+ All Categories
Home > Documents > University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M.,...

University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M.,...

Date post: 11-Sep-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
University of Groningen To be competent or not Smits, Wiep Klaas IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2007 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Smits, W. K. (2007). To be competent or not: an inquiry into the molecular basis of bacterial differentiation. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-12-2019
Transcript
Page 1: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

University of Groningen

To be competent or notSmits, Wiep Klaas

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2007

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Smits, W. K. (2007). To be competent or not: an inquiry into the molecular basis of bacterial differentiation.s.n.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 30-12-2019

Page 2: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

188

References

Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 82: 5724-5727.

Albano, M., Breitling, R., and Dubnau, D.A. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171: 5386-5404.

Albano, M. and Dubnau, D.A. 1989. Cloning and characterization of a cluster of linked Bacillus subtilis late compe-tence mutations. J. Bacteriol. 171: 5376-5385.

Albano, M., Hahn, J., and Dubnau, D. 1987. Expression of competence genes in Bacillus subtilis. J. Bacteriol. 169: 3110-3117.

Albano, M., Smits, W.K., Ho, L.T.Y., Kraigher, B., Mandic-Mulec, I., Kuipers, O.P., and Dubnau, D. 2005. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J. Bacteriol. 187: 1-10.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J.D. 1994. Basic genetic mechanisms. In Molecular Biology of the Cell pp. 223-290. Garland Publishing, New York.

Anagnostopoulos, C. and Spizizen, J. 1961. Requirements for transformation in Bacillus subtilis. Journal of Bacteriol-ogy 81: 741-746.

Angeli, D., Ferrell, J.E., Jr., and Sontag, E.D. 2004. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. U. S. A 101: 1822-1827.

Ansaldi, M. and Dubnau, D. 2004. Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone. J. Bacteriol. 186: 15-21.

Arantes, O. and Lereclus, D. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115-119.

Aravind, L., Anantharaman, V., Balaji, S., Babu, M.M., and Iyer, L.M. 2005. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29: 231-262.

Arkin, A., Ross, J., and McAdams, H.H. 1998. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149: 1633-1648.

Arner, E.S. and Holmgren, A. 2000. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102-6109.

Arnold, D.A. and Kowalczykowski, S.C. 2000. Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J. Biol. Chem. 275: 12261-12265.

Ash, C., Farrow, J. A. E., Walbanks, S., and Collins, M. D. 1991. Phylogenetic heterogeneity of the genus Bacillus re-vealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13:202–206.

Auchtung, J.M., Lee, C.A., and Grossman, A.D. 2006. Modulation of the ComA-dependent quorum response in Bacil-lus subtilis by multiple Rap proteins and Phr peptides. J. Bacteriol. 188: 5273-5285.

Auchtung, J.M., Lee, C.A., Monson, R.E., Lehman, A.P., and Grossman, A.D. 2005. Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc. Natl. Acad. Sci. U. S. A 102: 12554-12559.

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidham, J.G., Smith, J.A., and Struhl, K.. Current protocols in molecular biology., John Wiley & Sons, New York.

Avery, O.T., MacLeod, C.M., and McCarty, M. 1944. Studies on the chemical nature of the substance inducing transfor-mation of pneumococcal types - Induction of transformation by a deoxyribonucleic-acid fraction isolated from Pneu-mococcus Type-III. Journal of Experimental Medicine 79: 137-158.

Avery, S.V. 2005. Cell individuality: the bistability of competence development. Trends Microbiol. 13: 459-462.

Page 3: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

189

Bacon, S.K., Palmer, T.M., and Grossman, A.D. 2002. Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J. Bacteriol. 184: 410-419.

Baerends, R.J., Smits, W.K., de Jong, A., Hamoen, L.W., Kok, J., and Kuipers, O.P. 2004. Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data. Genome Biol. 5: R37.

Bai, U., Mandic-Mulec, I., and Smith, I. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7: 139-148.

Baichoo, N., Wang, T., Ye, R., and Helmann, J.D. 2002. Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon. Mol. Microbiol. 45: 1613-1629.

Bailey, T.L. and Noble, W.S. 2003. Searching for statistically significant regulatory modules. Bioinformatics. 19 Suppl 2: II16-II25.

Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. 2004. Bacterial persistence as a phenotypic switch. Science 305: 1622-1625.

Baldi,P. and G.W.Hatfield. DNA microarrays and gene expression., Cambridge University Press, Cambridge, United Kingdom.

Baldi, P. and Long, A.D. 2001. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics. 17: 509-519.

Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., and Buchanan, B.B. 2003. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc. Natl. Acad. Sci. U. S. A 100: 370-375.

Balmer, Y., Vensel, W.H., Tanaka, C.K., Hurkman, W.J., Gelhaye, E., Rouhier, N., Jacquot, J.P., Manieri, W., Schur-mann, P., Droux, M., and Buchanan, B.B. 2004. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc. Natl. Acad. Sci. U. S. A 101: 2642-2647.

Band, L. and Henner, D.J. 1984. Bacillus subtilis requires a “stringent” Shine-Dalgarno region for gene expression. DNA 3: 17-21.

Barkai, N. and Leibler, S. 2000. Circadian clocks limited by noise. Nature 403: 267-268.

Barnard, A., Wolfe, A., and Busby, S. 2004. Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. Curr. Opin. Microbiol. 7: 102-108.

Becskei, A., Seraphin, B., and Serrano, L. 2001. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20: 2528-2535.

Becskei, A. and Serrano, L. 2000. Engineering stability in gene networks by autoregulation. Nature 405: 590-593.

Benov, L. and Fridovich, I. 1997. Superoxide imposes leakage of sulfite from Escherichia coli. Arch. Biochem. Biophys. 347: 271-274.

Benov, L. and Fridovich, I. 1999. Why superoxide imposes an aromatic amino acid auxotrophy on Escherichia coli. The transketolase connection. J. Biol. Chem. 274: 4202-4206.

Benov, L., Kredich, N.M., and Fridovich, I. 1996. The mechanism of the auxotrophy for sulfur-containing amino acids imposed upon Escherichia coli by superoxide. J. Biol. Chem. 271: 21037-21040.

Berge, M., Mortier-Barriere, I., Martin, B., and Claverys, J.P. 2003. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol. Microbiol. 50: 527-536.

Berka, R.M., Hahn, J., Albano, M., Draskovic, I., Persuh, M., Cui, X., Sloma, A., Widner, W., and Dubnau, D. 2002. Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Mi-crobiol. 43: 1331-1345.

Berndt, C., Lillig, C.H., Wollenberg, M., Bill, E., Mansilla, M.C., de Mendoza, D., Seidler, A., and Schwenn, J.D. 2004. Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus sub-tilis. J. Biol. Chem. 279: 7850-7855.

Bewley, C.A., Gronenborn, A.M., and Clore, G.M. 1998. Minor groove-binding architectural proteins: structure, func-tion, and DNA recognition. Annu. Rev. Biophys. Biomol. Struct. 27: 105-131.

Page 4: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

190

Bishop, A.L., Rab, F.A., Sumner, E.R., and Avery, S.V. 2006. Phenotypic heterogeneity can enhance rare-cell survival in ‘stress-sensitive’ yeast populations. Mol. Microbiol. In press.

Blake, W.J., Balazsi, G., Kohanski, M.A., Isaacs, F.J., Murphy, K.F., Kuang, Y., Cantor, C.R., Walt, D.R., and Collins, J.J. 2006. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24: 853-865.

Blake, W.J., KAErn, M., Cantor, C.R., and Collins, J.J. 2003. Noise in eukaryotic gene expression. Nature 422: 633-637.

Blattner, F.R., Plunkett, G., III, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., and Shao, Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1474.

Blom, E.-J., Bosman, D.W.J., van Hijum, S.A.F.T., Breitling, R., Tijsma, L., Silvis, R., Roerdink, J.B.T.M., and Kuipers, O.P. 2007. FIVA: Functional Information Viewer and Analyzer - extracting biological knowledge from transcriptome data of prokaryotes. Bioinformatics . In press.

Bloomfield, K.L., Osborne, S.A., Kennedy, D.D., Clarke, F.M., and Tonissen, K.F. 2003. Thioredoxin-mediated redox control of the transcription factor Sp1 and regulation of the thioredoxin gene promoter. Gene 319: 107-116.

Bolhuis, A., Venema, G., Quax, W.J., Bron, S., and van Dijl, J.M. 1999. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274: 24531-24538.

Bongers, R., Veening, J.W., Van Wieringen, M., Kuipers, O.P., and Kleerebezem, M. 2005. Development and charac-terisation of a subtilin-regulated expression system in Bacillus subtilis: strict control of gene expression by the addition of subtilin. Appl. Environ. Microbiol. 71:8818-24

Bongiorni, C., Ishikawa, S., Stephenson, S., Ogasawara, N., and Perego, M. 2005. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J. Bacteriol. 187: 4353-4361.

Bongiorni, C., Stoessel, R., Shoemaker, D., and Perego, M. 2006. Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J. Bacteriol. 188: 487-498.

Booth, I.R. 2002. Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78: 19-30.

Boucher, P.E., Maris, A.E., Yang, M.S., and Stibitz, S. 2003. The response regulator BvgA and RNA polymerase alpha subunit C-terminal domain bind simultaneously to different faces of the same segment of promoter DNA. Mol. Cell 11: 163-173.

Branda, S.S., Gonzalez-Pastor, J.E., Ben-Yehuda, S., Losick, R., and Kolter, R. 2001. Fruiting body formation by Bacil-lus subtilis. Proc. Natl. Acad. Sci. U S A 98: 11621-11626.

Brehm-Stecher, B.F. and Johnson, E.A. 2004. Single-cell microbiology: tools, technologies, and applications. Micro-biol. Mol. Biol. Rev. 68: 538-59, table.

Bren, A. and Eisenbach, M. 2001. Changing the direction of flagellar rotation in bacteria by modulating the ratio be-tween the rotational states of the switch protein FliM. J. Mol. Biol. 312: 699-709.

Bron, S. and Venema, G. 1972. Ultraviolet inactivation and excision repair in B. subtilis. I. Construction and character-ization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mut. Res. 15: 1-10.

