+ All Categories
Home > Documents > UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line...

UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line...

Date post: 04-Apr-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
42
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Holocene upper forest line dynamics in the Ecuadorian Andes: a multiproxy study Moscol Olivera, M.C. Link to publication Citation for published version (APA): Moscol Olivera, M. C. (2010). Holocene upper forest line dynamics in the Ecuadorian Andes: a multiproxy study. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 11 Apr 2020
Transcript
Page 1: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Holocene upper forest line dynamics in the Ecuadorian Andes: a multiproxy study

Moscol Olivera, M.C.

Link to publication

Citation for published version (APA):Moscol Olivera, M. C. (2010). Holocene upper forest line dynamics in the Ecuadorian Andes: a multiproxy study.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 11 Apr 2020

Page 2: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

47

3. A phytosociological study of the páramo along two altitudinal transects in El Carchi province, northern Ecuador

Published in Phytocoenologia 39: 79-107 (2009). Marcela C. Moscol Olivera and Antoine M. Cleef

ABSTRACT

We here present a plant composition study of páramo grasslands in the East Andean

Cordillera of northern Ecuador that discerns altitudinal distribution patterns. This study

took place at two locations: the relatively undisturbed Guandera Biological Reserve site

and the highly disturbed El Angel Ecological Reserve site. The analysis included a field

survey following the relevé method of Braun-Blanquet. The study focussed on altitudinal

distributions of specific plant communities discernable by our analysis, as well as for

traces of human influence in these communities. We examined 100 plots of zonal and

azonal páramo vegetation located between 3400 and 4000 m altitude. The

phytosociological classification by means of TWINSPAN revealed seven páramo

communities at the association level (three for zonal páramo proper and three for

azonal bogs), which clustered each into two alliances and one zonal order on the basis

of both floristic composition and percentage of cover. The newly described

phytosociological order Espeletio pycnophyllae-Calamagrostietalia effusae unifies all the

zonal bunchgrass páramos of the Guandera-El Angel study area. There was no structural

subpáramo community detectable in our study area. This can probably be explained by

the frequent fires that affect the páramo-forest ecotone and which result into a sharp

discontinuity in the vegetation at the upper forest line location in Guandera. For

Guandera we described two distinct zonal páramo communities: a bamboo patch and

páramo islands in high Andean Forest. In El Angel, the floristic composition of

subassociation paspaletosum bonplandiani (bunchgrass páramo at 3430-3550 m) of the

Gynoxyo-Calamagrostietum suggests that the vegetation of this syntaxon was probably

located on former forested land, as evidenced by the disappearance of high Andean

forest and the upper part of Andean forest, combined with the presence of many native

and exotic weedy species. The presence of distinct taxa in the subassociation of

Paspalum bonplandianum undeniably was a response to habitat alteration induced by

human activities. For the azonal páramo, we describe three communities at the

association level; two of them belonging to the newly established alliance Paepalantho

muscosi-Oreobolion cleefii, marking a separate northern Ecuadorian alliance and

including the first report of a Xyris cushion bog in Ecuador.

Page 3: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

48

Key words: Páramo, Andes, Ecuador, Upper Forest Line, Andean Rain Forest, grassland,

cushion bogs, phytosociology

Abbreviations: UFL = Upper Forest Line, SARF = Subalpine Rain Forest/high Andean

Rain Forest, UMRF = Upper Montane Rain Forest/Andean Rain Forest

RESUMEN

Los patrones de composición de las especies vegetales de los páramos de la Cordillera

Oriental en el Norte del Ecuador fueron estudiados en la Reserva Biológica Guandera y la

Reserva Ecológica El Angel. La primera representa un área relativamente poco

perturbada y la segunda un área con severa alteración. El análisis realizado implicó un

estudio de campo de acuerdo al método de levantamientos según el enfoque de Braun-

Blanquet. Buscamos discernir zonas altitudinales o comunidades particulares mediante

nuestro análisis así como huellas de la influencia humana en ellas. Examinamos 100

parcelas de páramo zonal y azonal ubicadas entre 3400 y 4000 m de altitud. La

clasificación fitosociológica por medio de TWINSPAN reveló siete comunidades de

páramo a nivel de asociación (tres para páramo propiamente dicho y tres para pantanos

azonales), las cuales se agruparon cada una en dos alianzas y un orden zonal en base a

la composición florística y el porcentaje de cobertura. El nuevo orden fitosociológico

descrito Espeletio pycnophyllae-Calamagrostietalia effusae unifica todos los pajonales

de páramo de Guandera y El Angel. La comunidad de subpáramo no fue detectada

estructuralmente en el área de estudio. En Guandera, esto se explica probablemente por

los frecuentes incendios que afectan el ecotono páramo-bosque y que originan una

abrupta discontinuidad en la vegetación al nivel donde se localiza el límite superior del

bosque. Para Guandera describimos dos comunidades peculiares de páramo zonal: un

parche de bambúes e islas de páramo en Bosque Altoandino. En El Angel, la composición

florística de la subasociación paspaletosum bonplandiani (pajonal de páramo a 3430-

3550 m) de la asociación Gynoxyo-Calamagrostietum sugiere que la vegetación de este

syntaxon estuvo probablemente localizada en un área que fue anteriormente boscosa,

como lo evidencia la desaparición del bosque altoandino y de la parte superior del

bosque andino combinada con la presencia de varias especies de maleza nativa como

exótica. La presencia de taxa distintivos en la subasociación de Paspalum bonplandianum constituye una respuesta innegable a la alteración del habitat inducida

por actividades humanas. Para el páramo azonal, describimos tres comunidades a nivel

de asociación; dos de ellas pertenecen a la nueva alianza Paepalantho muscosi-

Oreobolion cleefii establecida en este estudio, la cual constituye una alianza separada,

propia del Norte ecuatoriano e incluye el primer reporte de un pantano de Xyris para el

Ecuador.

Page 4: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

49

INTRODUCTION

The páramo is a tropical high altitudinal grassland ecosystem that naturally occurs in

Venezuela, Colombia, Ecuador and northern Peru between 3000-3500 m and 4800-5000

m (the permanent snow line), but can also be found in Panamá and Costa Rica (Troll

1973, Cuatrecasas 1968, Cleef 1978) and Bolivia (Beck 1995, García & Beck 2006). The

vegetation consists of characteristic tussock grass communities with a high level of

plant endemism (Luteyn et al. 1992; Luteyn 1999; Jørgensen & Ulloa Ulloa 1994).

Scientific evidence already proved the important role of páramo as a regulator of water

availability due to the high retention capacity of its soils (Guhl 1968; Luteyn et al. 1992).

Because

of their outstanding biodiversity value, the high grade of endemism, and the

attractiveness of the landscape, some páramo areas are included in Andean countries’

Protected Area systems.

In addition to this, Grabherr et al. (2003) suggested t

Páramos in Ecuador cover approximately 12,600 km

he páramo could be a promising

indicator of global change if subject to permanent long-term ecological monitoring.

2 (Medina & Mena-Vásconez 2001),

which is about 5% of the country’s surface, and form an important agricultural and

livestock area for indigenous farming communities (Medina et al. 1997). Unfortunately,

inappropriate land use such as burning, agriculture and livestock grazing have resulted

in high pressure on the natural and hydrological conditions of this fragile ecosystem,

creating threats to their conservation and sustainable development (Buytaert et al.,

2006, Lægaard1992, Luteyn et al. 1992, Hofstede

Some researchers believe that the grass páramo below 4100-4300 m represents, at least

partially, secondary vegetation in formerly forested areas (Cuatrecasas 1958, Ellenberg

1979, Lægaard 1992) that has been created and maintained by man using fire

(Lægaard1992), but this hypothesis is still debated. Analyses of the floristic composition

of the forest-páramo ecotone may offer insights into this topic. However, such studies

should be carried out in areas with enough remnants of natural woody vegetation since

vegetation analysis on its own cannot provide conclusive evidence (Wille et al., 2002).

2001).

Some earlier páramo vegetation studies have already addressed the descriptive aspects

of plant communities (Cleef 1981; Balslev & De Vries 1989; Ramsay 1992; Rangel-Ch. et

al. 2005, Berg 1998; Sklenár 2000, Lauer et al., 2001) whereas other studies monitored

páramo vegetation dynamics under disturbance regimes (Hofstede 1995; Verweij 1995;

Ramsay & Oxley 1996, Suárez & Medina 2001). Different fire frequencies are mentioned

to occur in the Ecuadorian páramos: every 2 to 5 years (Keating 2007) and every 2-3

years for northern Ecuador according to Koenen & Gale Koenen (2000). Instead, the

páramo of the Guandera Reserve is reported to burn every 3-6 years (Di Pasquale et al.,

2008), while for El Angel Miller & Silander (1991) reported fires burning at low intensity

Page 5: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

50

and so removing almost all the woody shrub and leaving a vegetation cover dominated

by giant rosette plants and graminoid tussocks. Phytosociological studies according to

the Braun-Blanquet approach (Westhoff & Van Der Maarel 1973) are notably lacking in

Ecuadorian páramos, except for the northern extreme of Podocarpus National Park

(Bussmann 2002).

Our study was carried out in two reserves, Guandera and El Angel, which are located

close to the Colombian border. Guandera represents an almost pristine site, while El

Angel has been subject to intense human intervention. The objective was to identify the

different plant communities present in the zonal and azonal páramo of our study area,

and to recognise the syntaxonomical similarities with other plant communities reported

for the Ecuadorian and Colombian Andes. We also searched for specific patterns in plant

species composition related to human influence or former land use. In the wider frame

of the “Reconstruction of Upper Forest Line (UFL) in Ecuador” program, our interest is

focused on finding evidence of the upper limit of montane forest during the last 3000

years. In this context, the phytosociological analysis presented here is a basic tool to

understand the ecological dynamics of the forest-páramo ecotone.

Study area

Two research sites were selected from the páramo of the El Carchi province situated in

the high Andes of northern Ecuador. These sites are the Guandera Biological Reserve

and El Angel Ecological Reserve including the adjacent Los Encinos Scientific Station, as

well as their surrounding privately held areas with páramo cover (Figure 1).

The study area is part of the so called “global epicenter of biodiversity”, the biologically

richest and most diverse areas of the Earth (Mittermeier et al. 1998, Myers 1990). The

páramos in El Carchi contain a high proportion of restricted range species and are still a

habitat of singular and threatened fauna like the rare spectacled bear Tremarctos ornatus.

Since there are no meteorological stations in the study area, we have based our climatic

characterization on the maps from the Ministerio de Agricultura y Ganaderia (MAG).

Precipitation is high all year round. However, Guandera receives 1900 mm and El Angel

1000 mm. Diurnal temperature fluctuations are strong, as experienced in Guandera

(Figure 2, Bader et al., 2007), while annual temperature fluctuations are low. Monthly

means of maximum temperature vary between 12° and 15 °C (Luteyn, 1999; Di Pasquale

et al., 2008; Bader et al., 2007). Annual variations in temperature and precipitation are

mainly forced by the annual migration of the Intertropical Convergence Zone (ITCZ).

The predominant soils in the study area classify as Andosols (FAO 1998), soils formed

in volcanic ash and typically rich in organic matter. Preliminary results characterizing

Page 6: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

51

soil properties in El Angel and Guandera (Tonneijck et al. 2006) show high levels of

organic carbon for the A and B horizons (4-25%), low bulk densities (< 0.85 g/cm3

Guandera

, which

is diagnostic) and acid to very acid conditions (pH 3.2 - 4.9). Volcanic systems in

Ecuador and southern Colombia are part of the ‘Northern Volcanic Zone’, extending

from 5ºN to 2ºS (Stern 2004). The northern part of the Ecuadorian Andes is covered by

Cenozoic volcanic rocks (Hormann & Pichler 1982). Rocks of the Western Cordillera

belong to a calc-alkaline andesite-dacite series, while in the Eastern Cordillera they are

members of the andesite-dacite-rhyodacite series (Hormann & Pichler 1982; Stern 2004).

The soil profiles in the study area were formed within three distinct tephra deposits of

Holocene age (Tonneijck et al., 2008).

Guandera is a private reserve of the non-governmental organization (NGO) Jatun Sacha

Foundation, and is located in the Eastern Cordillera, approximately 11 km East of San

Gabriel. It encompasses complex natural habitats, predominantly páramo (covering

around 10 km2

El Angel

) with Espeletia pycnophylla stem rosettes, and extensive areas of

relatively intact Andean cloud forest. These forests occur from 3300 m up to 3640 m,

and include the Andean rain forest and the high Andean rain forest, regional terms,

which are equivalent to the Upper Montane Rain Forest (UMRF) and the Subalpine

Rainforest (SARF) defined by Grubb (1977). Above 3640 m, the prevailing grass páramo

is occasionally interrupted by scattered forest islands which occur up to about 3700 m.

The summit area reaches about 4000 m. In this paper, we use the general name

‘Guandera’ to refer to the reserve and its surrounding areas (buffer zone and privately

held areas at the lowest part of the transect), while ‘Guandera Reserve’ indicates the

proper protected area.

