+ All Categories
Home > Documents > USING!LAKE!SEDIMENTS!TO!TRACK!ENVIRONMENTAL...

USING!LAKE!SEDIMENTS!TO!TRACK!ENVIRONMENTAL...

Date post: 26-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
USING LAKE SEDIMENTS TO TRACK ENVIRONMENTAL CHANGE IN A SUBARCTIC, URBAN LAKE SARAH SHENSTONEHARRIS Supervised by Dr. Sarah Finkelstein Paleolimnology uses lakes sediments as a natural archive to reconstruct past ecological condiMons 4 sensiMve to ecological changes 4 1. Collect sediment core 2. SecMon and date core Radioisotopic daMng with 210 Pb 3. Isolate biological proxies DIATOMS (algae fossils) METHODS Cyst:Diatom raMo can measure nutrient levels 5 CHRYSOPHYTE STOMATOCYSTS (algae resMng stage) SUBARCTIC LAKES SubarcMc lakes are very sensiMve to environmental change, most o[en due to ice cover dynamics With prolonged ice cover, the biological oxygen demand can increase quickly. As a result, subarcMc lakes are more vulnerable to eutrophicaMon and resulMng anoxia than temperate lakes 1 Algae communiMes are showing large responses to climate warming in some lakes. For example, there have been widespread diatom community shi[s from benthic taxa to planktonic Cyclotella species, possibly related to decreased ice cover 2 Urban lakes suffer from many environmental pressures, including nutrient polluMon from surface runoff, toxin influx from industrial and urban waste, shoreline development, etc SUBARCTIC URBAN LAKES SubarcMc lakes in urban areas are unusual, but present a complex, mulMstressor environment Fig 3. Frame Lake straMgraphy showing relaMve abundances of diatom species and the chrysophyte cyst to diatom raMo, with core depth and 210 lead sediment dates on the yaxis. The diatom species are organized by preferred habitat. The benthic category also includes haptobenthics. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Zone 1 Zone 2 Zone 3 0 20 Navicula crptotenella 0 20 Cymbella m icroce p h a l a 0 Cymb e l l a desc r ip t a 0 Cymb e l l a cesa t ii 0 20 Denticu l a kuetzingii 0 20 Ac hananthes minu t i ssim a 0 20 A. mi n u t i s sim a va r . sa p ro p h i l a 0 Nav i cu l a c ry pto c ephala 0 20 Nav i cu l a l ib o n e nsis 0 Navicula pupul a 0 20 Navi cul a sali n arum 0 20 C ycl o te l la m ic h i g a n iana 0 20 C y clot e l l a pseud o stel li g e r a 0 20 40 Fra g i l ar i a pin n a t a 0 20 Fra g i l ar i a b re v i st r ia ta v a r . e l l i p t i ca 0 Fragila r ia c o n s t ru e n s var . vente r 0 20 B ra chysi ra mi c roc e p h a l a 0 Nitzschia d is s ipata 0 Nitzschia f ontic o l a 0 Nitzschia p u ra 0 N i tzschia p a l eace a 0 Ac h a n a n thes cur t i ssim a 4 12 20 28 36 C y st: D i a tom rat i o Epiphytic species Planktonic species Benthic species 1 99 0 19 74 210 Pb dates 19 43 RESULTS FRAME LAKE: Prior to the 1970s, Frame Lake hosted a healthy fish populaMon and was a prominent swimming area for the community (fig 2) Frame Lake has experienced a fish populaMon collapse, and suffers from nutrient polluMon, among other problems 6,7 A SMALL SUBARCTIC LAKE WITHIN CITY LIMITS OF YELLOWKNIFE, NWT What are the major drivers of the observed environmental changes in Frame Lake? Benthic species replaced epiphyMc species in approximately 1990 (fig 4) DISCUSSION 1. HABITAT CHANGES This suggests a sudden change in diatom microhabitat— a decline in liforal zone macrophytes and mosses 2. NUTRIENT LEVEL CHANGES The nutrient enrichments are likely from urban influences. However, since the diatom record ends at the Mme of Yellowknife’s establishment, due to diatom dissoluMon, we cannot analyze the ecology of prehuman seflement. AlternaMvely, Frame