Bron, S. 1990. Plasmids. In Molecular biological methods for Bacillus (ed. C.R.Harwood and S.M.Cutting), pp. 75-174. John Wiley & Sons Ltd, Chichester.

Bron, S. and Venema, G. 1971. Ultraviolet inactivation and excision-repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mutation Research 15: 1-10.

Brown, K.L. 2000. Control of bacterial spores. Br. Med. Bull. 56: 158-171.

Browning, D.F. and Busby, S.J. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 57-65.

Browning, D.F., Cole, J.A., and Busby, S.J. 2004. Transcription activation by remodelling of a nucleoprotein assembly: the role of NarL at the FNR-dependent Escherichia coli nir promoter. Mol. Microbiol. 53: 203-215.

Page 5: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

191

Browning, D.F., Grainger, D.C., Beatty, C.M., Wolfe, A.J., Cole, J.A., and Busby, S.J. 2005. Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression. Mol. Microbiol. 57: 496-510.

Browning, D.F., Lee, D.J., Wolfe, A.J., Cole, J.A., and Busby, S.J. 2006. The Escherichia coli K-12 NarL and NarP pro-teins insulate the nrf promoter from the effects of Integration Host Factor. J. Bacteriol. 188: 7449-7456.

Burbulys, D., Trach, K.A., and Hoch, J.A. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64: 545-552.

Burguière, P., Auger, S., Hullo, M.-F., Danchin, A., and Martin-Verstraete, I. 2004. Three different systems participate in L-cystine uptake in Bacillus subtilis. J. Bacteriol. 186: 4875-4884.

Burkholder, P.R. and Giles, N.H. 1947. Induced biochemical mutations in Bacillus subtilis. American Journal of Botany 34: 345-348.

Cahn, F.H. and Fox, M.S. 1968. Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bacteriol. 95: 867-875.

Carey, M. 1998. The enhanceosome and transcriptional synergy. Cell 92: 5-8.

Carlioz, A. and Touati, D. 1986. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J. 5: 623-630.

Chargaff, E. 1950. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6: 201-209.

Chen, I. and Dubnau, D. 2004. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2: 241-249.

Chen, I. and Dubnau, D. 2003. DNA transport during transformation. Front Biosci. 8: s544-s556.

Chen, I., Provvedi, R., and Dubnau, D. 2006. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J. Biol .Chem. 281: 21720-21727.

Chen, L., Keramati, L., and Helmann, J.D. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. U. S. A 92: 8190-8194.

Chung, J.D., Conner, S., and Stephanopoulos, G. 1995. Flow cytometric study of differentiating cultures of Bacillus subtilis. Cytometry 20: 324-333.

Chung, J.D., Stephanopoulos, G., Ireton, K., and Grossman, A.D. 1994. Gene expression in single cells of Bacillus sub-tilis: evidence that a threshold mechanism controls the initiation of sporulation. J. Bacteriol. 176: 1977-1984.

Chung, Y.S., Breidt, F., and Dubnau, D. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29: 905-913.

Chung, Y.S. and Dubnau, D. 1995. ComC is required for the processing and translocation of comGC, a pilin-like com-petence protein of Bacillus subtilis. Mol. Microbiol. 15: 543-551.

Chung, Y.S. and Dubnau, D. 1998. All seven comG open reading frames are required for DNA binding during transfor-mation of competent Bacillus subtilis. J. Bacteriol. 180: 41-45.

Claverys, J.P., Prudhomme, M., Mortier-Barriere, I., and Martin, B. 2000. Adaptation to the environment: Streptococ-cus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol. Microbiol. 35: 251-259.

Cohn, M. and Horibata, K. 1959a. Analysis of the differentiation and of the heterogeneity within a population of Esch-erichia coli undergoing induced beta-galactosidase synthesis. J. Bacteriol. 78: 613-623.

Cohn, M. and Horibata, K. 1959b. Inhibition by glucose of the induced synthesis of the beta-galactoside-enzyme system of Escherichia coli. Analysis of maintenance. J. Bacteriol. 78: 601-612.

Comella, N. and Grossman, A.D. 2005. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol. Microbiol. 57: 1159-1174.

Core, L. and Perego, M. 2003. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis. Mol. Microbiol. 49: 1509-1522.

Page 6: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

192

Cosmina, P., Rodriguez, F., de Ferra, F., Grandi, G., Perego, M., Venema, G., and van Sinderen, D. 1993. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 8: 821-831.

Coulombe, B. and Burton, Z.F. 1999. DNA bending and wrapping around RNA polymerase: a “revolutionary” model describing transcriptional mechanisms. Microbiol. Mol. Biol. Rev. 63: 457-478.

D’Souza, C., Nakano, M.M., Frisby, D.L., and Zuber, P. 1995. Translation of the open reading frame encoded by comS, a gene of the srf operon, is necessary for the development of genetic competence, but not surfactin biosynthesis, in Bacillus subtilis. J. Bacteriol. 177: 4144-4148.

D’Souza, C., Nakano, M.M., and Zuber, P. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 91: 9397-9401.

Dahl, M.K., Msadek, T., Kunst, F., and Rapoport, G. 1992. The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacil-lus subtilis. J. Biol. Chem. 267: 14509-14514.

Dahl, M.K., Msadek, T., Kunst, F., and Rapoport, G. 1991. Mutational analysis of the Bacillus subtilis DegU regulator and its phosphorylation by the DegS protein kinase. J. Bacteriol. 173: 2539-2547.

Dahm, R. 2005. Friedrich Miescher and the discovery of DNA. Dev. Biol. 278: 274-288.

Danon, A. 2002. Redox reactions of regulatory proteins: do kinetics promote specificity? Trends Biochem. Sci. 27: 197-203.

Dawes, I.W. and Thornley, J.H. 1970. Sporulation in Bacillus subtilis. Theoretical and experimental studies in continu-ous culture systems. J. Gen. Microbiol. 62: 49-66.

de Lencastre, H. and Piggot, P.J. 1979. Identification of different sites of expression for spo loci by transformation of Bacillus subtilis. J. Gen. Microbiol. 114: 377-389.

den Hengst, C.D., Curley, P., Larsen, R., Buist, G., Nauta, A., van Sinderen, D., Kuipers, O.P., and Kok, J. 2005a. Prob-ing direct interactions between CodY and the oppD promoter of Lactococcus lactis. J. Bacteriol. 187: 512-521.

den Hengst, C.D., van Hijum, S.A.F.T., Geurts, J.M.W., Nauta, A., Kok, J., and Kuipers, O.P. 2005b. The Lactococcus lactis CodY regulon - Identification of a conserved cis-regulatory element. J. Biol. Chem. 280: 34332-34342.

Dobay, O., Rozgonyi, F., and Amyes, S.G.B. 2004. Virulence factors, antibiotic resistance mechanisms and the preva-lence of resistance worldwide in Streptococcus pneumoniae. Reviews in Medical Microbiology 15: 27-39.

Dooley, C.T., Dore, T.M., Hanson, G.T., Jackson, W.C., Remington, S.J., and Tsien, R.Y. 2004. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279: 22284-22293.

Dooley, D.C., Hadden, C.T., and Nester, E.W. 1971. Macromolecular synthesis in Bacillus subtilis during development of the competent state. J. Bacteriol. 108: 668-679.

Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W.J., and van Dijl, J.M. 2002. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277: 16682-16688.

Draskovic, I. and Dubnau, D. 2005. Biogenesis of a putative channel protein, ComEC, required for DNA uptake: mem-brane topology, oligomerization and formation of disulphide bonds. Molecular Microbiology 55: 881-896.

Dubnau,D. 1993. Genetic exchange and homologous recombination. In Bacillus subtilis and other Grampositive bac-teria (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 555-584. American Society for Microbiology, Washington, D.C.

Dubnau, D. 1997. Binding and transport of transforming DNA by Bacillus subtilis: the role of type-IV pilin-like pro-teins--a review. Gene 192: 191-198.

Dubnau, D. 1991b. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55: 395-424.

Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 217-244.

Dubnau, D. 1991a. The regulation of genetic competence in Bacillus subtilis. Mol. Microbiol. 5: 11-18.

Page 7: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

193

Dubnau, D. and Cirigliano, C. 1972. Fate of transforming DNA following uptake by competent Bacillus subtilis. For-mation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J. Mol. Biol. 64: 9-29.

Dubnau, D. and Losick, R. 2006. Bistability in bacteria. Mol. Microbiol. 61: 564-572.

Dubnau,D. and C.M.Lovett. 2002. Transformation and recombination. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 453-472. American Society for Microbiology, Washington, D.C.

Dunlap, J.C. 1999. Molecular bases for circadian clocks. Cell 96: 271-290.

Dworkin, J. and Losick, R. 2005. Developmental commitment in a bacterium. Cell 121: 401-409.

Eichenberger, P., Fujita, M., Jensen, S.T., Conlon, E.M., Rudner, D.Z., Wang, S.T., Ferguson, C., Haga, K., Sato, T., Liu, J.S., and Losick, R. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS. Biol. 2: e328.

Eisenstadt, E., Lange, R., and Willecke, K. 1975. Competent Bacillus subtilis cultures synthesize a denatured DNA binding activity. Proc. Natl. Acad. Sci. U. S. A 72: 323-327.

Ellermeier, C.D., Hobbs, E.C., Gonzalez-Pastor, J.E., and Losick, R. 2006. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124: 549-559.

Elowitz, M.B. and Leibler, S. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403: 335-338.

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. 2002. Stochastic gene expression in a single cell. Science 297: 1183-1186.

Erlendsson, L.S., Moller, M., and Hederstedt, L. 2004. Bacillus subtilis StoA Is a thiol-disulfide oxidoreductase impor-tant for spore cortex synthesis. J. Bacteriol. 186: 6230-6238.

Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1: 117-126.

Errington, J. 1993. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Micro-biol. Rev. 57: 1-33.

Estrem, S.T., Ross, W., Gaal, T., Chen, Z.W., Niu, W., Ebright, R.H., and Gourse, R.L. 1999. Bacterial promoter archi-tecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev. 13: 2134-2147.