The Ecological Reserve of El Angel is separated from the Guandera Reserve by the

fertile, agricultural Central Valley and is situated on the southern slopes of the volcanic

El Voladero Basin. The latter probably constitutes a caldera in the southern outliers of

Volcano Chiles massif in the Western Cordillera. This reserve, together with the adjacent

Los Encinos Scientific Station, covers approximately 160 km2 of páramo and is

characterised by Espeletia pycnophylla stem rosettes. For centuries, and especially since

the El Angel-Tulcán road was built, this area has experienced direct impact from human

activities, including the annual burning of several hectares of páramo, native vegetation

clearing and conversion of land to agriculture, exploitation of forest products and cattle

grazing. It is most likely that páramo now occurs in many areas that were once covered

by natural Andean forest (Ellenberg 1979, Lægaard 1992, López Sandoval 2004). Extant

forest is present as patches smaller than 7 ha, surrounded by páramo, on small hills or

Page 7: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

52

steep slopes located between 3300 and 3700 m. In this paper, we use the general name

‘El Angel’ to refer to the reserve and its surrounding areas (Los Encinos Scientific

Station, the buffer zone and privately held areas at the lowest part of the transect),

while ‘El Angel Reserve’ indicates the proper protected area.

Fig. 1. Study area in northern Ecuador: relevant sites mentioned in the text are shown by circles: (1) El Angel; (2) Guandera; (3) Papallacta; (4) Antisana; (5) Cotopaxi; (6) Loja; (7) Chiles; (8) Cumbal; (9) Azufral; (10) Galeras; (11) Puracé; (12) Eastern Cordillera; (13) Parque Nacional Los Nevados; (14) Tatamá.

Page 8: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

53

Fig. 2. Climate diagram at 3370 m in Guandera Biological Station (for the year 2002, a normal-weather year). Lines show daily mean maximum and mean minimum temperature; bars show monthly precipitation.

METHODS

Preliminary field inspection and site selection

At each locality a field survey was performed in order to select the best altitudinal

transects for the 3400 m to 4000 m interval. We selected páramo sites and defined units

that represent the different natural vegetation zones, according to the method of

Zürich-Montpellier school, also known as the Braun-Blanquet approach (Westhoff & Van

der Maarel 1973, Braun Blanquet 1979). The selected sites differ visually in vegetation

structure and composition, but have -as much as possible- similar aspect and slope.

Data collection

Fieldwork was conducted between April and December 2004, and between January and

March 2006. Our research sites were situated along two separate and discontinuous

altitudinal transects: one in Guandera Reserve and the other in El Angel Reserve

(including the adjacent Los Encinos Scientific Station). Both transects encompass the

entire vertical range of grass páramo vegetation (from 3430 m to 4000 m). Following the

criteria of Walter (1954), we considered the subdivision made mainly by the soil-water

regime into zonal and azonal páramo vegetation. For each homogeneous compartment

of vegetation located usually at every altitudinal section of 100 m, we established a

minimum of five replicate 5 m x 5 m plots placed at random to obtain a fair

representation of each compartment. After the first fieldwork campaign in 2004 and

preliminary analysis of the data, additional plots were surveyed to distinguish possible

Page 9: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

54

unrecognised communities. The number of replicate plots reached up to 13 in the case

of the largest azonal communities.

According to Mueller-Dombois & Ellenberg (1974), the cover (%) of all plant species in 25

m2

Plant identification

plots was recorded, yielding in this case a total of 100 relevés, distributed over 14

sites. For every plot, a complete species list of vascular plants as well as of prominent

bryophytes and other non-vascular species was recorded along with their corresponding

cover percentage. Basic environmental information on altitude (m), slope (degrees) and

aspect (degrees) was also recorded. Additional information on cover of bare soil and

evidence of human impact was collected by visual observations in situ.

Voucher specimens (fertile when possible) of unidentified vascular plants were collected

and identified with the help of taxonomic keys and preserved plant collections stored at

the Herbario Nacional del Ecuador (QCNE) and Herbarium of the Pontificia Universidad

Católica del Ecuador (QCA). The specimens collected during our study are currently kept

at these institutions. Nomenclature for vascular plants follows Jørgensen & León Yáñez

(1999). The most conspicuous terrestric bryophytes and other non-vascular species have

been recognised at genus level, as far as previous experience allowed for. For El Angel

study area, we used the list of vascular species by Balslev (2001).

Data analysis

Plant species composition and their percentage cover at each location, were subjected to

two-way indicator analysis (TWINSPAN, Hill 1979) to classify them into community

groups. The TWINSPAN arrangement was an important tool for a first grouping of

páramo types along the altitudinal transect and regionally between both transects. Then,

applying usual phytosociological techniques, hand refinement was used to produce two

tables with the conventional diagonal structure, one containing the zonal páramo types,

and the second containing most of the azonal páramo types. Species occurring only

once and having less than 3% of cover were omitted from the table. The resulting

vegetation types or plant communities were classified and described following the

Braun-Blanquet approach (Westhoff & Van der Maarel 1973). We applied Weber et al.

(2000) and the explanation by Izco & Del Arco (2003) for a nomenclatural correct

description of the different páramo communities. We used the term ‘diagnostic species’

instead of ‘character species’, because we are unaware which vascular species are

exclusive. With respect to the diagnostic bryophyte species, plot sampling was not

complete and therefore bryophyte information has to be used with care. The running

number of the relevés has been used to indicate type relevés. We compared the

described vegetation types from El Carchi with other relevant plots recorded in other

sites from the Ecuadorian and Colombian Andes.

Page 10: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

55

RESULTS

Phytosociological classification

A total of 215 taxa of vascular plants and bryophytes was recorded from the 100

páramo plots of which 50 were located in the Guandera transect, and 50 in the El Angel

transect (Figure 3). TWINSPAN allowed for delineation of 1 order, 2 alliances and 7

associations: 3 for zonal páramo (grass páramo, Table 1), one for ‘páramo islands’ in the

uppermost forest (Table 1) and 3 for azonal bogs (Table 2).

Fig. 3. Schematic altitudinal transects sampled in Guandera Biological Reserve and El Angel in northern Ecuador. The vertical arrows indicate the beginning and end of each transect.

Page 11: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

56

The new zonal and azonal páramo syntaxa of El Carchi study area are summarised in Tables 6 and 7. All identified syntaxa are described below.

Zonal páramo vegetation

Espeletio pycnophyllae-Calamagrostietalia effusae Moscol Olivera & Cleef 2009

Typus: Diplostephio rhododendroides-Calamagrostion effusae

Order of Espeletia pycnophylla - Calamagrostis effusa páramo

Table 1, col. 1- 64

Physiognomy: Zonal bunchgrass páramo with Espeletia stem rosettes and some low

shrub on morainic substrates on top of volcanic bedrock.

Composition and syntaxonomy: Diagnostic species for the order (and a number of

them also for the class) include: Calamagrostis effusa, Carex pichinchensis, Diplostephium rhododendroides, Disterigma empetrifolium, Espeletia pycnophylla ssp. angelensis, Oreobolus goeppingeri, Monticalia andicola, M. vaccinioides, Pernettya prostrata. Diagnostic are also Chaptalia cordata, Halenia weddelliana, Hypericum laricifolium, Pinguicula calyptrata, Rhynchospora ruiziana and Sisyrinchium jamesonii.

Ecology and distribution: Mesic to humid bunchgrass páramos on black Andosols, on

slopes as well as on level ground. The bunchgrass páramo of this order was present in

both the páramo areas of El Angel and Guandera from the UFL up to 4000 m. Fires are

common in these habitats as observed during the field surveys in 2004 and 2006.

Bunchgrass páramos near El Angel Reserve entrance above the town of El Angel had

been burnt 1-2 years before while those of Guandera páramo were reported to burn

every 3-6 years (Bader et al., 2007).

Diplostephio rhododendroides - Calamagrostion effusae Moscol Olivera & Cleef 2009 Typus: Gynoxyo buxifoliae-Calamagrostietum effusae

Diplostephium rhododendroides - Calamagrostis effusa alliance of bunchgrass páramo

Physiognomy: The same as the order. In the highest part at 4000 m of Guandera also

bamboos are mixed up with the bunchgrasses. This is not the case in El Angel.

Composition and syntaxonomy: Diagnostic species include: Carex pichinchensis (transgr. Puya bogs), Diplostephium rhododendroides, Lupinus pubescens, Monticalia andicola (transgr. high Andean forest ‘páramo islands’), Monticalia vaccinioides (transgr.), Puya hamata (transgr. Puya bogs).

Page 12: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Tab

le 1

. Zon

al p

áram

o ve

geta

tion

in G

uand

era

and

El A

ngel

stud

y ar

eas,

north

ern

Ecua

dor

PA

RA

MO

ZO

NA

L

Orde

rAl

lianc

e

Suba

ssoc

iation

Varia

ntCo

lumn n

umbe

r (co

l. nr)

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

5152

5354

5556

5758

5960

6162

6364

6566

6768

6970

7172

Relev

é fiel

d num

ber (

Typu

s *)

2223

2455

5657

58*

6667

6819

2021

2526

5051

52*

5370

7199

100

101

131

110

1516

1730

3132

3435

3637

38*

7475

7677

102

133

413

104

110

111

112*

113

693

9495

9697

105

108

109

145

14*

106

107

4445

4611

40*

4142

43Lo

calit y

: GU=

Guan

dera

; EA=

El A

n gel;

LE=L

os E

ncino

sEA

EAEA

EAEA

EAEA

EAEA

EAEA

EAEA

LELE

EAEA

EAEA

LELE

EAEA

EALE

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

EAGU

GUGU

GUGU

GUGU

EAEA

EAEA

EAEA

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUAl

titude

(x10

m)

375

375

375

375

375

385

385

385

385

385

343

343

343

357

357

343

343

343

343

357

357

360

355

350

357

380

385

375

370

370

370

370

370

370

380

380

380

380

375

375

375

375

365

351

380

390

385

390

390

390

390

370

380

380

365

365

395

400

400

395

400

400

400

400

355

355

355

355

355

355

355

355

Area

(m2 )

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

Slo p

e (°)

1515

1520

2020

2520

2020

1515

1512

1215

1515

1515

1525

2015

1510

810

1010

1010

88

2020

2020

810

1010

1512

412

1812

1212

123

2525

88

1510

1010

1010

1515

55

54

55

55

Aspe

ct (°)

270

280

270

250

250

250

250

250

250

240

260

260

260

270

260

260

260

240

280

260

260

250

300

240

260

225

270

270

270

290

270

280

290

270

280

280

280

280

240

280

280

270

250

260

270

240

270

240

240

260

260

135

250

250

270

270

240

270

280

240

280

360

2035

024

024

025

027

025

025

024

024

0ro

sette

/shru

b cov

er (%

)15

1212

1010

1512

2515

1010

840

2520

128

55

1510

1020

1010

2030

1525

1025

1220

1525

1515

1515

2510

258

2020

88

85

54

2012

85

415

325

1013

103

513

1535

835

2030

25he

rb co

ver (

%)

9090

100

8070

7575

8080

100

6070

4565

8575

7075

7070

8075

7070

9080

7595

7075

7580

5565

6070

7565

8080

8575

8085

8090

7580

8075

7590

7080

8080

7590

7080

4025

8570

7570

6012

70.5

540

grou

nd co

ver (

%)

3045

352

10.5

0.51

11

3015

2020

1518

1215

58

82

11

335

35

0.55

2560

101

105

32

21

33

53

103

22

13

310

10.5

10.5

22

32

101

0.52

53

265

303

357

Fire e

viden

ce-

--

--

--

--

-+

++

--

+-

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

Dia

gnos

tic s

peci

es o

f Gyn

oxyo

bux

ifolia

e - C

alam

agro

stie

tum

effu

sae

Gyn

oxys

bux

ifolia

0.10.1

0.11

0.11

0.10.1

20.1

20.1

0.10.1

0.10.1

Hie

raci

um fr

igid

um0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1C

orta

deria

niti

da*

108

21

20.1

84

0.1Ja

mes

onia

sp.1

0.10.1

0.10.1

0.10.1

0.10.1

11

0.10.1

Ger

aniu

m s

p.1*

0.10.1

0.10.1

0.10.1

0.10.1

Lach

emilla

and

ina

0.10.1

0.10.1

0.10.1

Hyd

roco

tyle

sp.4

0.10.1

0.10.1

Hyd

roco

tyle

sp.

