+ All Categories
Home > Documents > UPDM Technical Workshop - Esri · 66% Reduction in SQL queries in the database Database Activity...

UPDM Technical Workshop - Esri · 66% Reduction in SQL queries in the database Database Activity...

Date post: 24-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
44
UPDM Technical Workshop Tom Coolidge and Tom DeWitte
Transcript

UPDM Technical WorkshopTom Coolidge and Tom DeWitte

Desktop Devices

UPDM Online Content and Services

ArcGIS Platform

Web

PODS APR*

* Collaborative effort of the PODS Association & Esri

Enterprise DataPortal

Location Referencing Connectivity Modeling

UPDM Background, Drivers, and Concepts

About UPDM

Esri’s UPDM is a geodatabase data model template for operators of pipe networks in the gas and hazardous liquids industries.  UPDM is a

moderately normalized data model

that explicitly represents each physical component of a pipe network from the wellhead to the customer meter, terminal or delivery point, in a single database table object.

Why UPDM?

Esri solutions are based on UPDM.

APR is home‐based on UPDM.  An alternative data model is in development by the PODS Association,

Partners are developing on UPDM.

DNV GL

G2/Eagle Information Mapping

Geonamic Systems

New Century Software

Novara GeoSolutions

UPDM Evolution

Traces its heritage to the first release of the Gas Data Model  in 2001, being renamed now to reflect broadened scope

Partners and customers always have played a role in the development of the Gas Data Model, and they are playing an active role in the evolution of UPDM

The latest release of UPDM occurred October, 2015.  

Business Drivers for UPDM

Enable vertically integrated gas companies that have distribution, transmission and gathering pipe networks to use one data model

The trend is to a smaller number of bigger gas companies

More gas companies will have integrated systems including a combination of distribution, transmission and gathering assets

How those high pressure distribution pipes are operated and how they are regulated will differ

Enable location referencing and connectivity modeling to operate on the same geodatabase

Business Drivers for UPDM

Simplify staff training

Single workflow for maintaining distribution, transmission and gathering asset data

Better manage HP Distribution pipe (> 20% SMYS)

Improve staff efficiency and productivity 

Technical Drivers to Evolve UPDM

Represent “Best practice” for managing data in a Geodatabase

Align with ArcGIS Pro and advances being developed in the ArcGIS Pro environment 

Align with ArcGIS Location Referencing for Pipelines extension

Improve scalability and performance for larger transmission pipe networks using fully normalized data models (Performance and scalability issues not currently existing in the gas distribution user community)

UPDM Support

Esri has actively maintained and enhanced the Gas Data Model through the years, and that will continue with UPDM.

Geodatabase Concepts and UPDM

All events stored as features

Connectivity model used to maintain physical assets

Linear referencing model used to maintain transmission integrity data

Metadata managed as part of feature (Editor Tracking & Archiving)

Documents managed with Attachments

Time Aware (be able to view system at different states in time)

Improving Performance Through Better Data ManagementTransmission – Viewing Pipe Segments

Database Activity with Legacy Data Model• 1 – Geodatabase• 3 – Tables/Featureclasses queried

66% Reduction in SQL queries in the database

Database Activity with UPDM• 1 Geodatabase• 1 – Featureclass queried

Improving Performance Through Better Data ManagementTransmission and Distribution – Viewing Pipe Segments

Database Activity with Legacy Data Model• 2 – Geodatabases• 4 – Tables/Featureclasses queried

75% Reduction in SQL queries in the database

Database Activity with UPDM• 1 Geodatabase• 1 – Featureclass queried

Improving Scalability Through Data Storage EfficiencyTransmission

PipeSegment

PipeSegmentAudit

Pipes

Valve

ValveAudit

Valves

Legacy Data Models UPDM

50% Reduction in Records stored in the database

Improving Scalability Through Data Storage EfficiencyTransmission and Distribution

PipeSegment

PipeSegmentAudit Pipes

Legacy Data Models UPDM

33% Reduction in Records stored in the database

Mains

66% Reduction in tables stored in the database

UPDM Overview

UPDM – A Geodatabase Template Data Model

Esri strives to build template data models

Template data models jump start your geodatabase

design

Most users

start with these design templates

then refine and extend them to meet their specific

needs and requirements

UPDM System Tables – Hierarchy

An operating pipe system can be viewed as a hierarchical network of interconnected pressure system and emergency isolation zones. The Utility and Pipeline Data Model provides the ability to organize and manage this hierarchy as well as manage multiple systems within one data model. UPDM provides a basic hierarchy of the pipe system. This hierarchy provides four basic tiers.