Lake may be a subarcMc anomaly and was always high in nutrients Prior to the 1990s, Frame Lake sMll had a higher trophic status than other lakes in the Yellowknife region (fig 3,5) According to the chrysophyte cyst to diatom raMo and diatom assemblage, the lake developed this trophic level in the mid to late 1990s (fig 3,5) Frame Lake is currently eutrophic 7 3. CLIMATE CHANGE This would suggest that the loss of liforal zone microhabitat is having a greater effect on the diatom assemblage than climate change during this period Between 1956 and 1992, Frame Lake’s length of ice cover remained relaMvely unchanged 8 (fig 6). Contrarily, Cyclotella and Fragilaria relaMve abundance sMll changed during this period (fig 3,7), species that typically respond to changing ice cover and climate warming 2 Recent (post 1990s) increase in Cyclotella taxa could be the result of warming, but ice monitoring stopped in 1992, making comparison not currently possible Fig 5. Cyst to diatom raMo Fig 7. RelaMve abundance of planktonic and benthic species. When did these environmental changes occur? How are the bioindicators (diatoms) responding? Is restoraVon possible? CONCLUSIONS AND IMPLICATIONS Microhabitat availability is the major driver for the diatom assemblage in Frame Lake, although nutrient levels and climate change are also important Due to diatom dissoluMon, the diatom record predaMng urban seflement was not preserved, making the establishment of baseline for restoraMon difficult Frame Lake is an unusual, mulMstressor environment Fig 2. Frame Lake beach, 1967 Fig 6. Days of open water, represented as the anomaly from the average 8 . Fig 4. RelaMve abundance of epiphyMc and benthic species. Fig 1. Yellowknife Bay of Great Slave Lake (behind) and Frame Lake (le[ foreground), surrounding City of Yellowknife, NWT Relative Abundance Depth (cm) LITERATURE CITED. 1. Barica, J., Mathias, J.A. 2011. Oxygen DepleMon and Winterkill Risk in Small Prairie Lakes Under Ice Cover. J. Fish. Res. Board. Can. 36: 980986.| 2. Smol, J.P. et al. 2005. Climatedriven regime shi[s in the biological communiMes of arcMc lakes. PNAS 102: 43974402.| 3. Schueler, T., Simpson, J. 2001. Why urban lakes are different. Water ProtecMon Techniques 3: 747 750.| 4.Baferbee, R.W. et al. 2001. Diatoms. In Tracking Environmental Change Using Lake Sediments Volume 3, eds Smol, J.P. and Birks, H.J.B. Kluwer Academic Publishers, Dordrecht, the Netherlands.| 5. Smol, J.P. 1985. The raMo of diatom frustules to chrysophycean statospores: A useful paleolimnological index. Hydrobiologia 123: 199208.| 6.Healey, M.C., and Woodall, W.L. 1973. Limnological surveys of seven lakes near Yellowknife, Northwest Territories. Fish. Res. Board Can. Tech. Rep. No. 407.| 7. Taiga Environmental Laboratory. 2010, 2011. Prepared for the Department of Fisheries and Oceans Canada. Batch No. 100525 and 110117. |8. NaMonal Snow and Ice Data Centre. 2013. Frame Lake, code WRS243. ACKNOWLEDGEMENTS. Dr. Sarah Finkelstein, Dr. Randy Dirszowsky, Magdalena Sobol, Anna Agosta G’Meiner, Maara Packalen, CGCS and Department of Fisheries and Oceans Canada. PHOTO CREDITS. 1. Dave Brosha Photography, 2013. | 2. Grant, T. 1967. Prince of Wales Northern Heritage Centre, Yellowknife, NWT. Frame Lake has a surface area of ~ 1 km and is 6.2 m deep. Obtain ice cover data from NaMonal Snow and Ice Data Centre 8
Transcript
Page 1: USING!LAKE!SEDIMENTS!TO!TRACK!ENVIRONMENTAL ...Digital+Assets/Sarah...USING!LAKE!SEDIMENTS!TO!TRACK!ENVIRONMENTAL!CHANGE!IN!A!SUBARCTIC,!URBAN!LAKE! SARAHSHENSTONE5HARRIS! Supervisedby!Dr.!Sarah!Finkelstein!