0.10.1

0.10.1

0.1Un

know

n 43

0.10.1

0.10.1

Brac

hyot

um a

lpin

um0.1

0.1

D. S

.a of s

ubas

s. ty

picu

m

Hyd

roco

tyle

sp.1

0.10.1

0.10.1

0.1Pi

ngui

cula

cal

yptra

ta0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

Azor

ella

are

tioid

es0.1

0.10.1

0.10.1

0.10.1

Mic

onia

chi

onop

hila

0.10.1

0.10.1

0.1Un

know

n 48

0.10.1

0.10.1

Vale

riana

mic

roph

ylla

0.10.1

0.10.1

Sisy

rinch

ium

trin

erve

0.10.1

0.10.1

0.10.1

Junc

us c

yper

oide

s0.1

0.10.1

Hyd

roco

tyle

bon

plan

dii

0.10.1

0.1

D. S

.a of p

aspa

leto

sum

bon

plan

dian

um

Pasp

alum

bon

plan

dian

um15

12

1010

1510

121

57

10.1

0.12

10.1

Hyp

ocha

eris

son

choi

des*

0.10.1

0.10.1

0.11

0.10.1

20.1

0.10.1

20.1

0.10.1

0.10.1

Cas

tille

ja fi

ssifo

lia*

0.10.1

0.10.1

0.10.1

0.10.1

0.1O

rthos

anth

us c

him

bora

cens

is*

20.1

0.10.1

0.10.1

1H

olcu

s la

natu

s0.1

0.10.1

0.10.1

0.1Bi

dens

and

icol

a0.1

0.10.1

0.10.1

Eleo

char

is a

lbib

ract

eata

*0.1

0.10.1

0.10.1

Lasi

ocep

halu

s cf.

ova

tus

0.10.1

0.10.1

0.1D

icra

nace

ae s

p.10.1

0.10.1

Mon

nina

cra

ssifo

lia0.1

0.10.1

Unkn

own 5

00.1

0.10.1

Hyd

roco

tyle

sp.3

0.10.1

0.10.1

Nas

ella

inco

nspi

cua

30.1

Bom

area

mul

tiflo

ra0.1

0.1

D. S

.a of J

ames

onio

imbr

icat

ae -

Cal

amag

rost

ietu

m e

ffusa

e

Jam

eson

ia im

bric

ata

0.10.1

0.10.1

0.12

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

10.1

0.10.1

0.10.1

0.10.1

Car

ex p

ichi

nche

nsis

*0.1

18

32

10.1

30.1

11

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

Loric

aria

thuy

oide

s*3

0.11

42

15

20.1

10.1

20.1

0.11

0.1

D. S

.a of s

ubas

s. ty

picu

m

Brac

hyot

um li

nden

ii

0.1

0.10.1

10.1

0.10.1

0.1

0.1

0.10.1

0.10.1

0.10.1

0.10.1

1

0.10.1

0.10.1

0.1

1

1

N

erte

ra g

rana

dens

is*

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

Hup

erzi

a sp

.10.1

11

0.10.1

Gai

aden

dron

pun

ctat

um10

31

11

0.10.1

Ger

aniu

m s

p.20.1

0.10.1

0.10.1

Epid

endr

um s

p.30.1

0.10.1

D. S

.a of O

ritro

phiu

m p

eruv

ianu

m

Ger

aniu

m s

p.30.1

0.10.1

0.10.1

0.1O

ritro

phiu

m p

eruv

ianu

m0.1

0.10.1

0.10.1

0.10.1

Eryn

gium

hum

ile*

0.10.1

0.10.1

0.1Pa

epal

anth

us m

usco

sus*

0.10.1

10.1

Hyp

eric

um la

ncio

ides

*0.1

0.10.1

0.1

D. S

.a of C

hapt

alia

cor

data

Unkn

own 3

6*0.1

0.10.1

Barts

ia la

ticre

nata

*0.1

0.10.1

0.1Va

leria

na sp

.4*0.1

0.10.1

Unkn

own 5

1*0.1

0.10.1

0.1Un

know

n 35*

0.10.1

0.1

57

D I

P L

O S

T E

P H

I O

R H

O D

O D

E N

D R

O I

D E

S

-

C

A L

A M

A G

R O

S T

I O

N

E

F F

U S

A E

E S

P E

L E

T I

O

P

Y C

N O

P H

Y L

L A

E

-

C

A L

A M

A G

R O

S T

I E

T A

L I

A

E F

F U

S A

E

Espe

letio

pyc

noph

ylla

e -

typicu

mpa

spale

tosum

bonp

landia

niN

euro

lepi

detu

m a

rista

tae

typicu

mva

riants

Asso

ciatio

nD

iplo

step

hiet

um fl

orib

undi

Gyn

oxyo

bux

ifolia

e - C

alam

agro

stie

tum

effu

sae

Jam

eson

io im

bric

atae

- C

alam

agro

stie

tum

effu

sae

Jam

eson

io g

oudo

tii -

Chap

talia

cord

ataOr

itroph

ium pe

ruvia

num

Page 13: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

PA

RA

MO

ZO

NA

L

Tab

le 1

. (co

nt.)

Orde

r

Allia

nce

Suba

ssoc

iation

Varia

n tCo

lumn n

umbe

r (co

l. nr)

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

5152

5354

5556

5758

5960

6162

6364

6566

6768

6970

7172

Relev

é fiel

d num

ber (

Typu

s *)

2223

2455

5657

58*

6667

6819

2021

2526

5051

52*

5370

7199

100

101

131

110

1516

1730

3132

3435

3637

38*

7475

7677

102

133

413

104

110

111

112*

113

693

9495

9697

105

108

109

145

14*

106

107

4445

4611

40*

4142

43Lo

cality

: GU=

Guan

dera

; EA=

El A

ngel;

LE=L

os E

ncino

sEA

EAEA

EAEA

EAEA

EAEA

EAEA

EAEA

LELE

EAEA

EAEA

LELE

EAEA

EALE

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

EAGU

GUGU

GUGU

GUGU

EAEA

EAEA

EAEA

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUGU

GUAl

titude

(x10

m)

375

375

375

375

375

385

385

385

385

385

343

343

343

357

357

343

343

343

343

357

357

360

355

350

357

380

385

375

370

370

370

370

370

370

380

380

380

380

375

375

375

375

365

351

380

390

385

390

390

390

390

370

380

380

365

365

395

400

400

395

400

400

400

400

355

355

355

355

355

355

355

355

Area

(m2 )

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

2525

Slop

e (°)

1515

1520

2020

2520

2020

1515

1512

1215

1515

1515

1525

2015

1510

810

1010

1010

88

2020

2020

810

1010

1512

412

1812

1212

123

2525

88

1510

1010

1010

1515

55

54

55

55

Aspe

ct (°)

270

280

270

250

250

250

250

250

250

240

260

260

260

270

260

260

260

240

280

260

260

250

300

240

260

225

270

270

270

290

270

280

290

270

280

280

280

280

240

280

280

270

250

260

270

240

270

240

240

260

260

135

250

250

270

270

240

270

280

240

280

360

2035

024

024

025

027

025

025

024

024

0ro

sette

/shru

b cov

er (%

)15

1212

1010

1512

2515

1010

840

2520

128

55

1510

1020

1010

2030

1525

1025

1220

1525

1515

1515

2510

258

2020

88

85

54

2012

85

415

325

1013

103

513

1535

835

2030

25he

rb co

ver (

%)

9090

100

8070

7575

8080

100

6070

4565

8575

7075

7070

8075

7070

9080

7595

7075

7580

5565

6070

7565

8080

8575

8085

8090

7580

8075

7590

7080

8080

7590

7080

4025

8570

7570

6012

70.5

540

grou

nd co

ver (

%)

3045

352

10.5

0.51

11

3015

2020

1518

1215

58

82

11

335

35

0.55

2560

101

105

32

21

33

53

103

22

13

310

10.5

10.5

22

32

101

0.52

53

265

303

357

Fire e

viden

ce-

--

--

--

--

-+

++

--

+-

--

--

--

-+

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

--

D. S

.a of J

ames

onio

gou

dotii

- N

euro

lepi

detu

m a

rista

tae

Neu

role

pis

aris

tata

408

418

2520

100.1

0.1H

yper

icum

sile

noid

es*

0.10.1

0.10.1

0.1H

uper

zia

cras

sa*

0.10.1

0.10.1

0.1Ja

mes

onia

gou

dotii

0.10.1

0.1Ar

cyto

phyl

lum

set

osum

0.10.1

0.1La

chem

illa n

ival

is0.1

0.10.1

0.1H

ypoc

haer

is s

essi

liflo

ra*

0.10.1

0.1M

ontic

alia

stu

ebel

ii0.1

0.10.1

0.1O

uris

ia s

p.0.1

0.1

D. S

.a of D

iplo

step

hio

rhod

oden

droi

des

- Cal

amag

rost

ion

effu

sae

Puya

ham

ata

0.10.1

11

210

618

150.1

0.10.1

63

184

44

35

25

204

53

412

38

11

40.1

21

11

0.10.1

52

0.12

0.13

0.12

0.1D

iplo

step

hium

rhod

oden

droi

des

0.11

0.10.1

0.10.1

10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

30.1

0.10.1

0.10.1

0.10.1

0.10.1

2H

yper

icum

laric

ifoliu

m*

0.10.1

0.10.1

31

0.11

0.10.1

0.10.1

22

22

13

13

10.1

11

13

31

10.1

0.13

0.12

0.10.1

0.1Ly

copo

dium

con

tiguu

m0.1

10.1

0.10.1

0.18

0.10.1

0.10.1

0.11

0.10.1

0.10.1

10.1

0.10.1

0.10.1

41

10.1

10.1

0.11

0.10.1

0.10.1

0.10.1

Mon

tical

ia v

acci

nioi

des

0.10.1

0.10.1

0.10.1

0.11

0.10.1

12

10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.11

0.10.1

0.11

Lupi

nus

pube

scen

s0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.12

0.10.1

0.10.1

0.1H

alen

ia w

edde

liana

*0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1C

hapt

alia

cor

data

*0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1G

eran

ium

sib

bald

ioid

es0.1

0.10.1

0.10.1

0.10.1

0.10.1

20.1

Cal

amag

rost

is b

ogot

ensi

s0.1

0.10.1

0.15

0.1

D. S

.a of E

spel

etio

pyc

noph

ylla

e - D

iplo

step

hiet

um fl

orib

undi

Blec

hnum

sch

ombu

rgki

i1

1020

5012

44

4D

iplo

step

hium

flor

ibud

um0.1

0.10.1

11

10.1

510

105

Vacc

iniu

m fl

orib

undu

m0.1

0.11

0.10.1

0.11

0.10.1

10.1

22

2C

ladi

na s

p.1

135

1515

0.1As

tera

ceae

sp.3

0.10.1

10.1

84

Myr

teol

a nu

mm

ular

ia*

0.1

0.1

0.1

0.1

1

0.1

0.1

10.1

23

156

Wei

nman

nia

coch

ensi

s0.1

0.10.1

0.12

Aste

race

ae s

p.40.1

0.10.1

0.11

Hie

raci

um a

vila

e0.1

0.10.1

0.10.1

0.10.1

Car

ex s

p.23

1U

ncin

ia s

p.10.1

0.1El

lean

thus

sp.

0.10.1

0.10.1

Aste

race

ae s

p.50.1

0.1D

iste

rigm

a ac

umin

atum

1

D. S

.a of E

spel

etio

pyc

noph

ylla

e - C

alam

agro

stie

talia

effu

sae

Cal

amag

rost

is e

ffusa

9090

9080

7065

7580

8080

5060

4560

8070

7075

7055

7575

7070

8580

6590

6070

7075

5060

6070

7560

7580

8075

7585

7580

7580

8075

7590

7080

8075

7550

6075

201

6560

7565

608

50.1

540

Espe

letia

pyc

noph

ylla

1512

108

815

1013

1010

43

612

206

34

310

108

67

1012

78

43

124

105

55

810

58

415

515

107

56

24

415

85

42

152

258

1210

15

104

124

155

57

Ore

obol

us g

oepp

inge

ri0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.11

0.10.1

0.11

302

40.1

525

6010

0.15

42

21

0.12

24

13

22

10.1

22

30.1

0.10.1

22

81

10.1

0.10.1

Pern

etty

a pr

ostra

ta0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1Br

eute

lia s

p.30

4030

0.10.1

0.10.1

0.10.1

0.115

151

51

24

10.1

0.10.1

0.12

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.14

0.10.1

0.10.1

0.13

0.10.1

0.10.1

0.11

15

Dis

terig

ma

empe

trifo

lium

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

10.1

0.10.1

0.10.1

0.1Bl

echn

um lo

xens

e1

0.12

0.10.1

0.10.1

0.14

515

150.1

22

21

81

0.17

40.1

28

0.10.1

0.11

40.1

21

1R

hync

hosp

ora

ruiz

iana

0.10.1

0.10.1

0.10.1

0.10.1

25

0.13

32

12

10.1

10.1

64

34

52

24

0.12

11

1M

ontic

alia

and

icol

a*0.1

0.10.1

0.11

0.10.1

0.10.1

0.10.1

0.10.1

0.11

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1C

ampy

lopu

s sp

.0.1

55

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

00.1

0.14

20.1

305

51

Sisy

rinch

ium

jam

eson

ii0.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.10.1

0.1C

orta

deria

ser

ican

tha

15

0.12

40.1

210

0.13

0.10.1

0.11

4

Oth

er s

peci

es p

rese

nt (r

el. nu

mb. /

%):

Arcy

toph

yllu

m m

utic

um (

6/1)

Cal

amag

rost

is sp

.2 (7

0/15)

Cla

doni

a py

xida

ta (6

/0.1)

Gna

phal

ium

sp.1

(23/0

.1, 55

/0.1)

Orch

idace

ae sp

. 10 (

99/0.