A single company can be composed of multiple systems. A single pipe system can be composed of multiple pressure systems. Within a single pressure system, there can be multiple emergency isolation systems. A single emergency isolation system is composed of multiple pipe segments, service lines, gas valves, etc.

UPDM System Tables – Editing Configuration

The ArcGIS for Gas Utilities solution includes a set of gas editing tools for ArcGIS for Desktop to streamline the maintenance of the physical assets of the pipe network These tables are required to support some of the advanced capabilities of the ArcGIS for Gas Utilities editing tools.

TableDynamicValue

TableGenerateId

UPDM System Tables – ArcGIS Pipeline Referencing

The ArcGIS Pipeline Referencing extension (APR) is a set of tools provided by Esri to create and maintain the spatial relationship between event features such as those listed in the “integrity” section of UPDM and the centerline upon which they act. These feature classes and tables are to help with the management of information required to maintain APR.

Point feature class P_CalibrationPoints

Line feature class P_Centerline

TableP_Centerline_Sequence

Line feature class P_ContinuousNetwork

Line feature class P_StationSeriesNetwork

Line feature class P_Redline

UPDM Physical Components – Pipes

Pipes are the linear assets through which a liquid or gas is transported. These pipes are modeled as complex edges within the geometric network so other assets (valves, fittings, etc.) can be connected to them without having to split the linear asset.

Simple edge feature class P_Service

Subtypes are Bare Steel, Coated Steel, Ductile Iron, Copper, Cast Iron, Wrought Iron, Plastic PVC, Plastic PE, Plastic ABS, Plastic Other

Simple edge feature class P_GatheringFieldPipe

Subtypes are Water, Steam, Waste Water

Simple edge feature class P_Pipes

Subtypes are Bare Steel, Ductile Iron, Wrought Iron, Coated Steel, Copper, Plastic PE, Cast Iron, Plastic PVC, Plastic Other, Composite, Plastic ABS, Reconditioned Cast Iron

UPDM Physical Components – Flow Control Devices

Flow control devices are physical assets in a gas system that have the ability to impact the flow of liquids and gas through the pipe system. These devices are typically modeled as simple junction point features within the geodatabase.

Simple junction feature class P_ControllableFitting

Subtypes are Short Stop, Three‐Way Tee

Simple junction feature class P_CompressorStation

Simple junction feature class P_PumpStation

TableP_Regulator

Simple junction feature class P_ExcessFlowValve

Simple junction feature class P_Valve

Simple junction feature class P_RegulatorStation

Simple junction feature class P_TownBorderStat ion

Simple junction feature class P_ReliefValve

Point feature class P_Wellhead

UPDM Physical Components – Inline Devices

Inline devices are physical assets that have liquid or gas flowing through them but do not have the ability to impede the flow. These devices are generally modeled as simple junction point features within the geodatabase.

Simple junction feature class P_NonControllableFitting

Subtypes are Expansion Joint, Tee, Weld, Electro Stop, Flange, Transition, End Cap, Screw, Coupling, Ell, Reducer

Simple junction feature class P_MeterSett ing

TableP_Meter

Simple junction feature class P_GasLamp

Simple junction feature class P_Tank

Simple junction feature class P_RuralTap

Simple edge feature class P_PigStructure

Subtypes are Receiver, Launcher

UPDM Physical Components – Connected Devices

Connected devices are those assets that are physically connected to the pipe system but do not have liquids or gas flowing through the device.

Point feature class P_Coupon

Simple junction feature class P_Drip

Simple junction feature class P_PressureMonitoringDevice

UPDM Physical Components – Structures

Structures are assets that are not physically connected to the pipe system. These assets support the pipe system by improving the structural integrity or improving the safety of the neighboring community. These assets are not part of the geometric network for the pipe system.

Line feature class P_PipeCasing

Point feature class P_PipelineMarker

Polygon feature class P_Vault

Polygon feature class P_StationStructure

UPDM Physical Components – Conditioning Equipment

Conditioning equipment includes devices whose purpose is to physically change the liquid or gas flowing through the pipe system. These changes can include the removal of foreign content, addition of odorant, changing the commodity temperature, or injection of chemicals to prevent hydrate formation. These devices are physically connected to the pipe system; therefore, they are modeled as part of the geometric network. Within the geometric network, they are modeled as simple junction point features.