Eymann, C., Homuth, G., Scharf, C., and Hecker, M. 2002. Bacillus subtilis functional genomics: global characteriza-tion of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184: 2500-2520.

Fang, A.Q. and Demain, A.L. 1989. A New Chemically-Defined Medium for Rac-Certified and Other Strains of Bacil-lus subtilis. Applied Microbiology and Biotechnology 30: 144-147.

Fariselli, P., Riccobelli, P., and Casadio, R. 1999. Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins. Proteins-Structure Function and Genetics 36: 340-346.

Fawcett, P., Eichenberger, P., Losick, R., and Youngman, P. 2000. The transcriptional profile of early to middle sporula-tion in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 97: 8063-8068.

Ferrell, J.E., Jr. 2002. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14: 140-148.

Feucht, A. and Lewis, P.J. 2001. Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 264: 289-297.

Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J., and Eisen, M.B. 2004. Noise minimization in eukaryotic gene expres-sion. PLoS. Biol. 2: e137.

Fredrick, K. and Helmann, J.D. 1997. RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Proc. Natl. Acad. Sci. U. S. A. 94: 4982-4987.

Page 8: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

194

Friedberg, E.C. 2006. The eureka enzyme: the discovery of DNA polymerase. Nat. Rev. Mol. Cell Biol. 7: 143-147.

Fuangthong, M., Atichartpongkul, S., Mongkolsuk, S., and Helmann, J.D. 2001. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol. 183: 4134-4141.

Fuangthong, M., Herbig, A.F., Bsat, N., and Helmann, J.D. 2002. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184: 3276-3286.

Fujita, M., Gonzalez-Pastor, J.E., and Losick, R. 2005. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187: 1357-1368.

Fujita, M. and Losick, R. 2003. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-spe-cific transcription factor after asymmetric division. Genes Dev. 17: 1166-1174.

Fujita, M. and Sadaie, Y. 1998. Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J. Biochem. (Tokyo) 124: 98-104.

Gaballa, A. and Helmann, J.D. 2002. A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in Bacillus subtilis. Mol. Microbiol. 45: 997-1005.

Gaballa, A., Wang, T., Ye, R.W., and Helmann, J.D. 2002. Functional analysis of the Bacillus subtilis Zur regulon. J. Bacteriol. 184: 6508-6514.

Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339-342.

Gleason, F.K. and Holmgren, A. 1988. Thioredoxin and related proteins in procaryotes. FEMS Microbiol. Rev. 4: 271-297.

Goh, E.B., Yim, G., Tsui, W., McClure, J., Surette, M.G., and Davies, J. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. U. S. A 99: 17025-17030.

Gonzalez-Pastor, J.E., Hobbs, E.C., and Losick, R. 2003. Cannibalism by sporulating bacteria. Science 301: 510-513.

Goodrich, J.A., Schwartz, M.L., and McClure, W.R. 1990. Searching for and predicting the activity of sites for DNA binding proteins: compilation and analysis of the binding sites for Escherichia coli integration host factor (IHF). Nu-cleic Acids Res. 18: 4993-5000.

Griffith, F. 1928. The significance of pneumococcal types. Journal of Hygiene 27: 113-159.

Grundy,F.J. and Henkin, T.M. 2001. Synthesis of serine, glycine, cysteine, and methionine. In Bacillus Subtilis and Its Closest Relatives: From Genes to Cells (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 245-254. American Society for Microbiology, Washington, D.C.

Guerout-Fleury, A.M., Shazand, K., Frandsen, N., and Stragier, P. 1995. Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167: 335-336.

Guespin-Michel, J. and Kaufman, M. 2001. Positive feedback circuits and adaptive regulations in bacteria. Acta Bi-otheor. 49: 207-218.

Guespin-Michel, J.F., Bernot, G., Comet, J.P., Merieau, A., Richard, A., Hulen, C., and Polack, B. 2004. Epigenesis and dynamic similarity in two regulatory networks in Pseudomonas aeruginosa. Acta Biotheor. 52: 379-390.

Guillouard, I., Auger, S., Hullo, M.F., Chetouani, F., Danchin, A., and Martin-Verstraete, I. 2002. Identification of Ba-cillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J. Bacteriol. 184: 4681-4689.

Guiral, S., Mitchell, T.J., Martin, B., and Claverys, J.P. 2005. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl. Acad. Sci. U. S. A. 102: 8710-8715.

Hadden, C. and Nester, E.W. 1968. Purification of competent cells in the Bacillus subtilis transformation system. J. Bacteriol. 95: 876-885.

Hageman, J.H., Shankweiler, G.W., Wall, P.R., Franich, K., McCowan, G.W., Cauble, S.M., Grajeda, J., and Quinones, C. 1984. Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extracellular protease production. J. Bacteriol. 160: 438-441.

Page 9: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

195

Hahn, J., Albano, M., and Dubnau, D. 1987. Isolation and characterization of Tn917lac-generated competence mutants of Bacillus subtilis. J. Bacteriol. 169: 3104-3109.

Hahn, J., Bylund, J., Haines, M., Higgins, M., and Dubnau, D. 1995a. Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis. Mol. Microbiol. 18: 755-767.

Hahn, J. and Dubnau, D. 1991. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173: 7275-7282.

Hahn, J., Inamine, G., Kozlov, Y., and Dubnau, D. 1993. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol. Microbiol. 10: 99-111.

Hahn, J., Kong, L., and Dubnau, D. 1994. The regulation of competence transcription factor synthesis constitutes a criti-cal control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176: 5753-5761.

Hahn, J., Luttinger, A., and Dubnau, D. 1996. Regulatory inputs for the synthesis of ComK, the competence transcrip-tion factor of Bacillus subtilis. Mol. Microbiol. 21: 763-775.

Hahn, J., Maier, B., Haijema, B.J., Sheetz, M., and Dubnau, D. 2005. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell. 122: 59-71.

Hahn, J., Roggiani, M., and Dubnau, D. 1995b. The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J. Bacteriol. 177: 3601-3605.

Haijema, B.J., Hahn, J., Haynes, J., and Dubnau, D. 2001. A ComGA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol. 40: 52-64.

Haijema, B.J., Hamoen, L.W., Kooistra, J., Venema, G., and van-Sinderen, D. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol. Microbiol. 15: 203-211.

Haijema, B.J., van-Sinderen, D., Winterling, K., Kooistra, J., Venema, G., and Hamoen, L.W. 1996. Regulated expres-sion of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol. Micro-biol. 22: 75-85.

Hallet, B. 2001. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4: 570-581.

Hamoen, L.W., Eshuis, H., Jongbloed, J., Venema, G., and van Sinderen, D. 1995. A small gene, designated comS, lo-cated within the coding region of the fourth amino acid-activation domain of srfA, is required for competence develop-ment in Bacillus subtilis. Mol. Microbiol. 15: 55-63.

Hamoen, L.W., Haijema, B., Bijlsma, J.J., Venema, G., and Lovett, C.M. 2001. The Bacillus subtilis competence tran-scription factor, ComK, overrides LexA-imposed transcriptional inhibition without physically displacing LexA. J. Biol. Chem. 276: 42901-42907.

Hamoen, L.W., Kausche, D., Marahiel, M.A., van Sinderen, D., Venema, G., and Serror, P. 2003a. The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol. Lett. 218: 299-304.

Hamoen, L.W., Smits, W.K., de Jong, A., Holsappel, S., and Kuipers, O.P. 2002. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res. 30: 5517-5528.

Hamoen, L.W., Van Werkhoven, A.F., Venema, G., and Dubnau, D. 2000. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A. 97: 9246-9251.

Hamoen, L.W., Van-Werkhoven, A.F., Bijlsma, J.J., Dubnau, D., and Venema, G. 1998. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12: 1539-1550.

Hamoen, L.W., Venema, G., and Kuipers, O.P. 2003b. Controlling competence in Bacillus subtilis: shared use of regula-tors. Microbiology 149: 9-17.

Page 10: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

196

Hamon, M.A., Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B.A. 2004. Identification of AbrB-regu-lated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol. 52: 847-860.

Hanson, G.T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R.A., Tsien, R.Y., and Remington, S.J. 2004. Inves-tigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J. Biol. Chem. 279: 13044-13053.

Hasty, J., McMillen, D., and Collins, J.J. 2002. Engineered gene circuits. Nature 420: 224-230.

Hasty, J., Pradines, J., Dolnik, M., and Collins, J.J. 2000. Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. U. S. A 97: 2075-2080.

Hautefort, I., Proenca, M.J., and Hinton, J.C. 2003. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Micro-biol. 69: 7480-7491.

Havarstein, L.S., Coomaraswamy, G., and Morrison, D.A. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. U. S. A 92: 11140-11144.

Hayashi, K., Kensuke, T., Kobayashi, K., Ogasawara, N., and Ogura, M. 2006. Bacillus subtilis RghR (YvaN) represses rapG and rapH, which encode inhibitors of expression of the srfA operon. Mol. Microbiol. 59: 1714-1729.

Hayashi, K., Ohsawa, T., Kobayashi, K., Ogasawara, N., and Ogura, M. 2005. The H2O2 stress-responsive regulator PerR positively regulates srfA expression in Bacillus subtilis. J. Bacteriol. 187: 6659-6667.

Hayes, C.S., Illades-Aguiar, B., Casillas-Martinez, L., and Setlow, P. 1998. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. J. Bacteriol. 180: 2694-2700.

Heinrich, R. and Schuster, S. 1998. The modelling of metabolic systems. Structure, control and optimality. Biosystems 47: 61-77.

Helmann, J.D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol 46: 47-110.

Henderson, I.R., Owen, P., and Nataro, J.P. 1999. Molecular switches--the ON and OFF of bacterial phase variation. Mol. Microbiol. 33: 919-932.

Henriques, A.O., Bryan, E.M., Beall, B.W., and Moran, C.P. 1997. cse15, cse60, and csk22 are new members of mother-cell-specific sporulation regulons in Bacillus subtilis. Journal of Bacteriology 179: 389-398.

Hershey, A.D. and Chase, M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol 36: 39-56.

Hoa, T.T., Tortosa, P., Albano, M., and Dubnau, D. 2002. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43: 15-26.