1, 93

/0.1,

94/0.

1)Va

leria

na b

ract

eata

(6/0.

1)Un

know

n 45 (

106/0

.1)Ar

cyto

phyl

lum

sp. 1

(55/0

.1, 56

/0.1)

Cam

pylo

pus

richa

rdii

(109

/0.1,

145/1

)D

istic

hia

mus

coid

es(5

6/0.1)

Hes

pero

mel

es o

btus

ifolia

(111

/1)Ph

yllo

baei

s im

bric

ata

(131

/0.1)

Unkn

own 3

2 (99

/0.1,

95/0.

1)Un

know

n 46 (

57/0.

1, 10

8/0.1)

Aster

acea

e sp.2

(97/0

.1, 10

5/0.1)

Car

ex p

ygm

aea

(75/0

.1, 41

/0.1)

Elap

hogl

ossu

msp

.1 (5

7/0.1,

66/0.

1)La

chem

illasp

.1 (5

6/0.1,

70/0.

1, 95

/0.1)

Ric

card

iasp

. (13

1/0.1,

1/0.1

, 145

/0.1)

Unkn

own 3

3 (10

0/0.1,

95/0.

1)Un

know

n 47 (

75/0.

1, 6/0

.1)Ba

ccha

ris m

acra

ntha

(23/0

.1, 24

/0.1)

Car

ex sp

. (50

/0.1,

51/0.

1)G

aliu

msp

.1 (6

6/0.1,

67/0.

1)Lu

pinu

s m

icro

phyl

lus

(53/0

.1, 97

/0.1)

Spha

gnum

mag

ella

nicu

m(1

/3)Un

know

n 34 (

100/0

.1, 10

1/0.1)

Unkn

own 4

9 (66

/0.1,

67/0.

1)Ba

rtsia

sp.1

(75/0

.1, 13

/0.1)

Cla

dia

aggr

egat

a (6

/0.1)

Gna

phal

ium

ant

enna

rioid

es(2

5/0.1,

26/0.

1)Ly

copo

dium

sp. 4

(110

/0.1,

145/0

.1)U

ncin

ia te

nuis

(24/0

.1, 55

/0.1)

Unkn

own 3

8 (52

/0.1,

53/0.

1)Un

know

n 52 (

52/0.

1, 53

/0.1)

Cal

amag

rost

is cf

. inte

rmed

ia (5

5/0.1,

56/0.

1)C

ladi

na p

olia

(4/0.

1)G

naph

aliu

msp

. (19

/0.1,

25/0.

1)M

icon

ia ti

nifo

lia(1

1/0.1)

Usn

easp

. (13

3/0.1)

Unkn

own 4

4 (67

/0.1,

106/0

.1)Un

know

n 53 (

66/0.

1, 68

/0.1,

19/0.

1)

* = pr

esen

t also

in az

onal

pára

moa =

Diag

nosti

c Spe

cies

58

Espe

letio

pyc

noph

ylla

e -

Neu

role

pide

tum

aris

tata

eD

iplo

step

hiet

um fl

orib

undi

E S

P E

L E

T I

O

P

Y C

N O

P H

Y L

L A

E

-

typ

icum

Jam

eson

ia im

bric

atae

- C

alam

agro

stie

tum

effu

sae

C A

L A

M A

G R

O S

T I

O N

E

F F

U S

A E

varia

ntspa

spale

tosum

bonp

landia

ni

Gyn

oxyo

bux

ifolia

e - C

alam

agro

stie

tum

effu

sae

Asso

ciatio

n

D I

P L

O S

T E

P H

I O

R H

O D

O D

E N

D R

O I

D E

S

-

Chap

talia

cord

ata

Jam

eson

io g

oudo

tii -

Oritro

phium

peru

vianu

m

C A

L A

M A

G R

O S

T I

E T

A L

I A

E F

F U

S A

E

typicu

m

Page 14: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

59

Below 4000 m, the suballiance ‘Halenio weddellianae-Calamagrostienion effusae’ could

be recognised with diagnostic species such as Chaptalia cordata, Halenia weddelliana,

Hypericum laricifolium (transgr.), Pinguicula calyptrata, and Sisyrinchium jamesonii.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: Bunchgrass páramos from the UFL up to 4000 m in El Angel

and Guandera study areas. The grasslands also have been established on extensions of

former forested land in El Angel Reserve.

Gynoxyo buxifoliaeGynoxyo buxifoliaeGynoxyo buxifoliaeGynoxyo buxifoliae----Calamagrostietum effusae Calamagrostietum effusae Calamagrostietum effusae Calamagrostietum effusae Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 1, col. 1-25; Typus: rel. 7

Gynoxys buxifolia-Calamagrostis effusa bunchgrass páramo

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Bunchgrass páramo with stem rosettes and low shrub or treelets.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species include: Aethanthus sp., Bomarea

multiflora (rare), Brachyotum alpina (rare), Cortaderia nitida, Eleocharis albibracteata,

Geranium sp.1, Gynoxys buxifolia, Hieracium frigidum, Hydrocotyle sp. 1 and Lachemilla

andina.

The association has been subdivided into two subassociations: subass. typicum and

paspaletosum bonplandiani, both described below.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: Frequently burnt bunchgrass páramo from the current UFL in

El Angel at 3450 m up to 3850 m. The highest zone looked more intact. The lower

páramos of this association were found next to forest patches of Andean forest. Burning

mostly occurs every year (rangers of El Angel Reserve, pers. comm.).

Gynoxyo buxifoliaeGynoxyo buxifoliaeGynoxyo buxifoliaeGynoxyo buxifoliae----CalamagrCalamagrCalamagrCalamagrostietum effusaeostietum effusaeostietum effusaeostietum effusae

Subassociation typicum.

Table 1, col. 1-10; Fig. 4; Typus: see association

Subassociation of typicumSubassociation of typicumSubassociation of typicumSubassociation of typicum

Physiognomy: Physiognomy: Physiognomy: Physiognomy: natural zonal stem rosette-bunchgrass páramo with low shrub.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species include: Azorella aretioides,

Diplostephium rhododendroides (against paspaletosum), Hydrocotyle sp.1, Miconia

chionophila, Nertera granadensis, Pinguicula calyptrata and Valeriana microphylla.

This bunchgrass páramo type is floristically most closely related to the bunchgrassland

of the paspaletosum bonplandiani subassociation.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: This type of lower bunchgrass páramo is slightly influenced by

burning. Bunchgrasses are well developed. This bunchgrass páramo type is found

Page 15: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

60

between 3750 and 3850 m in the area of El Voladero lake basin of El Angel Ecological

Reserve.

Fig. 4.Fig. 4.Fig. 4.Fig. 4. Espeletia pycnophylla bunchgrass páramo at 3850 m in El Angel Reserve, northern Ecuador, showing Gynoxyo buxifoliae -Calamagrostietum effusae typicum.

Gynoxyo Gynoxyo Gynoxyo Gynoxyo buxifoliaebuxifoliaebuxifoliaebuxifoliae----Calamagrostietum effusaeCalamagrostietum effusaeCalamagrostietum effusaeCalamagrostietum effusae

Subassociation paspaletosum bonplandiani Moscol Olivera & Cleef 2009

Table 1, col. 11-25; Typus: rel. 18

Subassociation of Subassociation of Subassociation of Subassociation of Paspalum bonplandianumPaspalum bonplandianumPaspalum bonplandianumPaspalum bonplandianum

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Open bunchgrass-stem rosette páramo, heavily burnt and degraded. The

remains of the bunches are fresh green at burnt sites with open ground covered by

herbs and bryophytes. In other places with well developed bunches, plant cover was

hardly found in the darkness under the dense tussocks.

Composition and syntaxonomComposition and syntaxonomComposition and syntaxonomComposition and syntaxonomy:y:y:y: Diagnostic species include Bomarea multiflora,

Brachyotum lindenii, Castilleja fissifolia, Eryngium humile, Halenia weddelliana,

Hypericum laricifolium, Hypochaeris sonchoides, Lupinus pubescens, Monnina

crassifolia, Monticalia andicola, Nasella inconspicua, Orthrosanthus chimboracensis and

Paspalum bonplandianum. The páramo grassland is impoverished by the absence of

Page 16: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

61

original native species (cf. typicum). Other generalist species arrived and have occupied

this disturbed habitat, together with invasive species such as native weeds (Bidens

andicola, Gnaphalium spp., Lachemilla andina, Paspalum bonplandianum) and northern

temperate introductions as e.g. Holcus lanatus, Anthoxanthum odoratum, and Lolium

multiflorum.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: This type of páramo vegetation was only found in the

lowermost páramo of El Angel Ecological Reserve between the current UFL at 3430 m

and 3600 m.

Jamesonio imbricataeJamesonio imbricataeJamesonio imbricataeJamesonio imbricatae----Calamagrostietum effusae Calamagrostietum effusae Calamagrostietum effusae Calamagrostietum effusae Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 1, Fig. 5; Typus: rel. 38

Jamesonia imbricata-Calamagrostis effusa bunchgrass páramo

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Zonal stem rosette-bunchgrass páramo with low shrub. The woody

component is higher in cover compared to the bunchgrass páramo at higher altitude.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: This bunchgrass páramo is poorer in species than the

previously described association from El Angel. Diagnostic are: Carex pichinchensis

(transgr.), Jamesonia imbricata, Loricaria thuyoides and Myrteola nummularia (transgr.).

One subassociation and two variants have been recognised.

Fig. 5.Fig. 5.Fig. 5.Fig. 5. Espeletia pycnophylla bunchgrass páramo at 3700 m in Guandera

Reserve next to the upper forest line, showing Jamesonio imbricatae -

Calamagrostietum effusae.

Page 17: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

62

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: Zonal Espeletia pycnophylla bunchgrass páramo in Guandera

Reserve occurs between the UFL at 3650 m and 3900 m. The bunchgrass páramo covers

mostly steep terrain and allows the development of dense Espeletia stem rosette

populations on gently sloping moraines (e.g. close to the bog enclosed by moraines at

3800 m). Environmental conditions along the sampled sites being rather similar (except

temperature), they permit only one association to be subdivided in an altitudinally lower

and higher subassociation. The altitudinally lower one contains more woody elements,

but the dominance of bunchgrasses prevails.

Six relevés from the bunchgrass páramo of El Angel belong to this association. They are

distributed between 3650 and 3950 m.

Jamesonio imbricataeJamesonio imbricataeJamesonio imbricataeJamesonio imbricatae----Calamagrostietum effusaeCalamagrostietum effusaeCalamagrostietum effusaeCalamagrostietum effusae

Subassociation typicum

Table 1, col. 26-44; Fig. 6; Typus: see association

Subassociation with typicumSubassociation with typicumSubassociation with typicumSubassociation with typicum

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: The diverse woody component of the grassland is

diagnostic and consists of some 10 species which occur frequently.

Diagnostic are Brachyotum lindenii, Epidendrum sp. 3, Gaiadendron punctatum

(seedlings), Geranium sp. 2, Huperzia sp. 1, and Nertera granadensis. Diagnostic by

higher presence and cover (compared to the remaining communities of this association)

are: Blechnum loxense, Disterigma empetrifolium, Monticalia vaccinioides and

Rhynchospora ruiziana. On the basis of the present relevés it was difficult to rank this

community of the Guandera Reserve as an association or as subassociation. The last

option was chosen due to the low number of relevés available between 3850 and 3950 m

and also because of a number of not identified species.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: This Espeletia bunchgrass páramo has also been repeatedly

burnt, mainly by man (Christopher James, pers. comm. 2006). Fire maintains the UFL

border very sharp and slows or prevents recovery of the woody component in the

bunchgrass páramo, which largely dominates. On other volcanoes of Ecuador and

Colombia, the woody subpáramo component is mostly almost absent by burning and

grazing, but probably also by volcanic events. Brachyotum lindenii is a subpáramo shrub

1-2 m in height, occurring together in the same stratum with Diplostephium

rhododendroides, Hypericum laricifolium, Monticalia andicola, M. vaccinioides, and

Loricaria thuyoides. Monocot species, as grasses, invade easier after burning and are

able to outcompete the woody species under recurrent fires (Hofstede et al. 1998;

Salamanca et al., 2003).

The vegetation of this subassociation is only found between 3650 m and 3800 (3850) m

on the western slopes of Guandera Reserve.

Page 18: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

63

Fig. 6.Fig. 6.Fig. 6.Fig. 6. Bamboo páramo of Jamesonio goudotii - Neurolepidetum aristatae at 4000 m

in Guandera Reserve, northern Ecuador.

