+ All Categories
Home > Documents > Upsilon Production in Heavy Ions with STAR and CMS

Upsilon Production in Heavy Ions with STAR and CMS

Date post: 23-Feb-2016
Category:
Upload: edna
View: 35 times
Download: 4 times
Share this document with a friend
Description:
Upsilon Production in Heavy Ions with STAR and CMS. Manuel Calderón de la Barca Sánchez . HIT Seminar Berkeley Lab September 18, 2012. Outline. Bottomonium in heavy ion collisions Upsilon measurements in: STAR CMS Upsilon cross sections in p+p - PowerPoint PPT Presentation
Popular Tags:
28
Upsilon Production in Heavy Ions with STAR and CMS Manuel Calderón de la Barca Sánchez HIT Seminar Berkeley Lab September 18, 2012.
Transcript
Page 1: Upsilon  Production in Heavy  Ions with  STAR and CMS

Upsilon Production inHeavy Ions with STAR

and CMS

Manuel Calderón de la Barca Sánchez

HIT SeminarBerkeley LabSeptember 18, 2012.

Page 2: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 2

Outline

• Bottomonium in heavy ion collisions• Upsilon measurements in:

– STAR– CMS

• Upsilon cross sections in p+p• Upsilon nuclear modification factors• Conclusions

9/18/12 HIT Seminar, Berkeley Lab

Page 3: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 3

Quarkonium in the QGP• Heavy quarkonia:

– Heavy quark bound state are probes of the hot QCD medium

– Debye screening • Matsui & Satz, PLB 178 416 (1986)

– Sequential Suppression• Digal et al., PRD 64 2001 094015

– Landau damping: Im V. • (e.g. Laine et al., JHEP 03 2007

054)

9/18/12 HIT Seminar, Berkeley Lab

TC<T0<T<TCT=0

ϒ

Page 4: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 4

High T: the interaction between the heavy quarks is modified.

• Charmonium suppression: longstanding QGP signature– Original idea: High T leads to

screening– Screening prevents heavy

quark bound states from forming.

– J/ysuppression: • Matsui and Satz, Phys. Lett. B 178

(1986) 416

– lattice calculations, indications of screening

• Nucl.Phys.Proc.Suppl.129:560-562,2004

– Note: Calculations of internal energy or internal energy

O. Kaczmarek, et al.,Nucl.Phys.Proc.Suppl.129:560-562,2004

9/18/12 HIT Seminar, Berkeley Lab

Page 5: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 5

The heavy quark potential in QCD• Recent news: Heavy quark potential from (quenched) Lattice QCD

– A.Rothkopf, et al. PRL 108 (2012) 162001

– Broadening due to collisions with medium (Im V) possibly more important than screening (Re V).

9/18/12 HIT Seminar, Berkeley Lab

Page 6: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 6

Measuring the Temperature

hep-ph/0110406

Dissociation temperatures of quarkonia statesLattice QCD Calculations: Quarkonia’s suppression

pattern QGP thermometer

• For production at RHIC and LHC– A cleaner probe compared to J/y

• co-mover absorption → negligible• recombination → negligible

– d-Au: Cold Nuclear Matter Effects• Shadowing / Anti-shadowing at y~0

• Challenge: low rate, rare probe– Large acceptance detector– Efficient trigger

• Expectation:– (1S) no melting– (2S) likely to melt– (3S) melts

A .Mocsy, 417th WE-Heraeus-Seminar,2008

9/18/12 HIT Seminar, Berkeley Lab

Page 7: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 7

J/y Puzzles from SPS and RHIC• Similar J/y suppression at the

SPS and RHIC!– despite 10× higher √sNN

• Suppression does not increase with local energy density– RAA(forward)<RAA(mid)

• Possible ingredients– cold nuclear matter effects– sequential melting– regeneration

• What happens for bottomonium?

9/18/12 HIT Seminar, Berkeley Lab

Page 8: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 8

Charmonium vs Bottomonium• J/y suppression

– Hot nuclear matter effects: Suppression? Regeneration? Co-mover absorption? Energy loss? Flow?

• Bottomonium Expectations– Cleaner probe of screening, deconfinement.– Regeneration?

• Not a big role for bottomonium• Open bottom: sbb ~ 1.34 – 1.84 mb.• Open charm: scc ~ 551 – 1400 mb.

– Co-mover absorption?• Expected to be small for bottomonium• Charmonium sabs ~ 3 – 4 mb.

• Bottmonium sabs ~ 1 mb. – Lin & Ko, PLB 503 104 (2001)

9/18/12 HIT Seminar, Berkeley Lab

Page 9: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 9

Upsilons in STAR

• Upsilons via Triggering, Calorimetry, Tracking, and matching of tracks to calorimeter towers.

9/18/12 HIT Seminar, Berkeley Lab

Page 10: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez10

The CMS Detector

9/18/12 HIT Seminar, Berkeley Lab

• ϒ event in CMS.

Page 11: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 11

in p+p 200 GeV in STAR

9/18/12 HIT Seminar, Berkeley Lab

∫L dt = 7.9 ± 0.6 pb-1

N(total)= 67±22(stat.)

Phys. Rev. D

82 (2010) 12004

∫L dt = 19.7 pb-1

N(total)= 145±26(stat.)

2006 2009

STAR Preliminary

Page 12: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 12

Comparison to NLO pQCD

• Comparison to NLO• STAR √s=200 GeV p+p ++→e+e- cross

section consistent with pQCD Color Evaporation Model (CEM)

9/18/12 HIT Seminar, Berkeley Lab

CEM

: R. V

ogt,

Phys

. Rep

. 462

125,

200

8C

SM: J

.P. L

ansb

erg

and

S. B

rods

ky, P

RD

81,

051

502,

201

0

Page 13: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 13

• Excellent resolution at midrapidity.