Simple junction feature class P_Scrubber

Simple junction feature class P_LineHeater

Simple junction feature class P_Odorizer

Subtypes are Bypass, Pulse, Wick, Injection Pump, Rural Tap Odorizer

Simple junction feature class P_Strainer

Simple junction feature class P_DehydrationEquip

UPDM Physical Components – Cathodic Protection System

Cathodic protection is a mechanism by which an electrical current is used to prevent or control corrosion in underground metallic pipe mains. There are several devices involved in a cathodic protection system including sacrificial anodes (metallic device that is allowed to corrode or is “sacrificed” to protect the metal in the pipe from corroding), rectifiers (the source of the electrical current), and test points (locations along the pipe used to test the current status of the system). These cathodic devices prevent corrosion of the metallic components within a pipe system. Common metallic pipe system components protected by a cathodic protection system are mains, valves, and fittings. The feature classes listed in this section are to help with the management of a cathodic protection system.

Simple junction feature class P_CPRectifier

Simple junction feature class P_CPTestPoint

Simple edge feature class P_CPRectifierCable

Simple junction feature class P_CPBondJunction

Simple junction feature class P_CPAnode

Simple edge feature class P_CPBondWire

TableP_CPSystem

UPDM Physical Components – Legacy Abandoned Assets

The methods available to model abandoned and removed gas components have evolved considerably with the addition of the ability to manage history within the ArcGIS products. The implementation of a workflow to manage the abandonment or removal of gas components can now be managed with the core ArcGIS capabilities; therefore, this section can be considered optional.

Some organizations may still want to use the legacy method of writing the abandoned or removed gas component to a separate feature class or table. The feature classes and tables defined in this section represent how to model abandoned and removed gas components if this legacy method is utilized.

Point feature class P_AbandonedDevice

Line feature class P_AbandonedPipe

TableP_AbandonedRemovedDevice

TableP_AbandonedRemovedPipe

UPDM Activity and Integrity – Inspections

Inspections are repetitive activities that an organization performs as part of the operation of a pipe system. Many of these inspections are required by US DOT regulations. The feature classes and table objects listed in this section help with the management of the information collected by field staff as part of the inspection process.

TableP_CasingInspection

TableP_CPBondInspection

TableP_CPRectifierInspect ion

TableP_CPTestPointReading

TableP_CrossingInspect ion

TableP_ElectricSurvey

Line feature class P_ExcavationDamage

TableP_IsolatedPipeInspection

Point feature class P_GasLeakIn spection

Point feature class P_InspectionNote

Line feature class P_ExposedPipeInspection

Line feature class P_InspectionRange

Polygon feature class P_LeakSurveyArea

TableP_LineValveInspect ion

Point feature class P_WorkOrder

TableP_RegulatorInspection

TableP_ReliefValveInspection

TableP_StationVisualInspection

TableP_StrainerInspection

TableP_ValveInspect ion

UPDM Activity and Integrity – Maintenance

Maintenance is the activity an organization undertakes to keep the pipe system in production. In the process of maintaining the system, additional information is often discovered or captured. The feature classes listed in this section represent those layers that are not considered part of the organization’s inspection program but are part of the organization’s maintenance program.

Simple junction feature class P_SqueezeOff

Point feature class P_IdentifiedIssue

Point feature class P_GasLeak

Line feature class P_LeakRepairs

Subtypes are Corrosion, Other, Natural Forces, Excavation Damage, Material Fa ilure, Other Outside Force, Incorrect Operations, Equipment Failure

UPDM Activity and Integrity – Environment

Utilities and pipelines are committed to ensuring that they do not adversely impact air, water, and land quality or wildlife, aquatic species, plant life. or sensitive habitats. Knowing about the world around them is key to informing utility and pipeline activities at every stage of a pipe network’s life cycle. The feature classes in this section provide information about the environment in the vicinity of the pipe system.

Polygon feature class P_DrinkingWater

Polygon feature class P_EcologicalArea

Point feature class P_Elevation

Polygon feature class P_Navigab leWaterway

UPDM Activity and Integrity – Determining Consequence

Determining Consequence featureclassesdescribe United States locations and structures, as defined at 49 CFR 192.903 and 49 CFR 192.5. These supporting datasets help to determine gas transmission pipeline high consequence area (HCA), and DOT pipeline class.

Polygon feature class P_HighPopulatedArea

Polygon feature class P_OtherPopulatedArea

Polygon feature class P_OutsideArea

Point feature class P_StructurePoint

Polygon feature class P_StructureFootPoint

UPDM Activity and Integrity – Inline Inspection

Inline inspection (ILI) employing smart pigs is used to assess the integrity of pipelines from the inside of the pipe. The data recorded by the smart pig is retrieved for analysis and reporting and is a critical component of ongoing pipeline integrity programs. Some of this information is required by federal and state regulations. Other data is needed to understand the state of the gas system. The information defined in this section will help manage the inline inspection data to ensure the relativity and integrity of the pipeline.

