+ All Categories
Home > Documents > UW Medicine Transcleral Laser Induces Aqueous Outflow ... · Transcleral Laser Induces Aqueous...

UW Medicine Transcleral Laser Induces Aqueous Outflow ... · Transcleral Laser Induces Aqueous...

Date post: 27-May-2018
Category:
Upload: dinhlien
View: 214 times
Download: 0 times
Share this document with a friend
1
UW Dept of Bioengineering Acknowledgements Washington National Primate Research Center NIH Grant # P51OD010425. UW Medicine Eye Institute Purpose: To study aqueous outflow system responses to a transcleral µP laser (Iridex TM ) in an ex vivo system using visually guided positioning & real time observation of tissue responses. Background: Physical tissue responses are highly relevant because outflow system tissue configuration determines aqueous flow and IOP, parameters that become abnormal in glaucoma. Conclusions: A transcleral 810 nm µP laser can induce CM shortening, SS rotation, TM movement and SC ∆s, types of outflow pathway anatomic changes thought to improve aqueous flow that in turn reduces IOP. This pilot effort suggests that systematic studies can determine optimal parameters necessary for providing a non-incisional glaucoma surgical (NIGS) procedure to alter aqueous flow & IOP. Discussion: Transcleral µP laser induces contraction of the CM, a well-characterized muscle response to uP lasers. 1, 2 CM shortening causes posterior and inward movement of the SS changing TM and aqueous outflow pathway shape. Currently used clinical parameters are sufficient to induce outflow system pathway ∆s generally associated with improved aqueous flow. 3 The above described system permits systematic assessment of probe location posterior to the limbus, power, duration and focal depth, all parameters subject to optimization. Materials and Methods: Microscope, video system, micrometer, 1 mm thick radial limbal segments from 4 quadrants (Q) of primate (M. fasc.), cornea, sclera, ciliary body pinned to paraffin base in Petrie dish, micromanipulator, Single pulse of 810 nm µP laser, Duty Cycle 31.3%. Paired parameters of stepwise power; range: 500-3000 mW and stepwise duration; range: 125-3,000 msec. Resultant energy level range: 0.08-2.35 joules. (Clinically ~ 1.59 joules are applied per single location). Video capture during pulse. Motion quantitated from still frames with ImageJ. Results: See Videos: www.youtube.com/user/ibmurray Ciliary muscle (CM) contraction & relaxation was visible at ≥ 0.08 J in the IN & SN Q but at ≥0.16 J in the IT and ST Q. CM contraction caused the CM facing the AC to transiently move inward & posteriorly at ≥0.75 Joules in all Q, Fig. A. The scleral spur (SS), and trabecular meshwork (TM) moved posteriorly with a change (∆) in Schlemm’s canal shape. After contraction, the CM relaxed/recovered to near its pre µP configuration at low energies with a progressive reduction in the recovery response as energy increased, Fig. B. E.g. in the SN Q, CM bundles turned white at 2.35 joules with a lack of recoil/relaxation resulting in a persistent ∆ in CB, SS & TM configuration, Fig. C. Transcleral Laser Induces Aqueous Outflow Pathway Motion and Reorganization Murray Johnstone 1 ; Ruikang Wang 2 Steven Padilla 1 , Kimika Wen 1 Department of Ophthalmology 1 , Department of Bioengineering 2 , University of Washington, Seattle, WA Temperature Rise Builds Throughout Delivery Interval Temperature Rise Altered by Reduced “On” Time Time for Cooling Between Pulses Temperature Rise Can Be Modulated Continuous Wave Laser Micropulse Laser A B C Coagulative Disruption Tissue Shrinkage Duty Cycle ≈ Heat Buildup Total on Time 100% 1.1 ms 1.6 ms Total “ON” Time ~ 31.3% 2,500 msec 2,000 msec CW Exposure Duration Time Time Micropulse Exposure Duration Pulse “OFF” Duty Cycle 0.5 ms Pulse “ON” Micropulse to Reduce Heat Damage Before Laser Pulse After 2.35 J Laser Pulse Laser Tip Cornea Sclera Ciliary Muscle TM Laser Light Path CM Bundles Shrink Whiten & No Recoil Micropulse Laser Effects on Ciliary Muscle & Scleral Spur No Evidence of Ciliary Epithelium Motion or Damage (White Arrows) C Video of Real Time Motion: Access by QR Code → Or: www.youtube.com/user/ibmurray Contact Info: Murray Johnstone Email: [email protected] Contact Info QR Code ************************************************** References: 1. Choi M, Yoon J, Choi C. Label-free optical control of arterial contraction. J Biomed Opt 2010;15:015006. 2. Yoon J, Choi M, Ku T, Choi WJ, Choi C. Optical induction of muscle contraction at the tissue scale through intrinsic cellular amplifiers. J Biophotonics 2014;7:597-606. 3. Xin C, Wang RK, Song S, Shen T, Wen J, Martin E, Jiang Y, Padilla S, Johnstone M. Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res 2016. 4. Xin C, Johnstone M, Wang N, Wang RK. OCT Study of Mechanical Properties Associated with Trabecular Meshwork and Collector Channel Motion in Human Eyes. PLoS One 2016;11:e0162048. 5. Johnstone M. Intraocular pressure control through linked trabecular meshwork and collector channel motion. In: Samples JR, Knepper PA, eds. Glaucoma Research and Clinical Advances: 2016 to 2018. Amsterdam: Kugler Publications, 2016 6. Carreon T, van der Merwe E, Fellman RL, Johnstone M, Bhattacharya SK. Aqueous outflow - A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res 2016 7. Hariri S, Johnstone M, Jiang Y, Padilla S, Zhou Z, Reif R, Wang RK. Platform to investigate aqueous outflow system structure and pressure-dependent motion using high-resolution spectral domain optical coherence tomography. J Biomed Opt 2014;19:106013. 8. Li P, Reif R, Zhi Z, Martin E, Shen TT, Johnstone M, Wang RK. Phase- sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes. J Biomed Opt 2012;17:076026. Clinical Settings 100 % 150 % 50% TM motion 1 st Measureable
Transcript
Page 1: UW Medicine Transcleral Laser Induces Aqueous Outflow ... · Transcleral Laser Induces Aqueous Outflow Pathway Motion ... Glaucoma Research and Clinical Advances ... , van der Merwe