The remaining relevés of Jamesonio imbricatae-Calamagrostietum effusae allow for

recognition of two variants. One of Oritrophium peruvianum (representative rel. 40,

Table 1), characteristic of more open grass páramo between about 3800 and 3900 m

with presence of e.g. Eryngium humile, Hypericum lancioides, Oritrophium peruvianum,

and Paepalanthus muscosus. The variant of Chaptalia cordata (representative relevé 47,

Table 1) is from the proper grass páramo in El Angel and Guandera. Most relevés,

however, are from Guandera and Bartsia laticrenata, Chaptalia cordata and Monticalia

andina are characteristic.

Jamesonio goudotiiJamesonio goudotiiJamesonio goudotiiJamesonio goudotii----Neurolepidetum aristatae Neurolepidetum aristatae Neurolepidetum aristatae Neurolepidetum aristatae Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 1, col. 58-64; Fig. 6; Typus: rel. 62

Jamesonia goudotiiJamesonia goudotiiJamesonia goudotiiJamesonia goudotii----Neurolepis aristataNeurolepis aristataNeurolepis aristataNeurolepis aristata bamboo páramobamboo páramobamboo páramobamboo páramo

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Bamboo-stem rosette vegetation in the upper humid grass páramo.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species include: Arcytophyllum setosum,

Huperzia crassa, Hypochaeris sessiliflora, Hypericum silenoides, Jamesonia goudotii,

Lachemilla nivalis, Monticalia stuebelii, Neurolepis aristata and Ourisia muscosa.

The assemblage of species and growth forms (bamboos) separates this association easily

from both previous zonal bunchgrass associations.

Bussmann (2002) described the Neurolepidetum aristatae of the forest-páramo

transition, at around 3000 m, in the Podocarpus National Park, near Loja. This

association is very similar to the Neurolepis aristata bamboo grove at 3635 m described

Page 19: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

64

by Cleef (1981) from the UFL on Nevado de Sumapaz, Colombia. Both the

Neurolepidetum aristatae Bussmann 2002 and the Sumapaz bamboo grove are markedly

different in vegetation structure and composition compared to the here newly described

bamboo páramo association Jamesonio goudotii-Neurolepidetum aristatae.

Ecology aEcology aEcology aEcology and distribution:nd distribution:nd distribution:nd distribution: In the summit area of the Guandera Reserve, at about 4000 m,

the vegetation becomes edaphically more humid and allows for dense bamboo clumps

up to 0.5 m height. The occurrence of this plant community is beyond any doubt related

to the Amazon exposed summit zone which implies a greater atmospheric humidity due

to vertical and horizontal precipitation and mist deposition. These superhumid

conditions at 4000 m are combined with low daily temperatures. In absence of direct

insolation, the daily temperature amplitude is only of few degrees centigrade. Similar

atmospheric and floristic phenomena have been described for Podocarpus National Park

(Bussmann 2002) and for Páramo de Sumapaz, Colombia (Cleef 2008; Cleef et al., 2008).

Páramo islandsPáramo islandsPáramo islandsPáramo islands

This denomination refers to the open spaces with páramo-like vegetation mainly found

in high Andean forest and Andean forest on the western slope of Guandera Reserve

between the UFL and about 3550 m. The vegetation includes taxa from both high

Andean forest and páramo. Therefore, vegetation has been phytosociologically ranked

as a new association Espeletio pycnophyllae-Diplostephietum floribundi, described

below.

Espeletio pycnophyllae Espeletio pycnophyllae Espeletio pycnophyllae Espeletio pycnophyllae ---- Diplostephietum floribundi Diplostephietum floribundi Diplostephietum floribundi Diplostephietum floribundi Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 1, col. 65-72; Fig. 7; Typus: rel. 69

High Andean High Andean High Andean High Andean Espeletia pycnophyllaEspeletia pycnophyllaEspeletia pycnophyllaEspeletia pycnophylla----Diplostephium floribundumDiplostephium floribundumDiplostephium floribundumDiplostephium floribundum ‘páramo islands’‘páramo islands’‘páramo islands’‘páramo islands’

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Open shrub and low arboreal vegetation with stem rosettes up to 3 m,

without signs of previous burning on the vegetation. Large grass tussocks and

occasionally patches of Sphagnum are present.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species are: Asteraceae sp. 3, sp. 4 and sp. 5,

Blechnum schomburgkii, Carex sp. 2, Disterigma acuminata (rare), Diplostephium

floribundum, Elleanthus sp., Gaiadendron punctatum, Hieracium avilae, Jamesonia

imbricata, Lycopodium clavatum, Myrteola nummularia, Neurolepis aristata, Vaccinium

floribundum and Weinmannia cochensis. Species of Cladonia and Cladina may be very

common too.

According to Table 1, there are two variants, one with Neurolepis aristata (3 out of 8

relevés) and Asteraceae sp. 5; the other one with Carex sp. 2, Cortaderia sericantha and

Gaiadendron punctatum. Provisionally we ranked this association under the order of

Espeletio-Calamagrostietalia effusae because of the open aspect.

Page 20: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

65

Fig. 7.Fig. 7.Fig. 7.Fig. 7. Páramo islands of Espeletio pycnophyllae-Diplostephietum floribundi

association at 3550 m in high Andean forest of Guandera Reserve

northern Ecuador.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: The so-called ‘páramo islands’ in the Guandera Andean forest

and high Andean forest were found as open patches on ridges but also on sloping (level)

ground. In the last case also whitish sediments were deposited by sheets of water after

torrential rain. These dynamic and unstable places in the high Andean forest contrast

with the more exposed ridges. Single Calamagrostis bunches are present but without the

assemblage of the accompanying species of the association Jamesonio imbricatae-

Calamagrostietum effusae (except Jamesonia imbricata). Blechnum schomburgkii,

Disterigma acuminata, Diplostephium floribundum, Gaiadendron punctatum and

Weinmannia cochensis represent the high Andean forest component.

Azonal páramoAzonal páramoAzonal páramoAzonal páramo

As in most páramos, azonal conditions are in general characterised by a high phreatic

level, close to or at the surface or much higher like in ponds or lakes. Exposed

conditions and/or thin soils may also cause azonal vegetation types (Walter 1954). The

azonal syntaxa that were identified at the study sites are described below.

Cortaderio nitidaeCortaderio nitidaeCortaderio nitidaeCortaderio nitidae----Puyetum hamatae Puyetum hamatae Puyetum hamatae Puyetum hamatae Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 2, col. 24-28; Fig. 8; Typus: rel. 26

Cortaderia nitidaCortaderia nitidaCortaderia nitidaCortaderia nitida----Puya hamataPuya hamataPuya hamataPuya hamata bogbogbogbog

Page 21: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

66

Physiognomy:Physiognomy:Physiognomy:Physiognomy: Giant spiny-leaved ground rosette bog with large, conspicuous grass

tussocks in depressions in the grass páramo. The columnar inflorescences of Puya are

up to 4 m tall.

Composition and syntaxonomy: Composition and syntaxonomy: Composition and syntaxonomy: Composition and syntaxonomy: Diagnostic species are: Calamagrostis bogotensis, Carex

pichinchensis, Carex pygmaea, Cortaderia nitida, Cotula mexicana, Eryngium humile,

Festuca andicola and/or F. asplundii, Gentiana sedifolia, Hypericum lancioides,

Hypericum laricifolium, Juncus cyperoides, Lycopodium sp. 5, Monnina crassifolia,

Plagiocheilus solivaeformis, Puya hamata (by size, height and cover) and Valeriana sp. 6

and 7. Among the diagnostic non-vascular taxa we included Phyllobaeis imbricata and

species of Riccardia.

Most of the species recorded are shared with the surrounding grass páramo except for

Arcytophyllum muticum, Cotula mexicana, Equisetum bogotensis, Greigia sp., Jensenia

erythrophyllus, Juncus cyperoides, Plagiocheilus solivaeformis, Phyllobaeis imbricata,

and Valeriana sp. 6 and 7 (Tables 1 and 2).

Two variants could be distinguished, but we have not described them as more relevés

from other localities are needed.

Fig. 8.Fig. 8.Fig. 8.Fig. 8. Páramo bog of Cortaderio nitidae-Puyetum hamatae association at

3500 m in El Angel Reserve, northern Ecuador.

Page 22: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

67

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: The Cortaderia-Puya hamata bogs that were observed around

3500 m in the El Angel Reserve form one of the most spectacular communities of the

grass páramo landscape. These bogs occur in humid to wet depressions between

moraines. Curiously, Puya hamata developed as a giant ground rosette, while this

species in the bunchgrass páramo only attained rosettes with a diameter of about 30-50

cm, and columnar inflorescences up to 1 m high. In the bogs, rosettes have been

observed reaching a diameter up to 1 -1.5 m.

GuaGuaGuaGuandera and El Voladero páramo bogsndera and El Voladero páramo bogsndera and El Voladero páramo bogsndera and El Voladero páramo bogs

Grass páramo bog communities occur at 3810 m on the western slope of Guandera

Reserve, and at 3750 m in El Voladero Basin of El Angel Ecological Reserve. Both

communities occur on top of former glacial lakes that are filled in with mineral and

organic sediments. They share the presence of a number of species and show

physiognomical and ecological similarities. An alliance and two associations are

described below.

Paepalantho muscosi Paepalantho muscosi Paepalantho muscosi Paepalantho muscosi ---- OOOOreobolion cleefiireobolion cleefiireobolion cleefiireobolion cleefii Moscol Olivera & CMoscol Olivera & CMoscol Olivera & CMoscol Olivera & Cleef 2009leef 2009leef 2009leef 2009

Typus: Oreobolo cleefii – Xyridetum subulatae

Table 2, col. 1-23

Paepalanthus muscosusPaepalanthus muscosusPaepalanthus muscosusPaepalanthus muscosus----Oreobolus cleefiiOreobolus cleefiiOreobolus cleefiiOreobolus cleefii alliancealliancealliancealliance

Physiognomy:Physiognomy:Physiognomy:Physiognomy: cushion bog (with hollows) on glacial lake sediments in bunchgrass

páramo.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species include: Disterigma empetrifolium

(transgr.), Loricaria thuyoides (transgr.), Myrteola nummularia (transgr.), Oreobolus

cleefii, Oritrophium peruvianum, and Paepalanthus muscosus. The moss Campylopus

richardii is also diagnostic.

The alliance consists of two associations: Oreobolo cleefii-Xyridetum subulatae and

Plantagini rigidae-Oreoboletum cleefii.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: These cushion bogs have been sampled between 3750 and

3810 m altitude. Coombes & Ramsay (2001) published a study on the composition and

ecology of a cushion mire at 3600 m on the lower slope of volcano Chiles, very similar in

species composition to that of El Voladero at 3750 m.

The ecology of Plantago rigida and Oreobolus cleefii cushion bogs has been described in

the Páramo de Palacio, near Bogotá (Bosman et al. 1993). Oreobolus cleefii is a matrix

species and plays a role in the successional cycle of these equatorial cushion bogs.

Distichia muscoides, another cushion forming species, is also weakly present in the

Guandera bog. There is also another syntaxonomic study concerning cushion bogs with

low cover of Oreobolus cleefii at higher altitude from southern Colombia by Rangel-Ch.

Page 23: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

68

& Ariza-N (2000), but they are different from the Oreobolus bogs of the El Carchi study

area. Cleef (1981) and Cleef et al. (2005) described Oreobolus cleefii cushion bogs from

the Colombian Eastern Cordillera and the Tatamá páramo in the Western Cordillera

respectively. This is the first report of Oreobolus cleefii cushion bog for Ecuador.

Plantagini rigidaePlantagini rigidaePlantagini rigidaePlantagini rigidae----Oreoboletum cleefii Oreoboletum cleefii Oreoboletum cleefii Oreoboletum cleefii Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009Moscol Olivera & Cleef 2009

Table 2, col. 11-13; Typus: rel. 13

Plantago rigida-Oreobolus cleefii cushion bog

Physiognomy:Physiognomy:Physiognomy:Physiognomy: cushion bogs in bunchgrass páramo.

Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy:Composition and syntaxonomy: Diagnostic species (versus Oreobolo-Xyridetum) include:

Agrostis sp. 2, Azorella aretioides, Carex pygmaea, Castilleja cf. pumila, Distichia

muscoides, Eryngium humile, Gentiana sedifolia, Gentianella sp. 2, Geranium

sibbaldioides, Huperzia crassa, Hypericum lancioides, Hypochoeris sessiliflora, Juncus

stipulatus, Loricaria illinissae, Plantago rigida, Valeriana bracteata, Valeriana sp. 4.

The association contains two subassociations, one of which is subdivided in two

variants.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: The cushion mires of El Angel developed in the old caldera of

El Voladero at 3750 m. They occur on top of lake sediments either with open water or

mud in the hollows, depending on the season. This is usual where glacial lakes are

abundant. According to Ramsay (1992), on Volcano Chiles this type of cushion bog

extends up to close to 4000 m.

Plantagini rigidaePlantagini rigidaePlantagini rigidaePlantagini rigidae----Oreoboletum cleefiiOreoboletum cleefiiOreoboletum cleefiiOreoboletum cleefii

Subassociation typicum

Typicum subassociationTypicum subassociationTypicum subassociationTypicum subassociation

Table 2, col. 11-13

Physiognomy:Physiognomy:Physiognomy:Physiognomy: See the association.