Hoch, J.A. 1971. Genetic analysis of pleiotropic negative sporulation mutants in Bacillus subtilis. J. Bacteriol. 105: 896-&.

Hoch, J.A. 1991. spo0 genes, the phosphorelay, and the initiation of sporulation. In Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 747-755. American Society for Microbiology, Washinton, D.C.

Hofer, T., Nathansen, H., Lohning, M., Radbruch, A., and Heinrich, R. 2002. GATA-3 transcriptional imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. U. S. A 99: 9364-9368.

Holmgren, A. 1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264: 13963-13966.

Hooshangi, S., Thiberge, S., and Weiss, R. 2005. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. U. S. A 102: 3581-3586.

Horcajadas, J.A., Monsalve, M., Rojo, F., and Salas, M. 1999. The switch from early to late transcription in phage GA-1: characterization of the regulatory protein p4G. J. Mol. Biol. 290: 917-928.

Huang, H.J., Ridgway, D., Gu, T.Y., and Moo-Young, M. 2004. Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst. Eng. 27: 63-69.

Page 11: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

197

Imamura, D., Kobayashi, K., Sekiguchi, J., Ogasawara, N., Takeuchi, M., and Sato, T. 2004. spoIVH (ykvV), a requisite cortex formation gene, is expressed in both sporulating compartments of Bacillus subtilis. J. Bacteriol. 186: 5450-5459.

Inamine, G.S. and Dubnau, D. 1995. ComEA, a Bacillus subtilis integral membrane protein required for genetic trans-formation, is needed for both DNA binding and transport. J. Bacteriol. 177: 3045-3051.

Ireton, K., Rudner, D.Z., Siranosian, K.J., and Grossman, A.D. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 7: 283-294.

Isaacs, F.J., Hasty, J., Cantor, C.R., and Collins, J.J. 2003. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. U. S. A 100: 7714-7719.

Ishikawa, S., Core, L., and Perego, M. 2002. Biochemical characterization of aspartyl phosphate phosphatase interac-tion with a phosphorylated response regulator and its inhibition by a pentapeptide. J. Biol. Chem. 277: 20483-20489.

Jacob, F. and Monod, J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318-356.

Jacob, F. and Monod, J. 1964. Biochemical and genetic mechanisms of regulation in the bacterial cell. Bull. Soc. Chim. Biol. (Paris) 46: 1499-1532.

Jacob, F., Perrin, D., Sanchez, C., and Monod, J. 1960. Operon: a group of genes with the expression coordinated by an operator. C. R. Hebd. Seances Acad. Sci. 250: 1727-1729.

Jacob, F., Ullman, A., and Monod, J. 1964. The promotor, a genetic element necessary to the expression of an operon. C. R. Hebd. Seances Acad. Sci. 258: 3125-3128.

Jarmer, H., Larsen, T.S., Krogh, A., Saxild, H.H., Brunak, S., and Knudsen, S. 2001. Sigma A recognition sites in the Bacillus subtilis genome. Microbiology 147: 2417-2424.

Jensen, S.T. and Liu, J.S. 2004. BioOptimizer: a Bayesian scoring function approach to motif discovery. Bioinformatics. 20: 1557-1564.

Jespersen, L. and Jakobsen, M. 1996. Specific spoilage organisms in breweries and laboratory media for their detection. Int. J. Food Microbiol. 33: 139-155.

Jiang, M., Shao, W., Perego, M., and Hoch, J.A. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38: 535-542.

Johnson, D.E. and Richardson, C.C. 2003. A covalent linkage between the gene 5 DNA polymerase of bacteriophage T7 and Escherichia coli thioredoxin, the processivity factor: fate of thioredoxin during DNA synthesis. J. Biol. Chem. 278: 23762-23772.

Jonas, R.M., Weaver, E.A., Kenney, T.J., Moran, C.P., Jr., and Haldenwang, W.G. 1988. The Bacillus subtilis spoIIG operon encodes both sigma E and a gene necessary for sigma E activation. J. Bacteriol. 170: 507-511.

Jones, R.N., Low, D.E., and Pfaller, M.A. 1999. Epidemiologic trends in nosocomial and community-acquired infec-tions due to antibiotic-resistant gram-positive bacteria: the role of streptogramins and other newer compounds. Diagn. Microbiol. Infect. Dis. 33: 101-112.

Kærn, M., Elston, T.C., Blake, W.J., and Collins, J.J. 2005. Stochasticity in gene expression: from theories to pheno-types. Nat. Rev. Genet. 6: 451-464.

Kawai, Y., Moriya, S., and Ogasawara, N. 2003. Identification of a protein, YneA, responsible for cell division suppres-sion during the SOS response in Bacillus subtilis. Mol. Microbiol. 47: 1113-1122.

Kearns, D.B., Chu, F., Branda, S.S., Kolter, R., and Losick, R. 2005. A master regulator for biofilm formation by Bacil-lus subtilis. Mol. Microbiol. 55: 739-749.

Kearns, D.B. and Losick, R. 2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19: 3083-3094.

Khlebnikov, A., Skaug, T., and Keasling, J.D. 2002. Modulation of gene expression from the arabinose-inducible ara-BAD promoter. J. Ind. Microbiol. Biotechnol. 29: 34-37.

Page 12: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

198

Kidane, D. and Graumann, P.L. 2005. Intracellular protein and DNA dynamics in competent Bacillus subtilis cells. Cell 122: 73-84.

Kim, H.J., Kim, S.I., Ratnayake-Lecamwasam, M., Tachikawa, K., Sonenshein, A.L., and Strauch, M. 2003. Complex regulation of the Bacillus subtilis aconitase gene. J. Bacteriol. 185: 1672-1680.

Kim, J.O. and Weiser, J.N. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368-377.

Kim, L., Mogk, A., and Schumann, W. 1996. A xylose-inducible Bacillus subtilis integration vector and its application. Gene 181: 71-76.

Kirstein, J., Schlothauer, T., Dougan, D.A., Lilie, H., Tischendorf, G., Mogk, A., Bukau, B., and Turgay, K. 2006. Adap-tor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J. 25: 1481-1491.

Kobayashi, H., KAErn, M., Araki, M., Chung, K., Gardner, T.S., Cantor, C.R., and Collins, J.J. 2004. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. U. S. A 101: 8414-8419.

Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, K., Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S.C., Bron, S., Bunai, K., Chapuis, J., Christiansen, L.C., Danchin, A., Debar-bouille, M., Dervyn, E., Deuerling, E., Devine, K., Devine, S.K., Dreesen, O., Errington, J., Fillinger, S., Foster, S.J., Fujita, Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C.R., Hecker, M., Hosoya, D., Hullo, M.F., Kakeshita, H., Karamata, D., Kasahara, Y., Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa, S., Ishio, I., Le Coq, D., Masson, A., Mauel, C., Meima, R., Mellado, R.P., Moir, A., Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T., O’Reilly, M., O’Rourke, M., Pragai, Z., Pooley, H.M., Rapoport, G., Rawlins, J.P., Rivas, L.A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H.H., Scanlan, E., Schumann, W., Seegers, J.F., Sekiguchi, J., Sekowska, A., Seror, S.J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M., Thomaides, H.B., Vagner, V., van Dijl, J.M., Watabe, K., Wipat, A., Yama-moto, H., Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H., Zuber, U., and Ogasawara, N. 2003. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U. S. A 100: 4678-4683.

Kodani, S., Hudson, M.E., Durrant, M.C., Buttner, M.J., Nodwell, J.R., and Willey, J.M. 2004. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. U. S. A 101: 11448-11453.

Kong, L. and Dubnau, D. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 91: 5793-5797.

Kornberg, A. 1957. Enzymatic synthesis of deoxyribonucleic acid. Harvey Lect. 53: 83-112.

Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., and Cluzel, P. 2004. From molecular noise to behavioural vari-ability in a single bacterium. Nature 428: 574-578.

Koumoutsi, A., Chen, X.H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J., and Borriss, R. 2004. Struc-tural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096.

Krause, G., Lundstrom, J., Barea, J.L., Pueyo de la, C.C., and Holmgren, A. 1991. Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin. J. Biol. Chem. 266: 9494-9500.

Kumar, J.K., Tabor, S., and Richardson, C.C. 2004. Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 101: 3759-3764.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S.C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N.M., Choi, S.K., Codani, J.J., Connerton, I.F., Danchin, A., and . 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256.

Kussell, E., Kishony, R., Balaban, N.Q., and Leibler, S. 2005. Bacterial persistence: a model of survival in changing environments. Genetics 169: 1807-1814.

Lane, D., Prentki, P., and Chandler, M. 1992. Use of gel retardation to analyze protein-nucleic acid interactions. Micro-biol. Rev. 56: 509-528.

Page 13: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

199

Lazazzera, B.A., Kurtser, I.G., McQuade, R.S., and Grossman, A.D. 1999. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. Journal of Bacteriology 181: 5193-5200.

Lazazzera, B.A., Solomon, J.M., and Grossman, A.D. 1997. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89: 917-925.

Lederberg, J. 1994. The transformation of genetics by DNA: an anniversary celebration of Avery, MacLeod and Mc-Carty (1944). Genetics 136: 423-426.

Lederberg, J. and Tatum, E.L. 1953. Sex in bacteria; genetic studies, 1945-1952. Science 118: 169-175.

Leichert, L.I. and Jakob, U. 2004. Protein thiol modifications visualized in vivo. PLoS. Biol. 2: e333.

Leichert, L.I., Scharf, C., and Hecker, M. 2003. Global characterization of disulfide stress in Bacillus subtilis. J. Bac-teriol. 185: 1967-1975.

Lemaire, S.D., Guillon, B., Le Marechal, P., Keryer, E., Miginiac-Maslow, M., and Decottignies, P. 2004. New thiore-doxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A 101: 7475-7480.

Leskela, S., Kontinen, V.P., and Sarvas, M. 1996. Molecular analysis of an operon in Bacillus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. Microbiology 142 ( Pt 1): 71-77.

