+ All Categories
Home > Documents > USTH Master linear algebra lecture 2

USTH Master linear algebra lecture 2

Date post: 03-Jun-2018
Category:
Upload: agony1091
View: 219 times
Download: 0 times
Share this document with a friend

of 24

Transcript
  • 8/13/2019 USTH Master linear algebra lecture 2

    1/24

    Eigenvalues and Singular values

    Juliette Ryan

    Paris 13

    February 2014

  • 8/13/2019 USTH Master linear algebra lecture 2

    2/24

    Singular values

    Numerical Computation

    Unitary matrix factorization, normal matrices

    Theorem :For any A(N,N),A= UTU

    where U is an unitary matrix (UU =UU=Id)and T is an upper triangular matrix

    Definition :A is normal if AA

    =A

    ATheorem : A is normalthere exists U unitary matrixsuch thatA= UDU and D is diagonal

    Corollary : A hermitian is diagonalizable

    Corollary : A real symmetric is diagonalizable

    Corollary : A hermitian matrix is positive definite alleigenvaluesi >0

    Ryan Eigenvalues and Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    3/24

  • 8/13/2019 USTH Master linear algebra lecture 2

    4/24

    Singular values

    Numerical Computation

    Eigenvalue localization : Proof theorem 1

    , eigenvalue, u eigenvector such thatmax|ui|= 1,with k such thatuk=1

    ( akk)uk =

    j=1,j=kakjujthus(| akk|

    j=1,j=k|akj|

    andDkk not known but you are sure that k=1,...,NDk

    Ryan Eigenvalues and Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    5/24

    Singular values

    Numerical Computation

    Eigenvalue localization : Proof theorem 2

    possible eigenvalue but not

    Ryan Eigenvalues and Singular values

    Si l l

  • 8/13/2019 USTH Master linear algebra lecture 2

    6/24

    Singular values

    Numerical Computation

    Eigenvalue localization : Proof theorem 2

    not in

    k=1,...,NDk, thus for any k,| akk| kisuch that| aii| i | aii|= iI={i, |ui|= 1= max|uk|} =, and

    j=1,N,j=i|aij

    ||uj

    | |(

    aii)ui

    |= i=

    j=1,N,j=i|aij

    |thus j=1,N,j=i|aij|(1 |uj|)0By definition|uj| 1 thus|aij|(1 |uj|) =0letJsuch thatJ

    I={1, 2,...N}andJ I=

    J=otherwise the matrix would be reducible and|akk|=|(akk)uk|=|k=jakjuj| k=j|akj|= k,for any k

    k=1,...,NDk andk=1,...,NDk Dkfor all k

    Ryan Eigenvalues and Singular values

    Si l l

  • 8/13/2019 USTH Master linear algebra lecture 2

    7/24

    Singular values

    Numerical Computation

    Dominant matrices

    A(N,N)

    Definitions

    A diagonally dominanti=1,...N, |aii|

    j=i|aij|A strictly diagonally dominant i=1,...N, |aii|> j=i|aij|A strongly diagonally dominant A is diagonallydominant andk such that|akk|>

    j=i|akj|

    Propositions

    If A strictly diagonally dominant, A is invertible

    If A strongly diagonally dominant and irreductible, A isinvertible

    If A is either strictly diagonally dominant or irreductible and

    strongly diagonally dominant and if all diagonal elements

    aiiare real andaii >0 thei,Re(i)>0

    Ryan Eigenvalues and Singular values

    Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    8/24

    Singular values

    Numerical Computation

    Singular Values

    (See http ://en.wikipedia.org/wiki/Singular value decomposition

    and

    Definition : A (M,N) rectangular matrix M>N. Singular

    values of A(i)are the square roots0 ofAAeigenvalues (AAis (N,N) square matrix)

    Theorem : A (M,N) rectangular matrix M>N. There exits

    U(M,M) and V(N,N) unitary square matrices such that

    UAV = where =

    12

    ... N

    andiare A singular values

    Ryan Eigenvalues and Singular values

    Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    9/24

    Singular values

    Numerical Computation

    Singular Values

    The right singular vectors of A are eigenvectors of AA

    The left singular vectors of A are eigenvectors of AA

    Corollary: rank(A) = number of non zero valuesi

    Ryan Eigenvalues and Singular values

    Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    10/24

    Singular values

    Numerical Computation

    Pseudo inverse

    Definition :Let =

    12

    ...