Composition and Composition and Composition and Composition and syntaxonomy:syntaxonomy:syntaxonomy:syntaxonomy: Only three relevés support this subassociation in which

Cortaderia sericantha, Disterigma empetrifolium, Loricaria thuyoides, Oreobolus cleefii

and Paepalanthus muscosus attain the highest cover.

Ecology and distribution:Ecology and distribution:Ecology and distribution:Ecology and distribution: The vegetation of this subassociation occurs closer to the

edges of El Voladero cushion mire system at 3750 m, evidenced by the presence of high

cover of Cortaderia sericantha tussocks. These big tussocks are usually present where

there is a moderate availability of cation and nitrogen combined with high phosphorus

concentrations (Coombes & Ramsay 2001).

Page 24: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Table 2. Azonal plant communities in the páramo of Guandera and El Angel, northern Ecuador.

Alliance

Subassociation

Variant

Column number (col. nr) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Relevé field number (Typus *) 3 142 143 144 84 86* 87 12 85 2 79 80 115* 65 60 62 63 64 18 116* 117 136 137 81 82 124* 125 126

Location: GU=Guandera; EA=El Angel GU GU GU GU GU GU GU GU GU GU EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Altitude (x10 m) 381 381 381 381 381 381 381 381 381 380 375 375 375 375 375 375 375 375 375 375 375 372 372 353 353 364 364 364

Area (m2) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

Slope (º) 1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 <1 <1 1 3 3 1 1 1

Aspect (º) 280 320 340 300 290 300 300 280 270 270 280 290 290 280 270 260 260 280 280 290 280 263 250 45 45 320 290 250

rosette/shrub cover (%) 10 0.5 1 0.5 0.5 3 1 2 0.5 3 15 25 15 0.5 2 2 3 2 0.5 13 0.1 3 3 75 50 12 30 25

herb cover (%) 12 25 4 5 2 5 10 50 15 12 12 2 30 10 8 8 3 5 25 10 8 2 2 30 20 25 10 8

ground cover (%) 80 35 50 50 85 50 12 80 80 70 60 75 50 20 15 45 20 3 45 110 35 60 55 3 40 10 4 3

Fire evidence - - - - - - - - - - - - - - - - - - - - - - - - - + + +

Appproximate number of vascular species 8 14 10 13 16 15 19 16 11 12 13 9 16 18 21 18 17 16 15 14 18 14 15 26 29 23 22 22

Diagnostic species of Oreobolo cleefii - Xyridetum subulatae

Xyris subulata 75 20 25 35 75 45 1 30 40 40

Sphagnum magellanicum 1 0.1 8 0.1 0.1 0.1 2

Rhacocarpus purpurascens 2 3 4 1 1 3 2 3 3

Pernettya prostrata 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Agrostis sp. 2 5 2 20 12 5

Carex oligantha 5 1 30 0.1

Cortaderia hapalotricha 3 2 1 2

Puya cf. clava-herculis 3 2 0.1 0.1

Asteraceae sp.1 1 0.1 0.1 0.1 3

Monticalia andicola 0.1 0.1 0.1 0.1 1

Carex crinalis 1 2 1

Breutelia sp. 0.1 1 0.1 0.1

Hypericum silenoides 0.1 0.1 0.1

Juncus sp.1 0.1 0.1 0.1

Calamagrostis jamesonii 1 5

Breutelia lorentzii 1 2

Cladia aggregata 0.1 1 1 0.1

Cladina sp. 0.1 0.1

D. S.a of Plantagini rigidae - Oreoboletum cleefii

Hypericum lancioides 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 2 15 4

Plantago rigida 10 6 2 5 2 3 0.1 10 10 3 1

Juncus stipulatus 5 2 0.1 0.1 0.1 20

Geranium sibbaldioides 1 0.1 0.1 0.1 0.1 0.1 2 0.1 1 0.1

Gentiana sedifolia 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Loricaria illinisae 15 0.1 0.1 2 1

Carex pygmaea 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Gentianella sp.2 0.1 0.1 0.1 0.1

Puya sp. 0.1 10

Festuca sp. 3 0.1

Sphagnum sp.3 3

Juncus sp.2 2 0.1

D. S.a of hypochaeretosum sessiliflora

Hypochaeris sessiliflora 0.1 0.1 0.1 1 5 1 0.1 1 8

Eryngium humile 0.1 0.1 0.1 2 0.1 0.1 0.1

Halenia weddelliana 0.1 0.1 1 0.1

Castilleja cf. pumila 0.1 0.1 0.1 0.1

Distichia muscoides 1 18

D. S.a of variant of Azorella aretioides

Azorella aretioides 0.1 0.1 0.1 0.1

Unknown 51 0.1 0.1 0.1 0.1

Valeriana sp.4 0.1 0.1 0.1 0.1

Agrostis sp. 2 4 0.1 0.1

Bartsia laticrenata 0.1 0.1

D. S.a of variant of Huperzia crassa

Huperzia crassa 0.1 0.1 0.1 0.1 50 40

Valeriana bracteata 0.1 0.1 0.1 0.1 0.1 0.1

Calamagrostis cf. intermedia 0.1 5 5 0.1

Campylopus fragilis 0.1 0.1

D. S.a of Paepalantho muscosi - Oreobolion cleefii

Campylopus richardii 10 8 5 8 1 2 0.1 15 4 7 15 20 4 8 45 10 1 18 85 3 4 2

Oreobolus cleefii 3 5 2 1 0.1 0.1 50 25 30 35 10 0.1 2 0.1 4 2 10 15 8 1

Myrteola nummularia 2 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 1 20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

Oritrophium peruvianum 1 1 1 0.1 0.1 0.1 1 2 3 1 2 0.1 0.1 0.1 6 5 3 1 0.1

Loricaria thuyoides 6 0.1 0.1 0.1 0.1 0.1 1 0.1 0.1 2 10 15 0.1 2 2 3 1 0.1

Disterigma empetrifolium 5 0.1 0.1 0.1 5 3 0.1 0.1 0.1 0.1 0.1 3 1 0.1 0.1 0.1 1 0.1

Paepalanthus muscosus 0.1 0.1 1 0.1 0.1 4 0.1 0.1 15 2 4 12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

Cortaderia sericantha 18 3 10 25 0.1 1 3 1 2 0.1 1

Oreobolus goeppingeri 0.1 0.1 12 0.1 0.1 0.1 0.1 5 1 0.1

Calamagrostis simpsoniana 0.1 4 0.1 0.1 0.1 2 4 2 4

Monticalia vaccinioides 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Unknown 48 2 0.1 0.1 0.1 0.1 0.1

69

P A E P A L A N T H O M U S C O S I - O R E O B O L I O N C L E E F I I

typicum hypochaeretosum sessiliflora

Azorella aretioides Huperzia crassa

Cortaderio nitidae - Association Oreobolo cleefii - Xyridetum subulatae Plantagini rigidae - Oreoboletum cleefii

Puyetum hamatae

Page 25: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Table 2. (cont.)

Alliance

Subassociation

Variant

Column number (col. nr) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Relevé field number (Typus *) 3 142 143 144 84 86* 87 12 85 2 79 80 115* 65 60 62 63 64 18 116* 117 136 137 81 82 124* 125 126

Location: GU=Guandera; EA=El Angel GU GU GU GU GU GU GU GU GU GU EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA EA

Altitude (x10 m) 381 381 381 381 381 381 381 381 381 380 375 375 375 375 375 375 375 375 375 375 375 372 372 353 353 364 364 364

Area (m2) 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25

Slope (º) 1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 <1 <1 1 3 3 1 1 1

Aspect (º) 280 320 340 300 290 300 300 280 270 270 280 290 290 280 270 260 260 280 280 290 280 263 250 45 45 320 290 250

rosette/shrub cover (%) 10 0.5 1 0.5 0.5 3 1 2 0.5 3 15 25 15 0.5 2 2 3 2 0.5 13 0.1 3 3 75 50 12 30 25

herb cover (%) 12 25 4 5 2 5 10 50 15 12 12 2 30 10 8 8 3 5 25 10 8 2 2 30 20 25 10 8

ground cover (%) 80 35 50 50 85 50 12 80 80 70 60 75 50 20 15 45 20 3 45 110 35 60 55 3 40 10 4 3

Fire evidence - - - - - - - - - - - - - - - - - - - - - - - - - + + +

Appproximate number of vascular species 8 14 10 13 16 15 19 16 11 12 13 9 16 18 21 18 17 16 15 14 18 14 15 26 29 23 22 22

D. S.a of Cortaderio nitidae - Puyetum hamatae

Puya hamata 5 40 20 7 20 8

Espeletia pycnophylla 3 20 1 7 15

Cortaderia nitida 12 3 8 5 6

Valeriana sp.6 5 3 3 1 0.1

Calamagrostis effusa 1 3 1 4 2

Riccardia sp. 0.1 0.1 1 2 0.1 0.1

Carex pichinchensis 1 1 0.1 0.1

Monnina crassifolia 1 0.1 0.1 0.1

Cotula mexicana 0.1 0.1 0.1 0.1

Hypericum laricifolium 20 0.1 1

Juncus cyperoides 2 8 0.1

Unknown101 3 0.1 0.1

Calamagrostis bogotensis 0.1 0.1 0.1 5 7

Festuca asplundii 1 0.1

Plagiocheilus solivaeformis 0.1 0.1

Phyllobaeis imbricata 0.1 0.1

Agrostis breviculmis 0.1 0.1 0.1

Arcytophyllum muticum 0.1 0.1

Campylopus sp. 0.1 0.1 4 2 1

Blechnum loxense 2 1 1 1

Breutelia chrysea 0.1 20 30 0.1

Unknown 50 0.1 0.1 0.1

Geranium sp.1 0.1 0.1 0.1

Gnaphalium sp. 0.1 0.1 0.1

Rhynchospora ruiziana 3 5

Lycopodium sp.5 1 1 3

Nertera granadensis 2 0.1

Jensenia erythropus 1 2

Valeriana sp.7 1 1

Lachemilla orbiculata 0.1 0.1

Hydrocotyle bonplandii 0.1 0.1

Other species (rel. numb. / %):

Bidens andicola (124/1) Geranium sp. 3 (126/0.1)

Brachyotum lindenii (124/0.1) Hypochaeris sonchoides (81/0.1)

Cladina polia (2/1) Miconia chionophila (82/0.1)

Cladonia pyxidata (80/0.1) Paspalum bonplandianum (126/0.1)

Diplostephium rhododendroides (124/1) Pinguicula calyptrata (125/0.1)

Equisetum bogotense (81/2) Unknown 55 (12/0.1)

Gentianella sp. 1 (81/0.1) Unknown 49 (87/3)

a = Diagnostic Species

70

Association Oreobolo cleefii - Xyridetum subulatae Plantagini rigidae - Oreoboletum cleefiiPuyetum hamatae

P A E P A L A N T H O M U S C O S I - O R E O B O L I O N C L E E F I I

typicum hypochaeretosum sessiliflora

Azorella aretioides Huperzia crassa

Cortaderio nitidae -

Page 26: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

71

Plantagini rigidae-Oreoboletum cleefii Subassociation hypochaeretosum sessiliflorae Moscol Olivera & Cleef 2009

Table 2, col. 14-23; Typus: rel. 20

Subassociation of Hypochaeris sessiliflora

Physiognomy: See the association.

Composition and syntaxonomy: Diagnostic are: Castilleja cf. pumila, Distichia muscoides, Eryngium humile, Halenia weddelliana and Hypochaeris sessiliflora.

In this subassociation two variants can be recognised: (1) Azorella aretioides variant and

(2) Huperzia crassa variant. Diagnostic taxa for Azorella aretioides variant are: e.g. Agrostis sp. 2, Azorella aretioides, Bartsia laticrenata and Valeriana sp. 4. The variant of

Huperzia crassa is characterised by Calamagrostis cf. intermedia, Campylopus fragilis, Huperzia crassa (showing a facies for relevés 136 and 137) and Valeriana bracteata.

Floristic differences between these two variants can easily be noted from Table 2.

Ecology and distribution: Species-rich subassociation of the water-logged flat cushion

mire at 3750 m in El Voladero lake basin (El Angel). According to Coombes & Ramsay

(2001), the cushion species of this subassociation occur more in the central area of

Voladero bog system. The Azorella aretioides variant also contains Juncus stipulatus. Within this subassociation, three different patterns are present. First, dense growth of

Valeriana bracteata representing in part predominance of Plantago rigida cushions;

second, predominance of a Distichia muscoides cushion (in rel. 117); and finally

predominance of Huperzia crassa with absence of Oreobolus cleefii and almost absence

of Plantago rigida. This implies the presence of different environmental and

successional conditions in these bogs.

Oreobolo cleefii-Xyridetum subulatae Moscol Olivera & Cleef 2009

Table 2, col. 1-10; Fig. 9; Typus: rel. 6

Oreobolus cleefii-Xyris subulata cushion bog.

Physiognomy: flat cushion bog in bunchgrass páramo.