Levdikov, V.M., Blagova, E., Joseph, P., Sonenshein, A.L., and Wilkinson, A.J. 2006. The structure of CodY, a GTP- and isoleucine-responsive regulator of stationary phase and virulence in Gram-positive bacteria. Journal of Biological Chemistry 281: 11366-11373.

Lewis, P.J. and Marston, A.L. 1999. GFP vectors for controlled expression and dual labelling of protein fusions in Bacil-lus subtilis. Gene 227: 101-110.

Lewis, R.J., Scott, D.J., Brannigan, J.A., Ladds, J.C., Cervin, M.A., Spiegelman, G.B., Hoggett, J.G., Barak, I., and Wilkinson, A.J. 2002. Dimer formation and transcription activation in the sporulation response regulator Spo0A. J. Mol. Biol. 316: 235-245.

Li, Y., Hugenholtz, J., Abee, T., and Molenaar, D. 2003. Glutathione protects Lactococcus lactis against oxidative stress. Appl. Environ. Microbiol. 69: 5739-5745.

Lindahl, M. and Florencio, F.J. 2003. Thioredoxin-linked processes in cyanobacteria are as numerous as in chloro-plasts, but targets are different. Proc. Natl. Acad. Sci. U. S. A 100: 16107-16112.

Lindner, C., Nijland, R., van Hartskamp, M., Bron, S., Hamoen, L.W., and Kuipers, O.P. 2004. Differential expression of two paralogous genes of Bacillus subtilis encoding single-stranded DNA binding protein. J. Bacteriol. 186: 1097-1105.

Liu, J. and Zuber, P. 1998. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J. Bacteriol. 180: 4243-4251.

Liu, L., Nakano, M.M., Lee, O.H., and Zuber, P. 1996. Plasmid-amplified comS enhances genetic competence and sup-presses sinR in Bacillus subtilis. J. Bacteriol. 178: 5144-5152.

Liu, X., Brutlag, D.L., and Liu, J.S. 2001. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput. 127-138.

Londono-Vallejo, J.A. and Dubnau, D. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol. Microbiol. 9: 119-131.

Londono-Vallejo, J.A. and Dubnau, D. 1994. Membrane association and role in DNA uptake of the Bacillus subtilis PriA analogue ComF1. Mol. Microbiol. 13: 197-205.

Long, A.D., Mangalam, H.J., Chan, B.Y., Tolleri, L., Hatfield, G.W., and Baldi, P. 2001. Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J. Biol. Chem. 276: 19937-19944.

Lorenz, M.G. and Wackernagel, W. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563-602.

Page 14: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

200

Lovett, C.M., Love, P.E., and Yasbin, R.E. 1989. Competence-specific induction of the Bacillus subtilis RecA protein analog: evidence for dual regulation of a recombination protein. J. Bacteriol. 171: 2318-2322.

Lovett, C.M. and Roberts, J.W. 1985. Purification of a RecA protein analogue from Bacillus subtilis. J. Biol. Chem. 260: 3305-3313.

Lulko, A.T., Buist, G., Kok, J., and Kuipers, O.P. 2007. Transcriptome analysis of temporal regulation of carbon metabo-lism by CcpA in Bacillus subtilis reveals additional target genes. J. Mol. Microbiol. Biotechnol. 12: 82-95.

Luscombe, N.M., Austin, S.E., Berman, H.M., and Thornton, J.M. 2000. An overview of the structures of protein-DNA complexes. Genome Biol. 1: REVIEWS001.

Luttinger, A., Hahn, J., and Dubnau, D. 1996. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol. Microbiol. 19: 343-356.

Maamar, H. and Dubnau, D. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56: 615-624.

Maddox, B. 2003. The double helix and the ‘wronged heroine’. Nature 421: 407-408.

Magnuson, R., Solomon, J., and Grossman, A.D. 1994. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77: 207-216.

Makita, Y., Nakao, M., Ogasawara, N., and Nakai, K. 2004. DBTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics. Nucleic Acids Res. 32: D75-D77.

Mandic-Mulec, I., Doukhan, L., and Smith, I. 1995. The Bacillus subtilis SinR protein is a repressor of the key sporula-tion gene spo0A. J. Bacteriol. 177: 4619-4627.

Mansilla, M.C. and de Mendoza, D. 1997. L-cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene coding for phosphoadenylylsulfate sulfotransferase. J. Bacteriol. 179: 976-981.

Mansilla, M.C. and de Mendoza, D. 2000. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146 ( Pt 4): 815-821.

Markevich, N.I., Hoek, J.B., and Kholodenko, B.N. 2004. Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology 164: 353-359.

Maughan, H. and Nicholson, W.L. 2004. Stochastic processes influence stationary-phase decisions in Bacillus subtilis. J. Bacteriol. 186: 2212-2214.

McCarthy, C. and Nester, E.W. 1967. Macromolecular synthesis in newly transformed cells of Bacillus subtilis. J. Bac-teriol. 94: 131-140.

McClure, W.R. 1985. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54: 171-204.

McCormick, J.B. 1998. Epidemiology of emerging/re-emerging antimicrobial-resistant bacterial pathogens. Curr. Opin. Microbiol. 1: 125-129.

McDonnell, G.E. and McConnell, D.J. 1994. Overproduction, isolation, and DNA-binding characteristics of Xre, the repressor protein from the Bacillus subtilis defective prophage PBSX. J. Bacteriol. 176: 5831-5834.

McDonnell, G.E., Wood, H., Devine, K.M., and McConnell, D.J. 1994. Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis. J. Bacteriol. 176: 5820-5830.

McQuade, R.S., Comella, N., and Grossman, A.D. 2001. Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. J. Bacteriol. 183: 4905-4909.

Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L.W., Dorenbos, R., Quax, W.J., van Dijl, J.M., Provvedi, R., Chen, I., Dubnau, D., and Bron, S. 2002. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreduc-tases required for competence development. J. Biol. Chem. 277: 6994-7001.

Meima, R., Haan, G.J., Venema, G., Bron, S., and de, J.S. 1998. Sequence specificity of illegitimate plasmid recombina-tion in Bacillus subtilis: possible recognition sites for DNA topoisomerase I. Nucleic Acids Res. 26: 2366-2373.

Page 15: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

201

Meselson, M. and Stahl, F.W. 1958. The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 44: 671-682.

Meyer, T.F., Gibbs, C.P., and Haas, R. 1990. Variation and control of protein expression in Neisseria. Annu. Rev. Mi-crobiol. 44: 451-477.

Mijakovic, I., Petranovic, D., Macek, B., Cepo, T., Mann, M., Davies, J., Jensen, P.R., and Vujaklija, D. 2006. Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. 34: 1588-1596.

Miller,J.H. 1972. In Experiments in Molecular Genetics pp. 352-355. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Mittler, J.E. 1996. Evolution of the genetic switch in temperate bacteriophage. I. Basic theory. J. Theor. Biol. 179: 161-172.

Molle, V., Fujita, M., Jensen, S.T., Eichenberger, P., Gonzalez-Pastor, J.E., Liu, J.S., and Losick, R. 2003. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50: 1683-1701.

Monod, J. and Jacob, F. 1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb. Symp. Quant. Biol. 26: 389-401.

Mooney, R.A., Darst, S.A., and Landick, R. 2005. Sigma and RNA polymerase: an on-again, off-again relationship? Mol. Cell 20: 335-345.

Morgan-Kiss, R.M., Wadler, C., and Cronan, J.E., Jr. 2002. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. U. S. A 99: 7373-7377.

Mostertz, J., Scharf, C., Hecker, M., and Homuth, G. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150: 497-512.

Moszer, I., Jones, L.M., Moreira, S., Fabry, C., and Danchin, A. 2002. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30: 62-65.

Msadek, T. 1999. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol. 7: 201-207.

Msadek, T., Kunst, F., Henner, D., Klier, A., Rapoport, G., and Dedonder, R. 1990. Signal transduction pathway control-ling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824-834.

Msadek, T., Kunst, F., and Rapoport, G. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. U. S. A 91: 5788-5792.

Mueller, J.P., Bukusoglu, G., and Sonenshein, A.L. 1992. Transcriptional regulation of Bacillus subtilis glucose starva-tion-inducible genes: control of gsiA by the ComP-ComA signal transduction system. J. Bacteriol. 174: 4361-4373.

Mulec, J., Podlesek, Z., Mrak, P., Kopitar, A., Ihan, A., and Zgur-Bertok, D. 2003. A cka-gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J. Bacteriol. 185: 654-659.

Muller, E.G. 1991. Thioredoxin deficiency in yeast prolongs S phase and shortens the G1 interval of the cell cycle. J. Biol. Chem. 266: 9194-9202.

Muller-Hill,B. The Lac Operon: A Short History of a Genetic Paradigm, Walter de Gruyter, Berlin.

Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O., and Darst, S.A. 2002a. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285-1290.

Murakami, K.S., Masuda, S., and Darst, S.A. 2002b. Structural basis of transcription initiation: RNA polymerase ho-loenzyme at 4 Å resolution. Science 296: 1280-1284.

Murayama, R., Akanuma, G., Makino, Y., Nanamiya, H., and Kawamura, F. 2004. Spontaneous transformation and its use for genetic mapping in Bacillus subtilis. Biosci. Biotechnol. Biochem. 68: 1672-1680.

Page 16: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

202

Nakano, M.M., Hajarizadeh, F., Zhu, Y., and Zuber, P. 2001. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol. Microbiol. 42: 383-394.

Nakano, M.M., Magnuson, R., Myers, A., Curry, J., Grossman, A.D., and Zuber, P. 1991a. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J. Bacteriol. 173: 1770-1778.

Nakano, M.M., Nakano, S., and Zuber, P. 2002. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Mol. Microbiol. 44: 1341-1349.

Nakano, M.M., Xia, L.A., and Zuber, P. 1991b. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487-5493.

Nakano, M.M., Zheng, G., and Zuber, P. 2000. Dual control of sbo-alb operon expression by the Spo0 and ResDE sys-tems of signal transduction under anaerobic conditions in Bacillus subtilis. J. Bacteriol. 182: 3274-3277.

Nakano, M.M. and Zuber, P. 1991. The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173: 7269-7274.

Nakano, S., Erwin, K.N., Ralle, M., and Zuber, P. 2005. Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol. Microbiol. 55: 498-510.

