+ All Categories
Home > Documents > Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon...

Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon...

Date post: 21-Dec-2015
Category:
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
39
Using FRAP to Study the Kinetochore- Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom
Transcript
Page 1: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Using FRAP to Study the Kinetochore-Microtubule

Interaction

C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom

Page 2: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Yeast Mitotic Spindle Structure

Kubai, 1978

Page 3: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Chromosome Microtubule Attachment

Free Tubulin

Microtubule

Page 4: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Fluorescence Recovery After Photobleaching (FRAP)

• Fluorescence based assay to determine protein dynamics (localized and/or diffusive).

• Photobleaching of GFP tagged proteins without destruction of protein function.

• Determine tubulin turnover within the microtubule by measuring rate and extent of fluorescence recovery.

Page 5: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 6: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

FRAP Microscope

Hamamatsu Orca ER CCD Camera

Nikon E300 Inverted Microscope

MetamorphAcquisition

SystemArgon Laser

For more detail:www.bio.unc.edu/faculty/bloom/labwww.bio.unc.edu/faculty/salmon/lab

Page 7: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 8: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 9: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 10: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Timelapse of Fluorescence Recovery After Photobleaching

Page 11: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Using FRAP to measure spindle microtubule dynamics.

% Recovery ofBleached ½ Spindle =F(final) – F(t=0)

Rate of turnover = Half-time to recovery (t1/2)

Maddox et al., 2000

Page 12: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 13: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

What are the dynamic

properties of microtubules in the Metaphase

spindle?

Page 14: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

66 % of metaphase spindle microtubules turnover with a half-life of 53 sec. 33% are

much more stable.

Page 15: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

There are 24 microtubules per half spindle. 16 (66 % ) are kinetochore microtubules. While 8 (33 %) are

overlapping interpolar microtubules.

Winey et al. (1995) Journal of Cell Biology. 129(6):1601-1615.

Page 16: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Therefore we conclude that the kinetochore microtubules are dynamic while the interpolar

microtubules are stable.

Page 17: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

What are the dynamic

properties of the microtubules in the Anaphase

spindle?

Page 18: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Microtubule turnover in kinetochore protein mutants.

CTF13 and STU2 - Essential, mutants delay in metaphase by the spindle checkpoint, chromosome loss mutant, localize to CEN.

CTF13 (ctf13-30) - Core kinetochore component

STU2 (stu2td) –Microtubule binding protein.

Page 19: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Normal microtubule dynamics in ctf13 mutants.

Page 20: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

stu2 mutants have decreased microtubule turnover.

Also see Kosco et al, 2001

Page 21: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Microtubule turnover in kinetochore protein mutants.

• FRAP allowed us to discern differences in mutants that show similar morphological phenotypes.

Page 22: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

What is Fluorescent Speckle Microscopy (FSM)?

• Fluorescent discontinuities, “speckles” in biological polymers (e.g. microtubules, actin filaments)

• Caused by stochastic incorporation of fluorescently tagged subunits into the polymer

• Allows visualization of assembly dynamics and motility of the polymer

Page 23: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

C. M. Waterman-Storer and E. D. Salmon. (1998). How microtubules get fluorescent speckles. Biophys Journal 75,

2059-2069.

Page 24: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 25: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

~5% ~0.5%

Page 26: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Sites of Microtubule Assembly/Disassembly

Page 27: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Microtubule Translocation

Page 28: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

How Do Microtubules get Fluorescent Speckles?

Page 29: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Assembly dynamics of astral microtubules occur at the plus-end

Page 30: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.
Page 31: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Assay for Dynamic Attachment

Page 32: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Assay for Dynamic Attachment

Page 33: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Assay for Dynamic Attachment

Page 34: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Assay for Dynamic Attachment

Page 35: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Microtubules grow and shorten while attached to the shmoo tip

Page 36: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Which microtubule end, plus or minus contributes to the dynamics

and motility?

Page 37: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Shmoo tip microtubules

add and subtract

subunits from their plus ends and not their minus ends.

Page 38: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Analysis of Protein Dynamics Using FRAP.

• Dynamics of localized and diffuse

proteins in live cells.• Spindle MT FRAP to study

microtubule dynamics and their regulation by chromosomes.

Page 39: Using FRAP to Study the Kinetochore-Microtubule Interaction C.G. Pearson, P.S. Maddox, E.D. Salmon and K. Bloom.

Thank YouThank YouKerry Bloom

Ted Salmon

Paul Maddox

Bloom LabElaine YehDale BeachMythreye KarthikeyanLeanna TopperTed ZarzarJennifer StempleDavid Bouck

Goldstein Lab

Salmon Lab

Julie Canman

Bonnie Howell

Katie Shannon

Jennifer Deluca

Daniela Cimini

Lisa Cameron

Jeff Molk

Ben Moree

Collaborators

Tim Huffaker

Karena Kosco


Recommended