Lf10

kHz 100 cf

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

Lf 10/1

Lf

om 53 M

PI compensator phase

Page 12: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Complete analog PID compensator: summary

dB 1545.5 o cmG

kHz 33 zf

kHz 3001 pf

MHz 12 pf

kHz 8 Lf

ECEN5797

kHz 100 cf

53om M

(=1/10 of fs)Crossover frequency:

Phase margin:

Magnitude and phase Bode plots of T

40dB

60dB

80dB

0dB

20dB

40dB

-20dB

0o

kHz 100 cf

Phase of uncompensated Tu

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

om 53 M

Phase of compensated T

Page 13: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Complete analog PID compensator: summary

dB 1545.5 o cmG

kHz 33 zf

kHz 3001 pf

MHz 12 pf

kHz 8 Lf

ECEN5797

kHz 100 cf

53om M

(=1/10 of fs)Crossover frequency:

Phase margin:

Magnitude and phase Bode plots of T

40dB

60dB

80dB

0dB

20dB

40dB

-20dB

0o

kHz 100 cf

Phase of uncompensated Tu

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-90o

-180o

om 53 M

Phase of compensated T

Page 14: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

0

50Loop Gain

[db]

Verification: exact loop gain magnitude and phase responses (MATLAB)

kHz 105 cf

3 4 5 6-100

-50

mag

nitu

de

-100

-50

0

deg]

om 6.51 M

ECEN5797

103

104

105

106

-250

-200

-150

frequency [Hz]

phas

e [ m 6.5M

Analog PID compensator implementation

R2C2

C3

C4 R4

+

_

Vrefoutputvoltagesense

R1

2

vccontrolvoltage

¸̧·

¨̈§�¸

·¨§ � 11 L sZ

Design equations (approximate)

1

2

RR

Gcm 222

1CR

fL S

ECEN5797

¸¸¹

·¨¨©

§�¸

¸¹

·¨¨©

§�

¸̧¹

¨̈©�¸

¹¨©�

2111

11)(

pp

z

L

cmcss

sGsG

ZZ

Z1

� � 44121

CRRf z �

S 441 2

1CR

f p S

322 2

1CR

f p S

Page 15: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

0

50Loop Gain

[db]

Verification: exact loop gain magnitude and phase responses (MATLAB)

kHz 105 cf

3 4 5 6-100

-50

mag

nitu

de

-100

-50

0

deg]

om 6.51 M

ECEN5797

103

104

105

106

-250

-200

-150

frequency [Hz]

phas

e [ m 6.5M

Analog PID compensator implementation

R2C2

C3

C4 R4

+

_

Vrefoutputvoltagesense

R1

2

vccontrolvoltage

¸̧·

¨̈§�¸

·¨§ � 11 L sZ

Design equations (approximate)

1

2

RR

Gcm 222

1CR

fL S

ECEN5797

¸¸¹

·¨¨©

§�¸

¸¹

·¨¨©

§�

¸̧¹

¨̈©�¸

¹¨©�

2111

11)(

pp

z

L

cmcss

sGsG

ZZ

Z1

� � 44121

CRRf z �

S 441 2

1CR

f p S

322 2

1CR

f p S

Page 16: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Verification of closed-loop responses

Closed-loop reference-to-output response

Closed-loop output impedance

and step-load transient response

ECEN5797

and step-load transient response

Construction of closed-loop T/(1+T) response

40dB

60dB

80dB

Closed-loop reference-to-output response v/vref = T/(1+T)

0dB

20dB

-20dB

-40dB

||v/vref||

Closed-loop BW | fc

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB

-80dB

Page 17: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Verification of closed-loop responses

Closed-loop reference-to-output response

Closed-loop output impedance

and step-load transient response

ECEN5797

and step-load transient response

Construction of closed-loop T/(1+T) response

40dB

60dB

80dB

Closed-loop reference-to-output response v/vref = T/(1+T)

0dB

20dB

-20dB

-40dB

||v/vref||

Closed-loop BW | fc

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB

-80dB

Page 18: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Closed-loop reference-to-output response

50

Reference-to-output response

-50

0

T/(

1+

T)

[db]

||v/vref||

ECEN5797

103

104

105

106

-100

Small-signal step-reference response

1.78

1.8

1.82

vo(t)10 mV step

(1.79 V to 1.8 V) in vref

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5

d(t)

20 Ps/div

Page 19: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Closed-loop reference-to-output response

50

Reference-to-output response

-50

0

T/(

1+

T)

[db]

||v/vref||

ECEN5797

103

104

105

106

-100

Small-signal step-reference response

1.78

1.8

1.82

vo(t)10 mV step

(1.79 V to 1.8 V) in vref

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5

d(t)

20 Ps/div

Page 20: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Small-signal step-reference response

1.78

1.8

1.82

vo(t)10 mV step

(1.79 V to 1.8 V) in vref

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

1.795

1.8

1.805

1.81

Note: duty-cycle command does not

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5d(t)