Nakano, S., Kuster-Schock, E., Grossman, A.D., and Zuber, P. 2003a. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 100: 13603-13608.

Nakano, S., Nakano, M.M., Zhang, Y., Leelakriangsak, M., and Zuber, P. 2003b. A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc. Natl. Acad. Sci. U. S. A 100: 4233-4238.

Nanamiya, H., Akanuma, G., Natori, Y., Murayama, R., Kosono, S., Kudo, T., Kobayashi, K., Ogasawara, N., Park, S.M., Ochi, K., and Kawamura, F. 2004. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol. Microbiol. 52: 273-283.

Nester, E.W. and Stocker, B.A. 1963. Biosynthetic latency in early stages of deoxyribonucleic acid transformation in Bacillus subtilis. J. Bacteriol. 86: 785-796.

Ninfa, A.J. and Mayo, A.E. 2004. Hysteresis vs. graded responses: the connections make all the difference. Sci. STKE. 2004: e20.

Novick, A. and Weiner, M. 1957. Enzyme Induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. U. S. A 43: 553-566.

Ogura, M., Liu, L., Lacelle, M., Nakano, M.M., and Zuber, P. 1999. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol. Microbiol. 32: 799-812.

Ogura, M., Ohshiro, Y., Hirao, S., and Tanaka, T. 1997. A new Bacillus subtilis gene, med, encodes a positive regulator of comK. J. Bacteriol. 179: 6244-6253.

Ogura, M., Shimane, K., Asai, K., Ogasawara, N., and Tanaka, T. 2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol. Microbiol. 49: 1685-1697.

Ogura, M. and Tanaka, T. 1996. Bacillus subtilis DegU acts as a positive regulator for comK expression. FEBS Lett. 397: 173-176.

Ogura, M. and Tanaka, T. 2000. Bacillus subtilis comZ (yjzA) negatively affects expression of comG but not comK. J. Bacteriol. 182: 4992-4994.

Ogura, M., Yamaguchi, H., Kobayashi, K., Ogasawara, N., Fujita, Y., and Tanaka, T. 2002. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J. Bacteriol. 184: 2344-2351.

Ogura, M., Yamaguchi, H., Yoshida, K., Fujita, Y., and Tanaka, T. 2001. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory sys-tems. Nucleic Acids Res. 29: 3804-3813.

Page 17: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

203

Ogura, T. and Wilkinson, A.J. 2001. AAA+ superfamily ATPases: common structure--diverse function. Genes Cells 6: 575-597.

Ohlsen, K., Hacker, J., and Ziebuhr, W. 2004. Genome variability in gram-positive pathogenic bacteria - Impact on virulence and evolution. Current Genomics 5: 589-600.

Ohsawa, T., Tsukahara, K., Sato, T., and Ogura, M. 2006. Superoxide stress decreases expression of srfA through inhi-bition of transcription of the comQXP quorum-sensing locus in Bacillus subtilis. J. Biochem. (Tokyo) 139: 203-211.

Okada, M., Sato, I., Cho, S.J., Iwata, H., Nishio, T., Dubnau, D., and Sakagami, Y. 2005. Structure of the Bacillus sub-tilis quorum-sensing peptide pheromone ComX. Nat. Chem. Biol. 1: 23-24.

Okada, M., Sato, I., Cho, S.J., Suzuki, Y., Ojika, M., Dubnau, D., and Sakagami, Y. 2004. Towards structural deter-mination of the ComX pheromone: synthetic studies on peptides containing geranyltryptophan. Biosci. Biotechnol. Biochem. 68: 2374-2387.

Ortega, F., Garces, J.L., Mas, F., Kholodenko, B.N., and Cascante, M. 2006. Bistability from double phosphorylation in signal transduction. Febs Journal 273: 3915-3926.

Owen, P., Meehan, M., Loughry-Doherty, H., and Henderson, I. 1996. Phase-variable outer membrane proteins in Esch-erichia coli. FEMS Immunol. Med. Microbiol. 16: 63-76.

Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D., and van Oudenaarden, A. 2002. Regulation of noise in the expression of a single gene. Nat. Genet. 31: 69-73.

Ozbudak, E.M., Thattai, M., Lim, H.N., Shraiman, B.I., and van Oudenaarden, A. 2004. Multistability in the lactose utilization network of Escherichia coli. Nature 427: 737-740.

Paget, M.S., Molle, V., Cohen, G., Aharonowitz, Y., and Buttner, M.J. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the sigmaR regulon. Mol. Microbiol. 42: 1007-1020.

Paik, S.H., Chakicherla, A., and Hansen, J.N. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273: 23134-23142.

Pardee, A.B., Jacob, F., and Monod, J. 1958. The role of the inducible alleles and the constrtutive alleles in the synthesis of beta-galactosidase in zygotes of Escherichia coli. C. R. Hebd. Seances Acad. Sci. 246: 3125-3128.

Paulsson, J. 2004. Summing up the noise in gene networks. Nature 427: 415-418.

Pedraza, J.M. and van Oudenaarden, A. 2005. Noise propagation in gene networks. Science 307: 1965-1969.

Perego, M. 1993. Integrational vectors for genetic manipulation in Bacillus subtilis. In Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 615-624. American Society for Microbiology, Washington D.C.

Perego, M. 1997. A peptide export-import control circuit modulating bacterial development regulates protein phospha-tases of the phosphorelay. Proc. Natl. Acad. Sci. U. S. A 94: 8612-8617.

Perego, M. 2001. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Molecular Microbiology 42: 133-143.

Perego, M. and Brannigan, J.A. 2001. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides 22: 1541-1547.

Perego, M., Cole, S.P., Burbulys, D., Trach, K., and Hoch, J.A. 1989. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins Spo0A and Spo0F of Bacillus subtilis. J. Bacteriol. 171: 6187-6196.

Perego, M., Glaser, P., and Hoch, J.A. 1996. Aspartyl-phosphate phosphatases deactivate the response regulator compo-nents of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol. 19: 1151-1157.

Perego, M., Hanstein, C., Welsh, K.M., Djavakhishvili, T., Glaser, P., and Hoch, J.A. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79: 1047-1055.

Page 18: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

204

Perego, M. and Hoch, J.A. 1996a. Protein aspartate phosphatases control the output of two-component signal transduc-tion systems. Trends Genet. 12: 97-101.

Perego, M. and Hoch, J.A. 2002. Two-component systems, phosphorelays, and regulation of their activities by phos-phatases. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 473-481. American Society for Microbiology, Washington, D.C.

Perego, M. and Hoch, J.A. 1996b. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl. Acad. Sci. U. S. A 93: 1549-1553.

Perego, M., Spiegelman, G.B., and Hoch, J.A. 1988. Structure of the gene for the transition state regulator, abrB: regula-tor synthesis is controlled by the spo0A sporulation gene in Bacillus subtilis. Mol. Microbiol. 2: 689-699.

Perez-Martin, J., Rojo, F., and de, L., V. 1994. Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol. Rev. 58: 268-290.

Persuh, M., Mandic-Mulec, I., and Dubnau, D. 2002. A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J. Bacteriol. 184: 2310-2313.

Persuh, M., Turgay, K., Mandic-Mulec, I., and Dubnau, D. 1999. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol. Microbiol. 33: 886-894.

Phillips, Z.E. and Strauch, M.A. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol. Life Sci. 59: 392-402.

Piazza, F., Tortosa, P., and Dubnau, D. 1999. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J. Bacteriol. 181: 4540-4548.

Piggot, P.J. and Coote, J.G. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908-962.

Piggot, P.J. and Hilbert, D.W. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7: 579-586.

Piggot, P.J. and Losick, R.. 2002. Sporulation genes and intercompartmental regulation. In Bacillus subtilis and its Closest Relatives: From Genes to Cells (ed. A.L. Sonenshein, R. Losick, and J.A. Hoch), pp. 483-517. American Society for Microbiology, Washington DC.

Predich, M., Nair, G., and Smith, I. 1992. Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are tran-scribed by the RNA polymerase containing sigma H. J. Bacteriol. 174: 2771-2778.

Prinz, W.A., Aslund, F., Holmgren, A., and Beckwith, J. 1997. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272: 15661-15667.

Provvedi, R., Chen, I., and Dubnau, D. 2001. NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol. Microbiol. 40: 634-644.

Provvedi, R. and Dubnau, D. 1999. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31: 271-280.

Ptashne, M. 2005. Regulation of transcription: from lambda to eukaryotes. Trends Biochem. Sci. 30: 275-279.

Ptashne, M. and Gann, A. 1997. Transcriptional activation by recruitment. Nature 386: 569-577.

Rao, C.V., Wolf, D.M., and Arkin, A.P. 2002. Control, exploitation and tolerance of intracellular noise. Nature 420: 231-237.

Raser, J.M. and O’Shea, E.K. 2004. Control of stochasticity in eukaryotic gene expression. Science 304: 1811-1814.

Raso, J. and Barbosa-Canovas, G.V. 2003. Nonthermal preservation of foods using combined processing techniques. Crit Rev. Food Sci. Nutr. 43: 265-285.

Ratnayake-Lecamwasam, M., Serror, P., Wong, K.W., and Sonenshein, A.L. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15: 1093-1103.

Regamey, A. and Karamata, D. 1998. The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SP beta. Microbiology 144 ( Pt 4): 885-893.

Page 19: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

205

Ren, D., Bedzyk, L.A., Ye, R.W., Thomas, S.M., and Wood, T.K. 2004. Differential gene expression shows natural bro-minated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol. Bioeng. 88: 630-642.

Resnik, E., Pan, B., Ramani, N., Freundlich, M., and LaPorte, D.C. 1996. Integration host factor amplifies the induction of the aceBAK operon of Escherichia coli by relieving IclR repression. J. Bacteriol. 178: 2715-2717.

Roggiani, M. and Dubnau, D. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175: 3182-3187.

Rojo, F. 1999. Repression of transcription initiation in bacteria. J. Bacteriol. 181: 2987-2991.

Rojo, F. 2001. Mechanisms of transcriptional repression. Curr. Opin. Microbiol. 4: 145-151.

Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S., and Elowitz, M.B. 2005. Gene regulation at the single-cell level. Sci-ence 307: 1962-1965.

Ross, W., Gosink, K.K., Salomon, J., Igarashi, K., Zou, C., Ishihama, A., Severinov, K., and Gourse, R.L. 1993. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262: 1407-1413.

Rudner, D.Z., LeDeaux, J.R., Ireton, K., and Grossman, A.D. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1388-1398.

Ryter, A., Schaeffer, P., and Ionesco, H. 1966. Cytologic classification, by their blockage stage, of sporulation mutants of Bacillus subtilis Marburg. Ann. Inst. Pasteur (Paris) 110: 305-315.

Sambrook,J., Fritsch, E.F., and Maniatis, T.. Molecular cloning: A laboratory manual., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Schaeffer, P., Millet, J., and Aubert, J.P. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. U. S. A 54: 704-711.

Scharf, C., Riethdorf, S., Ernst, H., Engelmann, S., Volker, U., and Hecker, M. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180: 1869-1877.

Schlothauer, T., Mogk, A., Dougan, D.A., Bukau, B., and Turgay, K. 2003. MecA, an adaptor protein necessary for ClpC chaperone activity. Proceedings of the National Academy of Sciences of the United States of America 100: 2306-2311.

Scotti, C., Piatti, M., Cuzzoni, A., Perani, P., Tognoni, A., Grandi, G., Galizzi, A., and Albertini, A.M. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130: 65-71.

Scotti, C., Valbuzzi, A., Perego, M., Galizzi, A., and Albertini, A.M. 1996. The Bacillus subtilis genes for ribonucleo-tide reductase are similar to the genes for the second class I NrdE/NrdF enzymes of Enterobacteriaceae. Microbiology 142 ( Pt 11): 2995-3004.

Sekowska, A., Robin, S., Daudin, J.J., Henaut, A., and Danchin, A. 2001. Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis. Genome Biol. 2: RE-SEARCH0019.

Serror, P. and Sonenshein, A.L. 1996. CodY is required for nutritional repression of Bacillus subtilis genetic compe-tence. J. Bacteriol. 178: 5910-5915.

Shafikhani, S.H., Mandic-Mulec, I., Strauch, M.A., Smith, I., and Leighton, T. 2002. Postexponential regulation of sin operon expression in Bacillus subtilis. J. Bacteriol. 184: 564-571.

Shen, A., Kamp, H.D., Grundling, A., and Higgins, D.E. 2006. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev. 20: 3283-3295.

Shida, T., Ogawa, T., Ogasawara, N., and Sekiguchi, J. 1999. Characterization of Bacillus subtilis ExoA protein: a multifunctional DNA-repair enzyme similar to the Escherichia coli exonuclease III. Biosci. Biotechnol. Biochem. 63: 1528-1534.

Shivers, R.P. and Sonenshein, A.L. 2004. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53: 599-611.

Page 20: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

206

Shivers, R.P. and Sonenshein, A.L. 2005. Bacillus subtilis ilvB operon: an intersection of global regulons. Mol. Micro-biol. 56: 1549-1559.

Singh, R.N. and Pitale, M.P. 1967. Enrichment of Bacillus subtilis Transformants by Zonal Centrifugation. Nature 213: 1262-&.

Singh, R.N. and Pitale, M.P. 1968. Competence and deoxyribonucleic acid uptake in Bacillus subtilis. J. Bacteriol. 95: 864-866.

Singha, N.C., Vlamis-Gardikas, A., and Holmgren, A. 2003. Real-time kinetics of the interaction between the two sub-units, Escherichia coli thioredoxin and gene 5 protein of phage T7 DNA polymerase. J. Biol. Chem. 278: 21421-21428.

Smith,I. 1993. Regulatory proteins that control late-growth development. In Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 785-800. American Society for Microbiology, Washington, D.C.

Smits, W.K., Dubois, J.Y., Bron, S., van Dijl, J.M., and Kuipers, O.P. 2005a. Tricksy business: Transcriptome analysis reveals the involvement of thioredoxin A in redox homeostasis, oxidative stress, sulfur metabolism, and cellular dif-ferentiation in Bacillus subtilis. J. Bacteriol. 187: 001-011.

Smits, W.K., Eschevins, C.C., Susanna, K.A., Bron, S., Kuipers, O.P., and Hamoen, L.W. 2005b. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol.

Smits, W.K., Kuipers, O.P., and Veening, J.W. 2006. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4: 259-271.

Smolen, P., Baxter, D.A., and Byrne, J.H. 2000. Modeling transcriptional control in gene networks--methods, recent results, and future directions. Bull. Math. Biol. 62: 247-292.

Solomon, J.M., Lazazzera, B.A., and Grossman, A.D. 1996. Purification and characterization of an extracellular pep-tide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10: 2014-2024.

Solomon, J.M., Magnuson, R., Srivastava, A., and Grossman, A.D. 1995. Convergent sensing pathways mediate re-sponse to two extracellular competence factors in Bacillus subtilis. Genes Dev. 9: 547-558.

Sonenshein, A.L. 2005. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8: 203-207.

Sonenshein, A.L. 2000. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3: 561-566.

Sonenshein,A.L., Hoch, J.A., and Losick, R. 2002. Bacillus subtilis: From Cells to Genes and from Genes to Cells. In Bacillus subtilis and its Closest Relatives: from Genes to Cells. (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 3-5. American Society for Microbiology, Washington, D.C.

Sparling, P.F. 1966. Genetic Transformation of Neisseria Gonorrhoeae to Streptomycin Resistance. Journal of Bacte-riology 92: 1364-&.

Spizizen, J. 1958. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. Natl. Acad.Sci. U. S. A 44: 1072-1078.

Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B.A. 2003. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185: 1951-1957.

Steinmetz, M. and Richter, R. 1994. Plasmids designed to alter the antibiotic resistance expressed by insertion muta-tions in Bacillus subtilis, through in vivo recombination. Gene 142: 79-83.

Steinmoen, H., Knutsen, E., and Havarstein, L.S. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. U. S. A 99: 7681-7686.

Steinmoen, H., Teigen, A., and Havarstein, L.S. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185: 7176-7183.

Stephenson, S., Mueller, C., Jiang, M., and Perego, M. 2003. Molecular analysis of Phr peptide processing in Bacillus subtilis. J. Bacteriol. 185: 4861-4871.

Page 21: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

207

Stewart, G.J. and Carlson, C.A. 1986. The biology of natural transformation. Annu. Rev. Microbiol. 40: 211-235.

Stibitz, S., Aaronson, W., Monack, D., and Falkow, S. 1989. Phase variation in Bordetella pertussis by frameshift muta-tion in a gene for a novel two-component system. Nature 338: 266-269.

Strauch,M. 1999. AbrB, a transition state regulator. In Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 757-764. American Society for Microbiology, Washington, D.C.

Strauch,M.A. 1993. AbrB, a transition state regulator. In Bacillus subtilis and other Grampositive bacteria: Biochem-istry, Physiology and Molecular Genetics. (ed. A.L. Sonenshein, J.A. Hoch, and R. Losick), pp. 757-764. American Society for Microbiology, Washington,D.C.

Strauch, M.A. and Hoch, J.A. 1993. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol. Microbiol. 7: 337-342.

Strauch, M.A., Spiegelman, G.B., Perego, M., Johnson, W.C., Burbulys, D., and Hoch, J.A. 1989. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J. 8: 1615-1621.

Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60-89.

Stumpf, M.P. and Pybus, O.G. 2002. Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiol. Lett. 214: 143-152.

Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M., and Elowitz, M.B. 2006. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440: 545-550.

Sumner, E.R. and Avery, S.V. 2002. Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148: 345-351.

Sun, D., Hurley, L.H., and Harshey, R.M. 1996. Structural distortions induced by integration host factor (IHF) at the H’ site of phage lambda probed by (+)-CC-1065, pluramycin, and KMnO4 and by DNA cyclization studies. Biochemistry 35: 10815-10827.

Sung, H.M. and Yasbin, R.E. 2002. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentia-tion in Bacillus subtilis. J. Bacteriol. 184: 5641-5653.

Susanna, K.A., Fusetti, F., Thunnissen, A.M., Hamoen, L.W., and Kuipers, O.P. 2006. Functional analysis of the com-petence transcription factor ComK of Bacillus subtilis by characterization of truncation variants. Microbiology 152: 473-483.

Susanna, K.A., van der Werff, A.F., den Hengst, C.D., Calles, B., Salas, M., Venema, G., Hamoen, L.W., and Kuipers, O.P. 2004. Mechanism of transcription activation at the comG promoter by the competence transcription factor ComK of Bacillus subtilis. J. Bacteriol. 186: 1120-1128.

Swain, P.S., Elowitz, M.B., and Siggia, E.D. 2002. Intrinsic and extrinsic contributions to stochasticity in gene expres-sion. Proc. Natl. Acad. Sci. U. S. A 99: 12795-12800.

Tanaka, R., Araki, Y., Mizukami, M., Miyauchi, A., Ishibashi, M., Tokunaga, H., and Tokunaga, M. 2004. Expression and purification of the Bacillus subtilis thioredoxin superfamily protein YkvV. Biosci. Biotechnol. Biochem. 68: 1801-1804.

Tanaka, T., Nakamura, H., Nishiyama, A., Hosoi, F., Masutani, H., Wada, H., and Yodoi, J. 2000. Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging. Free Radic. Res. 33: 851-855.

Tatum, E.L. and Lederberg, J. 1947. Gene recombination in the bacterium Escherichia coli. J. Bacteriol. 53: 673-684.

Thattai, M. and van Oudenaarden, A. 2001. Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. U. S. A 98: 8614-8619.

Thattai, M. and van Oudenaarden, A. 2004. Stochastic gene expression in fluctuating environments. Genetics 167: 523-530.

Thieffry, D., Huerta, A.M., Perez-Rueda, E., and Collado-Vides, J. 1998. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20: 433-440.

Page 22: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

208

Thomaides, H.B., Davison, E.J., Burston, L., Johnson, H., Brown, D.R., Hunt, A.C., Errington, J., and Czaplewski, L. 2007. Essential bacterial functions encoded by gene pairs. J. Bacteriol. 189: 591-602.