    N

    ,

    the pseudo inverse of is

    + =

    1 |2

    |... | N |

    Ryan Eigenvalues and Singular values

    Singular values

  • 8/13/2019 USTH Master linear algebra lecture 2

    11/24

    Singular values

    Numerical Computation

    Pseudo inverse

    Definition :Let A =UV, the pseudoinverse of a isA+ =V+U

    Note :If A is a square regular matrix, AA+ =A+A=Id

    Ryan Eigenvalues and Singular values

    Singular values Finite precision computation

  • 8/13/2019 USTH Master linear algebra lecture 2

    12/24

    Singular values

    Numerical Computation

    Finite precision computation

    Numerical instabilities

    Real number representation

    References :

    http://docs.sun.com/source/806-3568/ncg_goldberg.html

    http://www5.in.tum.de/huckle/bugse.html

    Decimal representation : infinite computer memory ;

    Approximated representation : floating point ;x m.bp withb: base,mmantissa,pexponent ;mantissa : number written as

    m=0,a1a2. . .aN=N

    k=1

    akbk,b1 m

  • 8/13/2019 USTH Master linear algebra lecture 2

    13/24

    g

    Numerical Computation

    p p

    Numerical instabilities

    Finite accuracy Arithmetics

    Let real numbers represented with 3 significant digits

    Computex+ y+ zwithx=8, 22 y=0, 00317 z=0, 00432

    x+ y=8, 223178, 22(x+ y) + z8, 224328, 22y+ z=0, 00749

    x+ (y+ z)8, 227498, 23Sum is not associative !

    Ryan Eigenvalues and Singular values

    Singular values Finite precision computation

  • 8/13/2019 USTH Master linear algebra lecture 2

    14/24

    g

    Numerical Computation

    p p

    Numerical instabilities

    Round off errors on arithmetics operators

    Round off error on a sum

    (x+ y)(|x| + |y|)

    Ifsn=

    nk=1

    uk, thensnsn1+ sn(sn)(|un| + 2|un1| + 3|un2| + + (n 1)|u2| + (n 1)|u1|)Better accuracy starting the sum with small absolutevalue terms

    Round off error on mutiply/Divide(xy)|xy|(x11 x

    22 xnn )(|x11 |+|x22 |+ +|xnn )|x11 x22 xnn |

    Ryan Eigenvalues and Singular values

    Singular values Finite precision computation

  • 8/13/2019 USTH Master linear algebra lecture 2

    15/24

    Numerical Computation Numerical instabilities

    Solve equationx2 1634x+ 2 = 0

    Computation is made with 10 significative digits.

    Classical formulas :

    =667487,

    816, 9987760x1= 817 +

    1633, 998776

    x2= 817 0, 0012240

    5 significative digits are lost onx2 !x1x2=2, thus

    x2= 2x1

    1, 223991125.103

    Ryan Eigenvalues and Singular values

    Singular values Finite precision computation

  • 8/13/2019 USTH Master linear algebra lecture 2

    16/24

    Numerical Computation Numerical instabilities

    Approximate computation ofe10

    Use the seriese10

    n

    k=0

    (

    1)k 10k

    k!

    general term :|uk|= 10kk! ;|u9|=|u10|= 101010! 2, 755.103

    e10 4, 5.105Comparisonu10ete

    10 :

    u10: 2 7 5 5, . . . . . .e10 : 0, 0 0 0 0 4 5

    Loss of significative digits !

    Cure :e10 = 1e10

    withe10 n

    k=0

    10k

    k!

    Ryan Eigenvalues and Singular values

    Singular values

    N i l C i

    Finite precision computation

    N i l i bili i

  • 8/13/2019 USTH Master linear algebra lecture 2

    17/24

    Numerical Computation Numerical instabilities

    Recurrence computation

    ComputeIn= 1

    0

    xn

    10 + x, n N

    Simple recurrence :

    I0=ln

    1110

    In= 1n 10In1

    Error :In10In110n

    I0ComputationI361022 !Bound : 1

    11(n+1) In 110(n+1)Inverse iterationIn1 =

    110

    1n In

    Cure :In1 110 In;Approximate I46 11147ComputeI36from approximation ofI46:I361010 !