20 Ps/div 4.7 4.72 4.74 4.76 4.78 4.8 4.82 4.84 4.86 4.88 4.9 4.92 4.94 4.96 4.98 5

x 10-4

1.78

1.785

1.79

2 Ps/div

command does not saturate, response

correlates very well with theory based on linear small-signal models

Output impedance

Synchronous buck open-loop output impedance

·§ 1

• L = 1 PH

• RL = 30 m:

• C = 200 PF

� �sLRsC

RsZ Lesrout �¸¹·

¨©§ � ||

1)(

ResrRL L

C

Zout

ECEN5797

• Resr = 0.8 m:

Page 21: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Small-signal step-reference response

1.78

1.8

1.82

vo(t)10 mV step

(1.79 V to 1.8 V) in vref

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

1.795

1.8

1.805

1.81

Note: duty-cycle command does not

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5d(t)

20 Ps/div 4.7 4.72 4.74 4.76 4.78 4.8 4.82 4.84 4.86 4.88 4.9 4.92 4.94 4.96 4.98 5

x 10-4

1.78

1.785

1.79

2 Ps/div

command does not saturate, response

correlates very well with theory based on linear small-signal models

Output impedance

Synchronous buck open-loop output impedance

·§ 1

• L = 1 PH

• RL = 30 m:

• C = 200 PF

� �sLRsC

RsZ Lesrout �¸¹·

¨©§ � ||

1)(

ResrRL L

C

Zout

ECEN5797

• Resr = 0.8 m:

Page 22: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Open-loop output impedance: algebra on the graph

40dB:

60dB:

80dB:

ResrRL L

C

Zout

0dB:

20dB:

-20dB:

-40dB:

C

:�o: dB 5.30m 30LR

CZ/1 LZ

kHz 11 of

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB:

:�o: dB 62m 8.0esrR

Construction of 1/(1+T)

40dB

60dB

80dB

0dB

20dB

40dB

-20dB

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

Page 23: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Open-loop output impedance: algebra on the graph

40dB:

60dB:

80dB:

ResrRL L

C

Zout

0dB:

20dB:

-20dB:

-40dB:

C

:�o: dB 5.30m 30LR

CZ/1 LZ

kHz 11 of

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB:

:�o: dB 62m 8.0esrR

Construction of 1/(1+T)

40dB

60dB

80dB

0dB

20dB

40dB

-20dB

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

Page 24: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Construction of closed-loop output impedance

40dB:

60dB:

80dB:

TZ

Z outCLout �

1,

0dB:

20dB:

40dB:

-20dB:

-40dB:

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB:

Closed-loop output impedance Zout,CL

40dB:

60dB:

80dB:

TZ

Z outCLout �

1,

0dB:

20dB:

-20dB:

-40dB: 8 m:, -42 dB:

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB: |||| ,CLoutZ

Page 25: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Construction of closed-loop output impedance

40dB:

60dB:

80dB:

TZ

Z outCLout �

1,

0dB:

20dB:

40dB:

-20dB:

-40dB:

ECEN5797100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB:

Closed-loop output impedance Zout,CL

40dB:

60dB:

80dB:

TZ

Z outCLout �

1,

0dB:

20dB:

-20dB:

-40dB: 8 m:, -42 dB:

ECEN5797

100 KHz10 KHz1 KHz100 Hz10 Hz 1 MHz

-60dB:

-80dB:

-100dB: |||| ,CLoutZ

Page 26: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

50Output impedance

Verification: closed-loop output impedance

-50

0

tput

impe

danc

e [d

bOhm

]

l d l

|||| outZopen-loop

ECEN5797

103

104

105

106

-100

Ou closed-loop

|||| ,CLoutZ

Step-load transient responses

1 78

1.8

1.82

vo(t)2.5-5 A step-load

transient

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

1.78

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5

d(t)

20 Ps/div

Page 27: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

50Output impedance

Verification: closed-loop output impedance

-50

0

tput

impe

danc

e [d

bOhm

]

l d l

|||| outZopen-loop

ECEN5797

103

104

105

106

-100

Ou closed-loop

|||| ,CLoutZ

Step-load transient responses

1 78

1.8

1.82

vo(t)2.5-5 A step-load

transient

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

1.78

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

ECEN5797

x 10

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5

d(t)

20 Ps/div

Page 28: University of Colorado Boulder - DepartmentofElectrical ...ecee.colorado.edu/~ecen5797/course_material/Lecture32...ECEE Department, University of Colorado, Boulder Magnitude and phase

ECEN4797/5797 Introduction to Power Electronics

ECEE Department, University of Colorado, Boulder

Step-load transient responses

1.78

1.8

1.82

vo(t)2.5-5 A step-load

transient

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

5iL(t)

1.795

1.8

1.805

1.81

ECEN5797

4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8

x 10-4

0

0.5

d(t)

20 Ps/div 4.7 4.72 4.74 4.76 4.78 4.8 4.82 4.84 4.86 4.88 4.9 4.92 4.94 4.96 4.98 5

x 10-4

1.78

1.785

1.79

'v | 15 mV|10 Ps settling

time

2 Ps/div


Recommended