Thomas, R. 1998. Laws for the dynamics of regulatory networks. Int. J. Dev. Biol. 42: 479-485.

Thomas, R. 1978. Logical analysis of systems comprising feedback loops. J. Theor. Biol. 73: 631-656.

Thomas, R. and Kaufman, M. 2001a. Multistationarity, the basis of cell differentiation and memory. I. Structural condi-tions of multistationarity and other nontrivial behavior. Chaos. 11: 170-179.

Thomas, R. and Kaufman, M. 2001b. Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos. 11: 180-195.

Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.

Tjalsma, H., Antelmann, H., Jongbloed, J.D., Braun, P.G., Darmon, E., Dorenbos, R., Dubois, J.Y., Westers, H., Zanen, G., Quax, W.J., Kuipers, O.P., Bron, S., Hecker, M., and van Dijl, J.M. 2004. Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol. Mol. Biol. Rev. 68: 207-233.

Tolker-Nielsen, T., Holmstrom, K., Boe, L., and Molin, S. 1998. Non-genetic population heterogeneity studied by in situ polymerase chain reaction. Mol. Microbiol. 27: 1099-1105.

Tortosa, P., Albano, M., and Dubnau, D. 2000. Characterization of ylbF, a new gene involved in competence develop-ment and sporulation in Bacillus subtilis. Mol. Microbiol. 35: 1110-1119.

Tortosa, P. and Dubnau, D. 1999. Competence for transformation: a matter of taste. Curr. Opin. Microbiol. 2: 588-592.

Tortosa, P., Logsdon, L., Kraigher, B., Itoh, Y., Mandic-Mulec, I., and Dubnau, D. 2001. Specificity and genetic poly-morphism of the Bacillus competence quorum-sensing system. J. Bacteriol. 183: 451-460.

Tran, L.S., Nagai, T., and Itoh, Y. 2000. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol. Microbiol. 37: 1159-1171.

Turgay, K., Hahn, J., Burghoorn, J., and Dubnau, D. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17: 6730-6738.

Turgay, K., Hamoen, L.W., Venema, G., and Dubnau, D. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11: 119-128.

Vagner, V., Dervyn, E., and Ehrlich, S.D. 1998. A vector for systematic gene inactivation in Bacillus subtilis. Microbi-ology 144 ( Pt 11): 3097-3104.

Van de Guchte, M., Kok, J., and Venema, G. 1991. Distance-dependent translational coupling and interference in Lac-tococcus lactis. Mol. Gen. Genet. 227: 65-71.

Van de Peer, Y. and De Wachter, R. 1994. TREECON for Windows: a software package for the construction and draw-ing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10: 569-570.

van der Ploeg, Jr., Barone, M., and Leisinger, T. 2001. Functional analysis of the Bacillus subtilis cysK and cysJI genes. FEMS Microbiol. Lett. 201: 29-35.

Van der Woude, M., Braaten, B., and Low, D. 1996. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 4: 5-9.

Van Hijum, S.A., Garcia de la Nava, J., Trelles, O., Kok, J., and Kuipers, O.P. 2003. MicroPreP: a cDNA microarray data pre-processing framework. Appl. Bioinformatics. 2: 241-244.

Van Hijum, S.A., van Geel-Schutten, G.H., Rahaoui, H., van der Maarel, M.J., and Dijkhuizen, L. 2002. Characteriza-tion of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol. 68: 4390-4398.

Page 23: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

209

Van Sinderen, D., Galli, G., Cosmina, P., de Ferra, F., Withoff, S., Venema, G., and Grandi, G. 1993. Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of srfA is involved in the establishment of genetic competence. Mol. Microbiol. 8: 833-841.

Van Sinderen, D., Kiewiet, R., and Venema, G. 1995a. Differential expression of two closely related deoxyribonuclease genes, nucA and nucB, in Bacillus subtilis. Mol. Microbiol. 15: 213-223.

Van Sinderen, D., Luttinger, A., Kong, L., Dubnau, D., Venema, G., and Hamoen, L. 1995b. comK encodes the compe-tence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15: 455-462.

Van Sinderen, D., ten Berge, A., Hayema, B.J., Hamoen, L., and Venema, G. 1994. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 11: 695-703.

Van Sinderen, D. and Venema, G. 1994. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176: 5762-5770.

Vasantha, N. and Freese, E. 1980. Enzyme changes during Bacillus subtilis sporulation caused by deprivation of gua-nine nucleotides. J. Bacteriol. 144: 1119-1125.

Veening, J.W., Hamoen, L.W., and Kuipers, O.P. 2005. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56: 1481-1494.

Veening, J.W., Kuipers, O.P., Brul, S., Hellingwerf, K.J., and Kort, R. 2006a. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J. Bacteriol. 188: 3099-3109.

Veening, J.W., Smits, W.K., Hamoen, L.W., Jongbloed, J.D., and Kuipers, O.P. 2004. Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. Appl. Environ. Microbiol. 70: 6809-6815.

Veening, J.W., Smits, W.K., Hamoen, L.W., and Kuipers, O.P. 2006b. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J. Appl. Microbiol. 101: 531-541.

Venema, G., Pritchard, R.H., and Venema-Schroeder, T. 1965. Fate of transforming deoxyribonucleic acid in Bacillus subtilis. J. Bacteriol. 89: 1250-1255.

Vierheller, C., Goel, A., Peterson, M., Domach, M.M., and Ataai, M.M. 1995. Sustained and constitutive high-levels of protein-production in continuous cultures of Bacillus subtilis. Biotechnology and Bioengineering 47: 520-524.

Vilar, J.M., Kueh, H.Y., Barkai, N., and Leibler, S. 2002. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. U. S. A 99: 5988-5992.

Vosman, B., Kooistra, J., Olijve, J., and Venema, G. 1987. Cloning in Escherichia coli of the gene specifying the DNA-entry nuclease of Bacillus subtilis. Gene 52: 175-183.

Vosman, B., Kuiken, G., Kooistra, J., and Venema, G. 1988. Transformation in Bacillus subtilis: involvement of the 17-kilodalton DNA-entry nuclease and the competence-specific 18-kilodalton protein. J. Bacteriol. 170: 3703-3710.

Vullo, A. and Frasconi, P. 2004. Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics. 20: 653-659.

Walsh, F.M. and Amyes, S.G. 2004. Microbiology and drug resistance mechanisms of fully resistant pathogens. Curr. Opin. Microbiol. 7: 439-444.

Walz, D. and Caplan, S.R. 1995. Chemical oscillations arise solely from kinetic nonlinearity and hence can occur near equilibrium. Biophys. J. 69: 1698-1707.

Watson, J.D. and Crick, F.H. 1953a. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171: 737-738.

Watson, J.D. and Crick, F.H. 1953b. Genetical implications of the structure of deoxyribonucleic acid. Nature 171: 964-967.

Weinrauch, Y., Msadek, T., Kunst, F., and Dubnau, D. 1991. Sequence and properties of comQ, a new competence regu-latory gene of Bacillus subtilis. J. Bacteriol. 173: 5685-5693.

Page 24: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

210

Weinrauch, Y., Penchev, R., Dubnau, E., Smith, I., and Dubnau, D. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-trans-duction systems. Genes Dev. 4: 860-872.

Weir, J., Predich, M., Dubnau, E., Nair, G., and Smith, I. 1991. Regulation of spo0H, a gene coding for the Bacillus subtilis sigma H factor. J. Bacteriol. 173: 521-529.

Wolf, D.M., Vazirani, V.V., and Arkin, A.P. 2005. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234: 227-253.

Wong, J.H., Balmer, Y., Cai, N., Tanaka, C.K., Vensel, W.H., Hurkman, W.J., and Buchanan, B.B. 2003. Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett. 547: 151-156.

Wood, H.E., Dawson, M.T., Devine, K.M., and McConnell, D.J. 1990. Characterization of PBSX, a defective prophage of Bacillus subtilis. J. Bacteriol. 172: 2667-2674.

Worner, K., Szurmant, H., Chiang, C., and Hoch, J.A. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol. Microbiol. 59: 1000-1012.

Wu, J.J., Piggot, P.J., Tatti, K.M., and Moran, C.P., Jr. 1991. Transcription of the Bacillus subtilis spoIIA locus. Gene 101: 113-116.

Xu, K. and Strauch, M.A. 1996. Identification, sequence, and expression of the gene encoding gamma-glutamyltrans-peptidase in Bacillus subtilis. J. Bacteriol. 178: 4319-4322.

Yamazaki, D., Motohashi, K., Kasama, T., Hara, Y., and Hisabori, T. 2004. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45: 18-27.

Yang, C.C. and Nash, H.A. 1989. The interaction of E. coli IHF protein with its specific binding sites. Cell 57: 869-880.

Yasbin, R.E., Cheo, D., and Bayles, K.W. 1991. The SOB system of Bacillus subtilis: a global regulon involved in DNA repair and differentiation. Res. Microbiol. 142: 885-892.

Yasbin, R.E. and Miehl, R. 1980. Deoxyribonucleic acid repair in Bacillus subtilis: development of competent cells into a tester for carcinogens. Appl. Environ. Microbiol. 39: 854-858.

Yasueda, H., Kawahara, Y., and Sugimoto, S. 1999. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J. Bacteriol. 181: 7154-7160.

Zheng, G.L., Hehn, R., and Zuber, P. 2000. Mutational analysis of the sbo-alb locus of Bacillus subtilis: Identification of genes required for subtilosin production and immunity. J. Bacteriol. 182: 3266-3273.

Zheng, G.L., Yan, L.Z., Vederas, J.C., and Zuber, P. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J. Bacteriol. 181: 7346-7355.

Zieg, J., Silverman, M., Hilmen, M., and Simon, M. 1977. Recombinational switch for gene expression. Science 196: 170-172.

Page 25: University of Groningen To be competent or not Smits, Wiep ... file188 References Abraham, J.M., Freitag, C.S., Clements, J.R., and Eisenstein, B.I. 1985. An invertible element of

211

Notes


Recommended