   

USING  LAKE  SEDIMENTS  TO  TRACK  ENVIRONMENTAL  CHANGE  IN  A  SUBARCTIC,  URBAN  LAKE  SARAH  SHENSTONE-­‐HARRIS  

Supervised  by  Dr.  Sarah  Finkelstein  

• Paleolimnology  uses  lakes  sediments  as  a  natural  archive  to  reconstruct  past  ecological  condiMons4  

• sensiMve  to  ecological  changes4  

1.  Collect    sediment  core  

2.  SecMon    and  date  core  

Radioisotopic  daMng  with  

210Pb    

3.  Isolate  biological  proxies  

DIATOMS  (algae  fossils)  

METHODS  

• Cyst:Diatom  raMo  can  measure  nutrient  levels5  

CHRYSOPHYTE  STOMATOCYSTS    (algae  resMng  stage)    

SUBARCTIC  LAKES  •  SubarcMc  lakes  are  very  sensiMve  to  environmental  

change,  most  o[en  due  to  ice  cover  dynamics    

•  With  prolonged  ice  cover,  the  biological  oxygen  demand  can  increase  quickly.  As  a  result,  subarcMc  lakes  are  more  vulnerable  to  eutrophicaMon  and  resulMng  anoxia  than  temperate  lakes1  

•  Algae  communiMes  are  showing  large  responses  to  climate  warming  in  some  lakes.  For  example,  there  have  been  widespread  diatom  community  shi[s  from  benthic  taxa  to  planktonic  Cyclotella  species,  possibly  related  to  decreased  ice  cover2  

•  Urban  lakes  suffer  from  many  environmental  pressures,  including  nutrient  polluMon  from  surface  runoff,  toxin  influx  from  industrial  and  urban  waste,  shoreline  development,  etc  

SUBARCTIC  URBAN  LAKES  

SubarcMc  lakes  in  urban  areas  are  unusual,  but  present  a  complex,  mulMstressor  environment      

Fig  3.  Frame  Lake  straMgraphy  showing  relaMve  abundances  of  diatom  species  and  the  chrysophyte  cyst  to  diatom  raMo,  with  core  depth  and  210lead  sediment  dates  on  the  y-­‐axis.  The  diatom  species  are  organized  by  preferred  habitat.  The  benthic  category  also  includes  haptobenthics.  

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Dep

th (c

m)

Zone 1

Zone 2

Zone 3

0 20

Navicu

la crp

toten

el la

0 20

Cymbell

a micr

oceph

ala

0

Cymbe

lla d

escr

ipta

0

Cymbe

lla ce

sati i

0 20

Dentic

ula ku

etzing

ii

0 20

Achana

nthes m

inutissim

a

0 20

A. minuti

ssima va

r. sap

rophi l

a

0

Navicu

la c rypto

cepha

la

0 20

Navicu

la l ibon

ensis

0

Navicu

la pup

ula

0 20

Navicu

la sa

linarum

0 20

Cyclot

ella m

ichigania

na

0 20

Cyclotella

pseudo

stel lig

era

0 20 40

Relative Abundance

Fragila

ria p

innata

0 20

Fragila

ria brevis

tr iata var.

ell iptic

a

0

Fragi l

aria con

strue

ns va

r. vente

r

0 20

Brach

ysira

micr

ocep

hala

0

Nitzsc

hia dissipata

0

Nitzsc

hia fonti

cola

0

Nitzsc

hia pura

0

Nitzsc

hia paleace

a

0

Achan

anthe

s curtis

sima

4 12 20 28 36

Cyst:Diatom

ratio

Epiphytic species Planktonic species Benthic species

1990

1974

210P

b da

tes

1943

RESULTS  

FRAME  LAKE:  

•  Prior  to  the  1970s,  Frame  Lake  hosted  a  healthy  fish  populaMon  and  was  a  prominent  swimming  area  for  the  community  (fig  2)  

•  Frame  Lake  has  experienced  a  fish  populaMon  collapse,  and  suffers  from  nutrient  polluMon,  among  other  problems6,7  

A  SMALL  SUBARCTIC  LAKE  WITHIN  CITY  LIMITS  OF  YELLOWKNIFE,  NWT    

•  What  are  the  major  drivers  of  the  observed    environmental  changes  in  Frame  Lake?    

   

•  Benthic  species  replaced  epiphyMc  species  in  approximately  1990  (fig  4)  

DISCUSSION  1.  HABITAT  CHANGES  

•  This  suggests  a  sudden  change  in  diatom  microhabitat—  a  decline  in  liforal  zone  macrophytes  and  mosses  

2.  NUTRIENT  LEVEL  CHANGES  

•  The  nutrient  enrichments  are  likely  from  urban  influences.  However,  since  the  diatom    record  ends  at  the  Mme  of  Yellowknife’s    establishment,  due  to  diatom  dissoluMon,  we  cannot  analyze  the  ecology  of  pre-­‐human  seflement.  AlternaMvely,  Frame  Lake  may  be  a  subarcMc  anomaly  and  was  always  high  in  nutrients  

•  Prior  to  the  1990s,  Frame  Lake  sMll  had  a  higher  trophic  status  than  other  lakes  in  the  Yellowknife  region  (fig  3,5)  

•  According  to  the  chrysophyte  cyst  to  diatom  raMo  and  diatom  assemblage,  the  lake  developed  this  trophic  level  in  the  mid  to  late  1990s  (fig  3,5)  