• Separation of 3 states.

9/18/12 HIT Seminar, Berkeley Lab

in p+p 7 TeV in CMS

PRD 83, 112004 (2011)

Page 14: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 14

vs √s, World Data

9/18/12 HIT Seminar, Berkeley Lab

STAR √s=200 GeV and CMS √s=7 TeV p+p ++→e+e- cross section consistent with pQCD and world data trend

STAR Preliminary

Page 15: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 15

in d+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab

∫L dt = 32.6 nb-1

N+DY+bb(total)= 172 ± 20(stat.)Signal has ~8σ significancepT reaches ~ 5 GeV/c

STAR Preliminary

Final results on RdAu coming soon. LHC pPb run in January/February.

Page 16: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 16

in Au+Au 200 GeV

9/18/12 HIT Seminar, Berkeley Lab

Raw yield of e+e- with |y|<0.5 = 197 ± 36

∫L dt ≈ 1400 µb-1

Page 17: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 17

in Au+Au 200 GeV, Centrality

9/18/12 HIT Seminar, Berkeley Lab

Peripheral Central

STAR Preliminary

STAR Preliminary

STAR Preliminary

Page 18: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 18

Bottomonia at 2.76 TeV: 2010 datapp PbPbPRL 107 (2011) 052302

9/18/12 HIT Seminar, Berkeley Lab

Page 19: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 19

Bottomonia: 2011 datapp PbPb

Ratios not corrected for acceptance and efficiency

9/18/12 HIT Seminar, Berkeley Lab

Page 20: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 20

in Au+Au 200 GeV, RAA

9/18/12 HIT Seminar, Berkeley Lab M

odel

s fro

m M

. Stri

ckla

nd a

nd D

. Baz

ow, a

rXiv

:111

2.27

61v4

•Indications of Suppression of Upsilon(1S+2S+3S) getting stronger with centrality.•Reduced pp statistical uncertainties, increased statistics from 2009 data vs 2006 data.

Page 21: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 21

(2S)/(1S) Double Ratio, CMS• Separated (2S) and (3S)

• Measured (2S) double ratio vs. centrality– no strong centrality dependence

9/18/12 HIT Seminar, Berkeley Lab

Page 22: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 22

(1S) Nuclear Modification Factor: RAA

• CMS PbPb at 2.76 TeV• In 2010: 7.28 µb−1

– (1S) RAA, 3 centrality bins– JHEP 1205 (2012) 063

• In 2011: 150 µb−1

– (1S) RAA, 7 centrality bins

– First results on (2S) RAA

• Clear suppression of (2S)– (1S) suppression

• Consistent with excited state suppression only

• ~50% feed down

9/18/12 HIT Seminar, Berkeley Lab

CMS Preliminary,arXiv:1208.2826

Page 23: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 23

Comparison: RHIC and LHC• STAR measured RAA of

(1S+2S+3S) combined– arXiv:1109.3891– min. bias value:

• CMS: separate RAA for(1S) and (2S)– can calculate min. bias RAA

of (1S+2S+3S):

9/18/12 HIT Seminar, Berkeley Lab

CMS Preliminary,arXiv:1208.2826

Page 24: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 24

ϒ RAA Comparison to models I• Incorporating lattice-based potentials,

including real and imaginary parts– A: Free energy

• Disfavored, not shown. – B: Internal energy

• Consistent with data vs. Npart

• Includes sequential melting and feed-down contributions– ~50% feed-down from cb.

• Dynamical expansion, variations in initial conditions (T0, η/S)– Data indicate:

• 428 < T0 < 442 MeV at RHIC• 552 < T0 < 580 MeV at LHC • for 3 > 4pη/S > 1 •M

. Stri

ckla

nd, P

RL

107,

132

301

(201

1).

9/18/12 HIT Seminar, Berkeley Lab

Page 25: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 25

ϒ RAA Comparison to models II

• Weak vs. Strong Binding– Narrower spectral functions for “Strong”

case– Ratios of correlators compared to Lattice:

favor “Strong” binding case• Kinetic Theory Model

– Rate Equation: dissociation + regeneration– Fireball model: T evolution. T ~ 300 MeV

9/18/12 HIT Seminar, Berkeley Lab

StrongBindingWeakBinding

Page 26: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 26

ϒ RAA Comparison to models II

• Comparison to data for “Strong” binding:– Mostly consistent with data– Little regeneration: Final result ~ Primordial suppression– Large uncertainty in nuclear absorption. Need dAu, pPb.

9/18/12 HIT Seminar, Berkeley Lab

Eur. Phys. J. A (2012) 48: 72

Page 27: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 27

ϒ RAA pT and y dependence

• Indications that suppression is largest at low pT. and mid rapidity. – Need more statistics for firmer conclusions.

9/18/12 HIT Seminar, Berkeley Lab

Page 28: Upsilon  Production in Heavy  Ions with  STAR and CMS

Manuel Calderón de la Barca Sánchez 28

The bottom line...• STAR and CMS:

– suppression vs. Npart.– RAA consistent with suppression of feed

down from excited states only (~50%)• CMS: First measurement of

(2S) suppression– RAA((3S)) < 0.09 (95% C.L.)

• (1S) RAA consistent with suppression of feed down from excited states only (~50%)– Need more pp statistics to pin down

lower-pT double ratio– Pinning down the medium properties.

• Cold nuclear matter:– coming soon!

9/18/12 HIT Seminar, Berkeley Lab


Recommended