+ All Categories
Home > Documents > USING TCAD TO MINIMIZE PROCESS DISPERSIONS

USING TCAD TO MINIMIZE PROCESS DISPERSIONS

Date post: 28-Jan-2016
Category:
Upload: caraf
View: 71 times
Download: 0 times
Share this document with a friend
Description:
USING TCAD TO MINIMIZE PROCESS DISPERSIONS. G. DUBOIS D. ANDRADE. INTRODUCTION CALIBRATION RESULTS DIM PC PROCESS WINDOW SIMULATION RESULTS OTHER PROCESS CAUSES OF VARIATION COM BINED EFFECT OF PROCESS VARIATIONS CONCLUSION. A - INTRODUCTION - PowerPoint PPT Presentation
20
ALTIS Semiconductor Device Engineering team Essonne Nanopole September 20, 2004 USING TCAD TO MINIMIZE PROCESS DISPERSIONS G. DUBOIS D. ANDRADE
Transcript
Page 1: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

USING TCAD TO MINIMIZE

PROCESS DISPERSIONS

G. DUBOIS

D. ANDRADE

Page 2: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

INTRODUCTION

CALIBRATION RESULTS

DIM PC PROCESS WINDOW SIMULATION RESULTS

OTHER PROCESS CAUSES OF VARIATION

COMBINED EFFECT OF PROCESS VARIATIONS

CONCLUSION

Page 3: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

A - INTRODUCTION

The goal is to demonstrate that TCAD could be very usefulin identifying the process root causes of transistor electrical parameters dispersion, mainly Ion , Vt and Ioff.The followingstudy was done on a 0.18µm designed gate length CMOSprocess .

Page 4: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

CoSi

POLY P+

1.8 V P FET: 1.8 V N FET:

Substrate P- Boron : 5E15 / cm3

.18 CMOS FEOL : SUMMARY

B

As As In

CoSi

POLY N+

BBCoSi Sb

CoSi

POLY P+

AsAs BBCoSi Sb B B

CoSi

STI B

In

CoSi

POLY N+

P FET1.8 V

P FET3.3 V

N FET3.3 V

N FET1.8 V

3.3 V P FET : 3.3 V N FET:

In In CoSiCoSi

PhSTI

AsPh

CoSiPh AsPh

PhSTI

Ph

CoSiB B

STI STI

DEVICES MENU

Page 5: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

B - CALIBRATION

PROCESS CALIBRATION:Impurity diffusion, activation models and dislocation calibration

variables were taken from INFINEON calibration work.

ELECTRICAL CALIBRATION : Mobility model has been shared with INFINEON simulation

group.

RESULTS :I-V Characteristics end up very close to measurements

performed on product.

Page 6: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET S/D PROFILS

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Y

CO

NC

EN

TR

AT

ION

ARSENIC

PHOPHORUS

INDIUM

BORON

NET DOPING

C10 NFET PWELL UNDERGATE PROFILS

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Y

CO

NC

EN

TR

AT

ION

BORON

INDIUM

ARSENIC

PHOSPHORUS

Page 7: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET X SECTION AT SILICON SURFACE

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

X

CO

NC

EN

TR

AT

ION

NET DOPING

BORON

ARSENIC

PHOSPHORUS

INDIUMSOURCE DRAIN

FET CHANNEL LENGTH

Page 8: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET 10 x .18

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0,0001

0,001

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

VGS

IDS

MEASURE

SIMUL

SIMUL VT ADJ

Simulation properly matches product measurements.

Page 9: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C – PC DIM PROCESS WINDOW SIMULATION

Page 10: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

Page 11: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

Page 12: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C – PC DIM PROCESS WINDOW SIMULATION

The simulation shows a good matching with « the real world ».

Halo implant tailoring allows to reduce the Ion (or Vt) spread,

due to PC DIM variation, within +/- 5 %.

Page 13: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

D - ANALYSIS OF OTHER CAUSES OF

ELECTRICAL VARIATION

1° VARIATION OF EXTENSION IMPLANT DUE TO SCREEN

OXIDE THICKNESS SPREAD.

The extension implant being low energy, it is strongly

influenced

by screen oxide thickness variation…

Page 14: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

POLYSPACER 0

REMAINING Gox + SPACER 0 on Si

REMAINING GOX THICK SPACER 0 THICK SCREEN OX THICK

2nm 9,3nm 5,2nm

0nm 9,3nm 6,3nm

3nm 9,3nm 5,8nm

2nm 8,5nm 4,6nm

2nm 10nm 5,7nm

Page 15: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

TCAD simulation shows that:

A huge variation of remaining gate oxide induces a small

variation of screen oxide.

Screen oxide thickness variation represents 50% of Spacer 0

(poly oxidation thickness) variation.

Consequently, the extension implant is not impacted

by gate oxide, nor Spacer 0 fluctuations.

Page 16: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

2° VARIATION OF ANNEALS TEMPERATURE

Rapid Thermal Process single wafer tools, using infra red

heating systems, may present slight temperature variations inducing

wafer to

wafer, and within wafer, spread.

Page 17: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

Page 18: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

E – COMBINED EFFECTS OF PROCESS

VARIATIONS

Page 19: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

Page 20: USING TCAD TO MINIMIZE  PROCESS DISPERSIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

TCAD simulation consists in a very efficient support formanufacturing engineers. It indeed provides an accuratesizing of the different processes effect.

Only considering PC dim & T° anneal variations induces85% of the devices electrical parameters total spread. Thosetwo components are the first order root causes of the total device electrical variation.

F – CONCLUSION


Recommended