•  Frame  Lake  is  currently  eutrophic7  

3.  CLIMATE  CHANGE  

•  This  would  suggest  that  the  loss  of  liforal  zone  microhabitat  is  having  a  greater  effect  on  the  diatom  assemblage  than  climate  change  during  this  period  

•  Between  1956  and  1992,  Frame  Lake’s  length  of  ice  cover  remained  relaMvely  unchanged8  (fig  6).  Contrarily,  Cyclotella  and  Fragilaria  relaMve  abundance  sMll  changed  during  this  period  (fig  3,7),  species  that  typically  respond  to  changing  ice  cover  and  climate  warming2  

•  Recent  (post  1990s)  increase  in  Cyclotella  taxa  could  be  the  result  of  warming,  but  ice  monitoring  stopped  in  1992,  making  comparison  not  currently  possible    

Fig  5.  Cyst  to  diatom  raMo  

Fig  7.  RelaMve  abundance  of  planktonic  and  benthic  species.  

à  

à  

•  When  did  these  environmental  changes  occur?  •  How  are  the  bioindicators  (diatoms)  responding?  •  Is  restoraVon  possible?  

CONCLUSIONS  AND  IMPLICATIONS  •  Microhabitat  availability  is  the  major  driver  for  the  diatom  assemblage  in  Frame  Lake,  although  nutrient  levels  and  climate  change  are  also  important  

•  Due  to  diatom  dissoluMon,  the  diatom  record  predaMng  urban  seflement  was  not  preserved,  making  the  establishment  of  baseline  for  restoraMon  difficult    

•  Frame  Lake  is  an  unusual,  mulM-­‐stressor  environment  

Fig  2.  Frame  Lake  beach,  1967  

Fig  6.  Days  of  open  water,    represented  as  the  anomaly  from  the  average8.  

Fig  4.  RelaMve  abundance  of  epiphyMc  and  benthic  species.  

Fig  1.  Yellowknife  Bay  of  Great  Slave  Lake  (behind)  and  Frame  Lake  (le[  foreground),  

surrounding  City  of  Yellowknife,  NWT  

Relative Abundance

Dep

th (c

m)

LITERATURE  CITED.  1.  Barica,  J.,  Mathias,  J.A.  2011.  Oxygen  DepleMon  and  Winterkill  Risk  in  Small  Prairie  Lakes  Under  Ice  Cover.  J.  Fish.  Res.  Board.  Can.  36:  980-­‐986.|  2.  Smol,  J.P.  et  al.  2005.  Climate-­‐driven  regime  shi[s  in  the  biological  communiMes  of  arcMc  lakes.  PNAS  102:  4397-­‐4402.|  3.  Schueler,  T.,  Simpson,  J.  2001.  Why  urban  lakes  are  different.  Water  ProtecMon  Techniques  3:  747-­‐  750.|  4.Baferbee,  R.W.  et  al.  2001.  Diatoms.  In  Tracking  Environmental  Change  Using  Lake  Sediments  Volume  3,  eds  Smol,  J.P.  and  Birks,  H.J.B.  Kluwer  Academic  Publishers,  Dordrecht,  the  Netherlands.|  5.  Smol,  J.P.  1985.  The  raMo  of  diatom  frustules  to  chrysophycean  statospores:  A  useful  paleolimnological  index.  Hydrobiologia  123:  199-­‐208.|  6.Healey,  M.C.,  and  Woodall,  W.L.  1973.  Limnological  surveys  of  seven  lakes  near  Yellowknife,  Northwest  Territories.  Fish.  Res.  Board  Can.  Tech.  Rep.  No.  407.|  7.  Taiga  Environmental  Laboratory.  2010,  2011.  Prepared  for  the  Department  of  Fisheries  and  Oceans  Canada.  Batch  No.  100525  and  110117.  |8.  NaMonal  Snow  and  Ice  Data  Centre.  2013.  Frame  Lake,  code  WRS243.  

ACKNOWLEDGEMENTS.  Dr.  Sarah  Finkelstein,  Dr.  Randy  Dirszowsky,  Magdalena  Sobol,  Anna  Agosta  G’Meiner,  Maara  Packalen,  CGCS  and  Department  of  Fisheries  and  Oceans  Canada.  

PHOTO  CREDITS.  1.  Dave  Brosha  Photography,  2013.  |  2.  Grant,  T.  1967.  Prince  of  Wales  Northern  Heritage  Centre,  Yellowknife,  NWT.  

Frame  Lake  has  a  surface  area  of  ~  1  km  and  is  6.2  m  deep.    

Obtain  ice  cover  data  from    NaMonal  Snow  and  Ice  Data  Centre8  

Recommended