Composition and syntaxonomy: Diagnostic (versus the Plantagini rigidae-Oreoboletum

cleefii association) are the following vascular taxa: Carex crinalis, Cortaderia hapalotricha, Hypericum silenoides, Monticalia andicola, Puya cf. clava-herculis and Xyris subulata. Cladia aggregata, Rhacocarpus purpurescens and Sphagnum magellanicum are diagnostic among the bryophyte and lichen taxa. The new association

Page 27: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

72

consists of two variants: (1) variant of Cortaderia sericantha and (2) variant of

Rhacocarpus purpurescens.

Ecology and distribution: The flat cushion bog structure consists of Oreobolus cleefii, Xyris subulata and Campylopus richardii. Phreatic level is close to the surface. A former

glacial lake at 3810 m on the West slope of Guandera is enclosed by lateral moraines

with Espeletia-Calamagrostis effusa páramo. This lake has been filled in with sediments

and is at present covered by a flat Oreobolus-Xyris cushion bog. Locally hollows of

about 1 m2

in size occur. The variant of Rhacocarpus purpurescens is more complex in

structure and richer in species and certainly represents a successionally older phase

compared to the variant of Cortaderia sericantha.

Fig. 9. Oreobolus cleefii - Xyris subulata cushion bog at 3810 m in

Guandera Reserve, northern Ecuador.

Page 28: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

73

DISCUSSION

Plant communities of zonal páramo and interregional comparison

The synoptic presence of both zonal bunchgrass páramo communities and azonal

páramo cushion bogs on relevant volcanoes of Ecuador and Colombia is shown in Tables

3 and 4. All the study sites mentioned for comparison are shown in Figure 1.

The páramos of El Angel and Guandera are basically bunchgrass páramos made up of

Calamagrostis bunchgrasses (mainly C. effusa) and stem rosettes of Espeletia pycnophylla ssp. angelensis. These páramos extend from the current UFL up to about

4000 m (and slightly higher on the slopes of Volcano Chiles). There is one exception: at

4000 m in Guandera Reserve, where a patch of bamboo páramo with Neurolepis aristata

occurs. The new phytosociological order Espeletio pycnophyllae-Calamagrostietalia

effusae described here occurs in the whole zonal bunchgrass páramos of our study area

(Table 1). Azonal páramo communities (Table 2) have only been studied for

understanding the present-day vegetation types and as a tool for interpretation of the

pollen records (Moscol Olivera & Hooghiemstra, 2010.). Former glacial lakes at 3750 and

3810 m in the study area are today mainly covered by cushion bog communities.

The main references for regional páramo vegetation communities comparable to ours

are Rangel-Ch. & Garzón (1995) and Rangel-Ch. & Ariza-N. (2000) dealing with Nariño

páramos (Colombia) and Ramsay (2001) for Volcano Chiles just north of El Angel study

area.

Ramsay (2001) recognised in the Volcano Chiles study area both Calamagrostis intermedia (most common on Volcano Chiles) and C. effusa. However, the same author

indicates the overall presence of Calamagrostis effusa on the high volcanoes of Nariño

(Colombia) which is a misidentification or a consequence of different land management

(Ramsay 2001). In our study Calamagrostis effusa is the main bunchgrass species.

Although in general at lower elevations with a more humid climate this is one of the

most prominent species. However, we do not rule out that bunches of C. intermedia can

also occur in the highest relevé areas (>3750 m). Interesting in this context is the

observation by Galán De Mera et al. (2003), that Calamagrostis intermedia occurs in

disturbed areas in the puna of Perú.

Out of the three páramo zones distinguished by Cuatrecasas (1934, 1954, 1958, 1968)

we have recognised only the grass páramo or páramo proper. Vegetation structures

characteristic of subpáramo were not distinct. Among the zonal vegetation described

above, two minor communities with characteristic floristic features deserve special

attention: the bamboo patches and the páramo islands.

Page 29: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

74

The bamboo patches (Jamesonio goudotii-Neurolepidetum aristatae, Table 1) in the

summit zone of the Guandera Reserve probably represent the uppermost part of a

bamboo páramo which is exposed to air masses from the humid Amazonian lowlands.

Humid lower superpáramo is absent even if the atmospheric conditions (zone often

shrouded by clouds and mist) and daily temperatures are similar to those favorable for

its development (Ramsay 2001, Sklenár & Balslev 2007, Cleef 2008).

In the Guandera Reserve, the so-called ‘páramo islands’ are situated on exposed ridges

in high Andean forest (Espeletio pycnophyllae - Diplostephietum floribundi, Table 1)

and are composed of a selection of high Andean forest and bunchgrass páramo taxa,

representing easily pioneering species. Other open patches are found on level and

sloping ground in high Andean forest. Part of the level surface is without vegetation and

lacking the black color of the Andosols. These level patches are very dynamic with

occasional flooding and sheet-like sedimentation during long lasting showers. More

research is needed in order to clarify the origin and nature of these patches. We

consider them as an association under the order Espeletio pycnophyllae-

Calamagrostietalia effusae.

Table 3 compares páramo bunchgrass sites on volcanoes from Parque Los Nevados

(Salamanca et al. 1992, 2003), Puracé (Rangel-Ch. & Franco-R. 1985), Galeras, Azufral and

Cumbal (Rangel-Ch. & Garzón 1995, Rangel-Ch. & Ariza-N. 2000), all located in Central

and South Colombia, with páramo sites of Ecuador: Chiles (Ramsay 2001), El Angel and

Guandera study area (this publication), Papallacta (Lauer et al., 2001), Antisana (Muñoz

et al. 1985) and Cotopaxi (Balslev & De Vries 1989). Table 3 shows the order Espeletio

pycnophyllae-Calamagrostietalia represented by diagnostic species such as Azorella aretioides, Blechnum loxense, Espeletia pycnophylla, Nertera granadensis, Geranium sibbaldioides, Oreobolus goeppingeri, Paspalum bonplandianum/P. hirtum Sisyrinchium jamesonii, and Rhynchospora macrochaeta (R. ruiziana). The distribution area of the

order includes the páramos on the volcanoes of the Nariño Department in Colombia and

the páramos of El Carchi province in north Ecuador. The Papallacta bunchgrass páramo

seems transitional to the bunchgrass páramos of Central Ecuador (Antisana, Cotopaxi),

which are different in composition. The same applies to the páramo bunchgrass

vegetation of Puracé and Los Nevados in Central Colombia. Conclusions are hampered

by the low available number of published relevés (Puracé, Antisana, Cotopaxi) and the

limited number of species recognised in quickly taken relevés. For a safe recognition of

syntaxa at the class level, a synoptic presence table covering all the páramo areas from

Venezuela to north Peru would be needed.

In this context the TWINSPAN subdivision of zonal páramo communities of Ecuador

based on 196 páramo quadrats by Ramsay (1992) is relevant. This study, from north to

south four separates main groups of bunchgrass páramo communities (Ramsay 1992,

Page 30: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

75

his Figure 2.16). The first group from the Chiles volcano includes ‘Calamagrostis sp. and

Espeletia pycnophylla tussock grassland with Paspalum tuberosum’ (=P. bonplandianum)

(3600-3700 m). At higher altitude (3800-3900 m) he reported the community of

‘Calamagrostis sp. and Espeletia pycnophylla tussock grassland with Viola sp.’ (= V. glandularis). Both communities correspond to the here described Gynoxyo buxifoliae-

Calamagrostietum effusae with both subassociations. The second group consists of

Calamagrostis sp. tussock grassland with different diagnostic herb species and is

distributed between Cotocachi and Cajas. The drier Chimborazo volcano contains

various types of a ‘Calamagrostis sp. and Chuquiraga jussieui desert páramo’. Finally,

the lower south Ecuadorian páramos (Zapote-Naida, Cajas, Cumbe and Oña) share a

‘Calamagrostis sp. tussock grassland with Paspalum tuberosum and Chrysactinium acaule’.

Plant communities of azonal páramo and interregional comparison

In the study area, azonal páramo communities (Table 2) are constituted by bogs and

mires whose nature and floristic affinity with other sites studied in the region are

discussed below. The main references are the studies by Bosman et al. (1993), Rangel-

Ch. & Ariza-N. (2000), Ramsay (2001), Cleef (1981), and Cleef et al. (2005).

In the El Angel Reserve giant Puya hamata rosette bogs occur around 3500 m in

depressions between moraines. Outside the relevés, some Sphagnum magellanicum

hummocks and few plants of S. cuspidatum have been observed. This confirms the

original nature of such bogs, as they have been studied by the second author in the

subpáramo and grass páramos of the Eastern Cordillera of Colombia (Cleef 1981). Here

we observe that giant rosettes of Puya developed presumably under higher nutrient

concentrations, as mentioned by Miller & Silander (1991), and largely outcompete the

Sphagnum mosses. The same applies to the tall columnar inflorescences, which

commonly achieve a height up to 5 m. Miller & Silander (1991) studied the distribution

of two species of Puya in the Ecuadorian páramos, and mentioned that the lower

elevational limit of P. hamata in El Angel appears to be the direct result of constant

burning by man. They noticed that these fires remove almost all the woody shrubs and

leave a vegetation cover dominated by the giant rosettes and graminoid tussocks.

In the páramos of the Colombian Eastern Cordillera, giant Puya ground rosettes (Puya goudotiana or P. aristiguietae) are mainly found in Sphagnum bogs in bamboo páramo.

In contrast, the bog habitat of our study was almost completely occupied by the large

Puya hamata rosettes, together with the species of the order Espeletio pycnophyllae-

Calamagrostietalia effusae. The composition of these bogs (Table 2) has floristic

affinities with the zonal páramo communities of the study area.

Page 31: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

76

Page 32: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

77

Page 33: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

78

Page 34: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

79

Page 35: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

80

In their generic composition Puya hamata bogs are very similar to the Colombian Puya-Sphagnum bogs. They share Blechnum loxense, Calamagrostis effusa, Pernettya prostrata and vicariant species of Espeletia and Puya, but Chusquea tessellata and Xyris subulata are absent (Cleef 1981). In our study area, Puya hamata, which has much

smaller ground rosettes, and frequently attains only up to 50 cm when flowering and

fruiting, is also a diagnostic species of the order of zonal bunchgrasslands (Table 1).

Seed production of the big columnar inflorescences is abundant, which explains the

near full occupation of the bog surface by Puya hamata.

Cushion bogs have been described for grass páramo and lower superpáramo in the

equatorial Andes and Costa Rica (Cuatrecasas 1958; Cleef1978, 1981; Rangel-Ch. &

Ariza-N. 2000; Salamanca et al., 2003; Cleef et al. 2005; Rangel-Ch. et al. 2005; Chaverri &

Cleef 1996). The cushion bogs studied in the Guandera Reserve at 3810 m and in El

Voladero (El Angel Reserve) at 3750 m belong to the newly established alliance

Paepalantho muscosi-Oreobolion cleefii, marking a separate northern Ecuadorian

alliance. The name already implies that at these altitudes in the midst of the grass

páramo zone, Oreobolus cleefii is the most characteristic cushion forming plant, at least

in the northern Andes. Cushion bogs conformed by that species are here for the first

time reported for Ecuador. Two new associations described above (Plantagini rigidae-

Oreoboletum cleefii and Oreobolo cleefii-Xyridetum subulatae) have a striking similarity

with the Oreobolus and Xyris cushion bogs described from low extrazonal humid

páramo of Tatamá in the Colombian Western Cordillera (Cleef et al., 2005).

The flat, water-logged Xyris cushion bog of Guandera is the first example reported for

Ecuador. In the same extrazonal Tatamá páramo, Myrteolo nummulariae-Xyridetum

subulatae cushion bogs (3485-3565 m) have been described for the first time (Cleef et

al., 2005). In Tatamá, the cushion bog matrix consisted mainly of Xyris plants with only

a low cover of Plantago rigida and Oreobolus cleefii, while in our study area the Xyris bog does not include Plantago rigida and is mainly composed by small Xyris subulata

var. breviscapa plants in a matrix of Oreobolus cleefii. Furthermore, another Xyris

subulata bog has been reported for the páramo zone of Farallones de Cali in the

Western Cordillera (Calderón 2005). There is at present photographical documentation

of Xyris subulata bogs from Cerro Toledo area in south Ecuador, just north of the Peru-

Ecuadorian border (C. Schoenbrun, pers. comm. 2007) and from Las Lagunas area NW of

the Yanacocha mine near Cajamarca, northern Peru (J. Sevink, pers. comm. 2008).

Page 36: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

81

Page 37: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

82

In spite of similarities between páramo cushion bogs in southern Colombia (Rangel-Ch.

& Ariza-N. 2000) and northern Ecuador (Moscol & Cleef 2009a), the communities are

syntaxonomically different, probably because of their different altitudinal position.