    Ryan Eigenvalues and Singular values

    Singular values

    N i l C t ti

    Finite precision computation

    N i l i t biliti

  • 8/13/2019 USTH Master linear algebra lecture 2

    18/24

    Numerical Computation Numerical instabilities

    Iterative computation

    Compute the sequenceu0=2, un+1=| ln(un)|u0 2,000000000 2,000000001 1,999999999 5.10

    10

    u5 5,595485181 5,595484655 5,595485710 9.108

    u10 0,703934587 0,703934920 0,703934252 5.107

    u15 1,126698502 1,126689382 1,126707697 8.106

    u20 1,266106839 1,266256924 1,265955552 104

    u24 1,000976376 1,001923276 1,000022532 103

    u25 0,000975900 0,001921429 0,000022532 100%u26 6,932150628 6,254686211 10,700574400 50%

    u30 0,880833175 0,691841353 1,915129896 100%

    Numerical error :f(x) =|f(x)|xf(x)|f(x)| =

    |f(x)||x||f(x)|

    x|x| =

    1| ln x|

    x|x|

    Ryan Eigenvalues and Singular values

    Singular values

    Numerical Computation

    Finite precision computation

    Numerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    19/24

    Numerical Computation Numerical instabilities

    Errors due to the condition number

    SolveAx=betAy=b+ bwith

    A=

    10 7 8 77 5 6 58 6 10 97 5 9 10

    ,b=

    32233331

    , b=

    0, 010, 01

    0, 01

    0, 01

    x=

    1

    1

    11

    , y=

    1, 82

    0, 36

    1, 350, 79

    , 1x=y x=

    0, 82

    1, 36

    0, 350, 21

    Relative perturbation of3.104 error of0.8(2500).

    Ryan Eigenvalues and Singular values

    Singular values

    Numerical Computation

    Finite precision computation

    Numerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    20/24

    Numerical Computation Numerical instabilities

    Errors due to the condition number. . .

    SolveAx=bet(A + A)z=bwith

    A=

    10 7 8 77 5 6 58 6 10 97 5 9 10

    ,A=

    0 0 0, 1 0, 20, 08 0, 04 0 0

    0 0, 02 0, 11 00, 01 0, 01 0 0, 02

    , b=

    32233331

    Solving the 2 systems :

    x=

    1

    1

    11

    , z=

    81137

    3422

    , 2x=zx=

    82136

    3521

    Relative error of102 relative perturbation of80.

    Ryan Eigenvalues and Singular values

    Singular valuesNumerical Computation

    Finite precision computationNumerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    21/24

    Numerical Computation Numerical instabilities

    Analysis

    det(A) = 1 ;

    A1 =

    25 41 10 641 68 17 10

    10 17 5 3

    6 10 3 2

    Eigenvalues(i)i=1, ,4 ofA ?

    mini=1, ,4

    |i| 0, 01

    maxi=1, ,4

    |i| 30

    maxi=1, ,4

    |i|min

    i=1, ,4|i| 3000= C

    Coincidence ?

    1x

    2

    x2 =0, 82C.

    b2b2

    =1

    Ryan Eigenvalues and Singular values

    Singular valuesNumerical Computation

    Finite precision computationNumerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    22/24

    Numerical Computation Numerical instabilities

    Error Analysis by right hand side perturbation

    Recall perhaps : matrix norm induced from a vector norm

    A=supx=0

    Axx = supx=1

    Ax

    xsolution ofA.x=bety=x+ 1xsolution ofA.y=b+ b.

    1x = A

    1bb = A.x

    1x A1.b

    b A.x

    1xx

    AA1

    bb

    Ryan Eigenvalues and Singular values

    Singular valuesNumerical Computation

    Finite precision computationNumerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    23/24

    Numerical Computation Numerical instabilities

    Error Analysis by perturbation of the matrix

    xsolution ofAx=betzsolution of(A + A).z=b.

    2x=A1

    A(x+ 2x) A1

    .A.x+ 2x2x

    x+ 2xA.A1

    AA

    Ryan Eigenvalues and Singular values

    Singular valuesNumerical Computation

    Finite precision computationNumerical instabilities

  • 8/13/2019 USTH Master linear algebra lecture 2

    24/24

    p

    Definition of the condition number and properties

    Definition

    Cond(A) =AA1Properties

    1 cond(A)12 cond(A) = cond(A1)

    3 cond(A) = cond(A) ;=04 cond2(A) =

    A

    2

    A1

    2=

    max

    min

    whereminandmaxare

    respectively highest and lowest singular values of A

    Ryan Eigenvalues and Singular values


Recommended