Line feature class P_InlineInspection

Point feature class P_ILIGroundRefMarkers

Point feature class P_ILISurveyGroup

Point feature class P_ILISurveyReadings

Line feature class P_ILIInspectionRange

UPDM Activity and Integrity – Integrity

Once a gas system has been constructed and put into production, it is the gas utility’s responsibility to maintain the gas system as a safe and reliable transportation system for natural gas. Ensuring that a gas system is safe and reliable requires a significant amount of data. Some of this information is required by federal and state regulations. Other data is needed to understand the state of the gas system. The information defined in this section is to manage the data collected to ensure that the production gas system is safe and reliable.

Point feature class P_AnomalyGroup

Point feature class P_Anomaly

Line feature class P_ConsequenceSegment

Subtypes are Installed, Calcu la ted, Approved

Line feature class P_CouldAffectSegment

Point feature class P_DASurveyReadings

Point feature class P_DocumentPoint

Line feature class P_CenterlineAccuracy

Line feature class P_DOTClass

Polygon feature class P_HighConsequenceArea

Line feature class P_MAOPCalcRange

Line feature class P_OperatingPressureRange

Line feature class P_PipeCrossing

Subtypes are P ipe Utility, Wire Utility, Transportation, Topographic

Line feature class P_PipeExposure

Line feature class P_TestPressureRange

UPDM Activity and Integrity – Mapping

The purpose of the feature classes in this section is to aid in the visual/cartographic presentation of the gas system. This includes feature classes to aid in the creation of paper representations of the gas system, as well as feature classes to aid in the visual representation of information. Point feature class 

P_PipeJobSeparator

Polygon feature class P_CapitalProject

Polygon feature class P_AlignmentSheet

Polygon feature class P_CPArea

What you get

Demo

UPDM Adoption

UPDM Adoption

Esri solutions are based on UPDM.

APR is home‐based on UPDM.  An alternative data model is in development by the PODS Association,

Partners are developing on UPDM.

DNV GL

G2/Eagle Information Mapping

Geonamic Systems

New Century Software

Novara GeoSolutions

UPDM adoption

As of June 15, 2016, UPDM has been downloaded by non‐Esri employees 1,043 times since November 2014.

Heat map as of June 15, 2016

UPDM Early Adopters

Entity Type

Vertically Integrated Gas Companies

Gas Transmission

Hazardous Liquids Transmission

Gathering System

UPDM: The Road Ahead

Utility Network

 

ArcGIS Gas Network data model

polygon feature class

Utility Network Alpha 8 release, build 57xx  May 23, 2016

Structural

 Dom

ain

StructureJunction Unknown Muffler

point feature classpolygon feature class

StructureBoundary Unknown StationStructure Vault

StructureEdge Unknown Casing

line feature class

CathodicProtectionLine Unknown BondWire RectifierCable

line feature class

Cathodic Protection Domain

CathodicProtection Junction Unknown Connection Point

CathodicProtection Assembly Unknown

CathodicProtection SubnetLine Unknown

CathodicProtectionDevice Unknown Anode Rectifier TestPoint

point feature class

GasAssembly Unknown Compressor Station Meter Setting Pump Station Regulator Station

GasDevice Unknown Excess Flow Valve Customer Meter Utility Meter Custody Transfer Meter Critical Valve Non‐Critical Valve Pressure Reducing Valve Regulator Relief Valve Scrubber Strainer Pressure Monitoring 

Device Lamp Compressor Wellhead Source Flange Temp Source Location

GasLine Unknown Bare Steel Cast Iron Coated Steel Copper Plastic PE Wrought Iron Ductile Iron Plastic PVC Composite Plastic ABS Reconditioned Cast Iron

GasSubnetLine Unknown Isolation Pressure

line feature class point feature class

GasJunction Unknown Connection Point Coupling Elbow End Cap Expansion Joint Flange Reducer Tee Transition Weld Screw Electro Stop Plastic Fusion Tank Line Heater Cooling System Odorizer Coupon Dehydration Equipment Drip

Gas Domain

point feature class

Rural Tap Town Border Station Wellhead Pigging Structure

Road Map Evolving UPDM for the Gas and Hazardous Liquids Industries

. . . Focused on Quality, User Needs, and Innovation

Crowdsourcing

Real-time

Utility networks

Location awareness

Massive 3DVector tiles

Web raster analysisAdvanced navigation

Modeling

Big data GeoAnalytics

Insights

Q4

Annual Update CycleMobile

UAV/Drone

Improvements Made Throughout Year

Distributed GISAnalytic Engines

Raster AnalyticsUser Roles

2016

2017

2018

Q4

Q2


Recommended