From Table 4 we recognise the northern Ecuadorian alliance of Paepalantho muscosi-

Oreobolion cleefii as well as the species shared by two associations described from the

Colombian Andes. The first one is Oritrophio peruviani-Oreoboletum cleefii Cleef 1981

with two subassociations, one in the Eastern Cordillera (site number 1) and the other in

the perhumid Tatamá páramo in the Western Cordillera (site number 2). The second

association, Myrteolo nummulariae-Xyridetum subulatae Cleef, Rangel-Ch. & Salamanca

2005, has also been described from Tatamá páramo (site number 7). The high number of

species shared between the Colombian and Ecuadorian Oreobolus bogs suggests a

syntaxon at the level of an undescribed order of Oreobolus cleefii with Myrteola nummularia and/or Xyris subulata belonging to the class Plantagini rigidae-Distichietea

muscoides Rivas-Martínez & Tovar 1982 (Rivas-Martínez & Tovar 1982). The association

Distichio muscoides-Plantaginetum rigidae Rangel-Ch. & Ariza-N. 2000 was mainly

recorded around 4000 m in Nariño, Colombia. Presence and cover of Oreobolus cleefii is

more limited in our study area. This association is readily separated from the other

syntaxa belonging to the same class but not to the same alliance and order (Table 4).

Human influence on plant species composition

Plants considered as disturbance indicators (by absence or increased presence) and

introduced native and exotic weedy species are shown in Table 5. Data have been

complemented by Balslev (2001).

Nowadays, the páramo ecosystems in our study area are under increasing anthropogenic

pressure (López-Sandoval 2004, Medina & Mena Vásconez 2001) and consequently

vegetation displays patterns directly attributed to human intervention as well as traces

of former natural habitats. The most important studies on burning and cattle grazing in

dry bunchgrass páramo are Hofstede (1995), Verweij (1995), Ramsay & Oxley (1996),

Suárez-R. & Medina (2001) and Vargas et al. (2002), and for impact of potato cultivation

the papers by Ferwerda (1987) and Jaimes & Sarmiento (2002). Suárez-R. & Medina

(2001) is the main reference for the El Angel study area.

In the Guandera Reserve, the Brachyotum lindenii grassland ranges from 3650 to 3850

m. It represents the altitudinal lower grassland type belonging to Jamesonio imbricatae-

Calamagrostietum effusae. The grasslands of this subassociation contain much more

woody species than the variant of Orithrophium peruvianum at higher elevation (Table

1). We hypothesise that in the absence of fire this bunchgrass páramo could develop as

a kind of subpáramo with a much higher cover of shrubby species cover than appears

Page 38: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

83

today. Fires could have surpressed the slow recovery of woody species and finally they

are outcompeted by the bunchgrasses, which within few years attain a maximally

developed tussock.

Table 5. Disturbance indicators (by absence or increased presence) and introduced native and exotic weedy species in páramo vegetation of northern Ecuador (additional data are from Balslev (2001).

Category Taxa Native páramo species

Azorella aretioides, Geranium sibbaldioides, Calamagrostus bogotensis, Puya hamata, Pinguicula calyptrata, Diplostephium rhododendroides, Valeriana microphylla, Sisyrinchium trinerve, Jamesonia sp. 1, Hydrocotyle bonplandii, Arcytophyllum sp. 1.

Native disturbance indicators

Eryngium humile, Cortaderia sericantha, Castilleja fissifolia, Halenia weddelliana, Lupinus pubescens, Hypericum laricifolium (also a species of former SARF-UMRF), Paspalum bonplandianum, Eleocharis albibracteata, Orthrosanthus chimboracensis, Bromus lanatus, Plantago linearis.

Native weeds

Nasella inconspicua, Gnaphalium spp., Gamochaeta americana, Bidens andicola (b. humilis), Lachemilla aphanoides, L. orbiculata.

Northern temperate exotics

Holcus lanatus, Achillea millefolium, Anthoxanthum odoratum, Lolium multiflorum, Rumex acetosella, Urtica urens.

Shrubs suffer considerable losses when exposed to fire due to the aerial position of

their meristems, while bunchgrasses have their buds at ground level, protected at the

center of the tussock. Shrub growth is much lower than bunchgrasses in páramo

(Verweij 1995, Lægaard1992, Heisler et al., 2004).

Because of the steepness of the western slope of the Guandera Reserve, the forest-

páramo transition is relatively short and the forest boundary is marked. Repeated fire

has penetrated the UFL as much as environmental humidity of high Andean forest

allowed for. This is what we understand and can explain of the sudden, sharp forest-

páramo boundaries characterising UFLs according to Lægaard (1992) and Bader (2007).

Normally high Andean forest decreases in height towards the UFL (Grubb 1977, Cleef et

Page 39: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

84

al., 2005). This can hardly be observed in Guandera, which means that the upper fringe

of the high Andean forest has been influenced by fire in the course of the time (Moscol

Olivera & Cleef, 2009b).

In the absence of fire and consequently with a well developed shrubby component we

believe that high Andean forest can develop more easily. The shrubby structures

provide more shaded forest-like conditions and another type of litter than what is

provided by the bunches of the páramo grassland. Migration of the UFL under increasing

mean temperatures (due to this microclimate effect) also will favor the woody species of

the Gynoxyo-Calamagrostietum typicum grassland, which gradually migrates upslope as

well.

We suppose that the woody species of the Jamesonio-Calamagrostietum typicum under

natural conditions (rare natural fires) show a gradient from more woody species and

more cover close to the UFL to less woody species and less cover with increasing

distance to the UFL. A clear subpáramo subdivision between elements of shrubpáramo

and dwarfshrub páramo as reported in Colombia (Cleef 1981) is presently absent in our

study area. On (old) volcanoes both subzones of (sub)páramo have rarely been

documented till now (Løtjnant & Molau 1983; Ramsay 1992, Salamanca et al., 2003).

Studies on the effect of fire in afroalpine vegetation of respectively Mt. Kilimanjaro and

Mt. Kenya show similarities with low páramo shrub and bunchgrasses by surpressing

woody regrowth (Hemp & Beck 2001) and of fire-induced reproduction of bunchgrasses

of Festuca pilgeri (Young 2004) after recurrent fires.

In El Angel, the lowermost open bunchgrass páramo belongs to the subassociation

paspaletosum bonplandiani of the Gynoxyo-Calamagrostietum (Table 1) and this

floristic composition suggests it was mainly located on former forested land. The

páramo grassland of this subassociation extends down to the remains of Andean forest

in Los Encinos Scientific Station and the entrance of El Angel Reserve at 3400 m. The

nature and possible history of these patches of Andean forest has been discussed in a

parallel paper (Moscol Olivera & Cleef , 2009b). As far as we have observed in El Angel

study area, high Andean forest is largely absent and also the uppermost zone of Andean

forest has been removed in larger part by logging for timber. The process of

deforestation was studied in El Angel area for the period of 1965-1993. Aerial

photointerpretation showed that 42% of forest areas and 28% of shrub vegetation

disappeared during these 28 years due to human impact. This implies an annual

deforestation rate of 1 to 2% of the 1965 woody vegetation surface (Arellano 2000).

After tree clearing, Espeletia bunchgrass páramo usually invades the forest ground left

(Troll 1973, Stern 1995). This process, known as ‘paramización’, has many examples

Page 40: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

85

from elsewhere in the páramo region (Verweij & Kok 1992, Hernández 1997, Van Der

Hammen 1998, Rangel-Ch. 2000, Hofstede et al., 2002).

We have identified two communities that include particular taxonomic groups or species

in their floristic composition whose presence is undeniably a response to habitat

alteration caused by human land use activities. Such taxa have an important practical

significance as indicators for assessing the degree to which páramo vegetation can be

considered as undisturbed (natural).

The composition of the bunchgrass páramo of paspeletosum subassociation of

Gynoxyo-Calamagrostietum (Table 1), is characterised by four groups of species which

together determine the vegetation cover of these former forested lands (see Table 5 for

an overview of the species of these groups). This observation is mainly based on the

literature on impact in bunchgrass páramo referred to above.

The first group is the natural native species group present in the lower páramo close to

the natural UFL. The most related source vegetation is the Gynoxyo-Calamagrostietum

typicum, especially the five lowest relevés at 3750 m (Table 1). It is obvious that some

species do not extend (or only rarely or limited) downslope, which has to be expected in

the case of a natural páramo. The second group includes the native disturbance

indicators mainly appearing after burning and grazing of bunchgrass páramo. These

taxa are propagated by wind, man and animals. Road, mule tracks and paths are causing

an important diaspore input. A third group concerns the native weedy species, among

them a few species of Lachemilla (Rosaceae). Finally, there are the northern temperate

species mostly originated from Europe, which now have been spread almost

pantemperate. Outside their natural ecosystems they behave as invasive species.

There are always some species persisting in the dark ground layer under the

bunchgrasses that can be taken as a reliable indicator of the former shelter of the

uppermost forests, e.g. species of Hydrocotyle, Aethanthus and of some pleurocarpous

mosses.

CONCLUSIONS

This study helped elucidating the floristic composition and patterns of plant

communities along two altitudinal transects in one of the regions holding the best

preserved páramos of Ecuador. The newly described phytosociological order Espeletio

pycnophyllae-Calamagrostietalia effusae unifies all the zonal bunchgrass páramos of the

Guandera-El Angel study area (Table 1, 3 and 6). We did not find a direct

phytosociological relationship between the cushion bogs described here for Guandera

and El Angel (Table 2 and 7) and those studied by Rangel-Ch. & Ariza-N. (2000) around

4000 m on the Colombian side of volcano Chiles (Table 4).

Page 41: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Holocene upper forest line dynamics in the Ecuadorian Andes

86

Table 6. Overview of hierarchical zonal páramo syntaxa of the Carchi study area, northern

Ecuador.

Espeletio pycnophyllae - Calamagrostietalia effusae Moscol & Cleef 2009

Diplostephio rhododendroides - Calamagrostion effusae Moscol & Cleef 2009

Gynoxyo buxifoliae-Calamagrostietum effusae Moscol & Cleef 2009

Subassociation typicum

Subassociation paspeletosum bonplandiani Moscol & Cleef 2009

Jamesonio imbricatae-Calamagrostietum effusae Moscol & Cleef 2009

Subassociation typicum

variant of Oritrophium peruvianum

variant of Chaptalia cordata

Jamesonio goudotii-Neurolepidetum aristatae Moscol & Cleef 2009

----------------------------------------------------------------------------------------------------------------------------

Espeletio pycnophyllae - Diplostephietum floribundi Moscol & Cleef 2009

Table 7. Overview of hierarchical azonal páramo syntaxa of the Carchi study area, northern Ecuador .

Cortaderio nitidae-Puyetum hamatae ---------------------------------------------------------------------------------------------------------------------

Paepalantho muscosi - Oreobolion cleefii Moscol & Cleef 2009

Plantagini rigidae - Oreoboletum cleefii Moscol & Cleef 2009

Subassociation typicum

Subassociation hypochaeretosum sessiliflorae Moscol & Cleef 2009

Oreobolo cleefii - Xyridetum subulatae Moscol & Cleef 2009

Page 42: UvA-DARE (Digital Academic Repository) Holocene upper forest … · Holocene upper forest line dynamics in the Ecuadorian Andes 48 Key words: Páramo, Andes, Ecuador, Upper Forest

Phytosociology of the páramo along two transects in El Carchi

87

Our analysis showed that all the sampled plots belong to the “páramo proper” belt

(sensu Cuatrecasas 1934, 1954). No subpáramo or superpáramo zones were found. For

Guandera Reserve, we suppose that in the absence of fire the bunchgrass páramo close

to the UFL would have developed as a kind of shrubby subpáramo. In El Angel, the

floristic composition of subassociation paspaletosum bonplandiani (lowermost open

bunchgrass páramo) of the Gynoxyo-Calamagrostietum suggests that it was probably

located on former forested land, as evidenced by the disappearance of high Andean

forest and the upper part of Andean forest combined with the presence of many weedy

species (Table 5).

The presence of distinct taxa in the subassociation of Paspalum bonplandianum was an

undeniably response to habitat alteration induced by human activities.

Acknowledgements

We thank the Ministerio del Ambiente del Ecuador, Fundación Jatun Sacha, in particular

Christopher James and Marta Muñoz, and Corporación Grupo Randi Randi, in particular

Susan Poats and David Suárez, for permitting and facilitating the field work. We are

grateful to the staff of Corporación Ecopar for their cooperation throughout the project.

The Herbario Nacional del Ecuador (QCNE) and Herbario QCA from Universidad Católica

del Ecuador provided facilities. Dr. Jürgen Homeier, Julio Bentancur, Hugo Navarrete,

Germán Toasa and Milton Chicaiza helped with species identification. Alex Luzuriaga,

Miguel Cavascango, Emilio Muñoz and José Cando provided valuable help and good

companionship in the field. We gratefully acknowledge Femke Tonneijck and Henry

Hooghiemstra for their help providing photographs. Fjällräven generously supplied

clothing for the field work. Constructive comments on an earlier draft of this paper by

Henry Hooghiemstra, Ulrich Deil and an anonymous reviewer improved this paper

substantially. We thank Carina HOORN for improving the English text. This study was

financially supported by grant WAN 84-572 of The Netherlands Foundation for the

Advancement of Tropical Research (WOTRO/NWO, The Hague).


Recommended