UWDept ofBioengineering

AcknowledgementsWashingtonNationalPrimateResearchCenter

NIHGrant#P51OD010425.

UWMedicineEyeInstitute

Purpose:Tostudyaqueousoutflowsystemresponsestoatranscleral µPlaser(IridexTM)inanexvivosystemusingvisuallyguidedpositioning&realtimeobservationoftissueresponses.

Background:PhysicaltissueresponsesarehighlyrelevantbecauseoutflowsystemtissueconfigurationdeterminesaqueousflowandIOP,parametersthatbecomeabnormalinglaucoma.

Conclusions:Atranscleral 810nmµPlasercaninduceCMshortening,SSrotation,TMmovementandSC∆s,typesofoutflowpathwayanatomicchangesthoughttoimproveaqueousflowthatinturnreducesIOP.Thispiloteffortsuggeststhatsystematicstudiescandetermineoptimalparametersnecessaryforprovidinganon-incisionalglaucomasurgical(NIGS)proceduretoalteraqueousflow&IOP.

Discussion:TranscleralµPlaserinducescontractionoftheCM,awell-characterizedmuscleresponsetouP lasers.1,2 CMshorteningcausesposteriorandinwardmovementoftheSSchangingTMandaqueousoutflowpathwayshape.Currentlyusedclinicalparametersaresufficienttoinduceoutflowsystempathway∆sgenerallyassociatedwithimprovedaqueousflow.3 Theabovedescribedsystempermitssystematicassessmentofprobelocationposteriortothelimbus,power,durationandfocaldepth,allparameterssubjecttooptimization.

MaterialsandMethods:Microscope,videosystem,micrometer,1mmthickradiallimbalsegmentsfrom4quadrants(Q)ofprimate(M.fasc.),cornea,sclera,ciliarybodypinnedtoparaffinbaseinPetriedish,micromanipulator,Singlepulseof810nmµPlaser,DutyCycle31.3%.Pairedparametersofstepwisepower;range:500-3000mWandstepwiseduration;range:125-3,000msec.Resultantenergylevelrange:0.08-2.35joules.(Clinically~1.59joulesareappliedpersinglelocation).Videocaptureduringpulse.MotionquantitatedfromstillframeswithImageJ.

Results:SeeVideos:www.youtube.com/user/ibmurrayCiliarymuscle(CM)contraction&relaxationwasvisibleat≥0.08JintheIN&SNQbutat≥0.16JintheITandSTQ.CMcontractioncausedtheCMfacingtheACtotransientlymoveinward&posteriorlyat≥0.75JoulesinallQ,Fig.A.Thescleralspur(SS),andtrabecularmeshwork(TM)movedposteriorlywithachange(∆)inSchlemm’scanalshape.Aftercontraction,theCMrelaxed/recoveredtonearitspreµPconfigurationatlowenergieswithaprogressivereductionintherecoveryresponseasenergyincreased,Fig.B.E.g.intheSNQ,CMbundlesturnedwhiteat2.35jouleswithalackofrecoil/relaxationresultinginapersistent∆inCB,SS&TMconfiguration,Fig.C.

TranscleralLaserInducesAqueousOutflowPathwayMotionandReorganization

MurrayJohnstone1;RuikangWang2 StevenPadilla1,KimikaWen1DepartmentofOphthalmology1,DepartmentofBioengineering2,UniversityofWashington,Seattle,WA

TemperatureRiseBuildsThroughoutDeliveryInterval

TemperatureRiseAlteredbyReduced“On”Time

TimeforCoolingBetweenPulses

TemperatureRiseCanBeModulated

ContinuousWaveLaser

MicropulseLaser

A

B

C

CoagulativeDisruption

TissueShrinkage

Duty Cycle≈HeatBuildupTotalonTime100%

1.1ms

1.6ms

Total“ON” Time~31.3%

2,500msec2,000msec

CWExposureDuration

Time Time

MicropulseExposureDuration

Pulse“OFF”

DutyCycle

0.5msPulse“ON”

MicropulsetoReduceHeatDamage

BeforeLaserPulse After2.35JLaserPulse

LaserTip

Cornea

Sclera

CiliaryMuscle

TM

LaserLightPath

CMBundlesShrinkWhiten&NoRecoil

MicropulseLaserEffectsonCiliaryMuscle&ScleralSpur

NoEvidenceofCiliaryEpitheliumMotionorDamage(WhiteArrows)

C VideoofRealTimeMotion:AccessbyQRCode→Or:www.youtube.com/user/ibmurray

ContactInfo:MurrayJohnstoneEmail:[email protected]

ContactInfoQRCode**************************************************

References:1.ChoiM,YoonJ,ChoiC.Label-freeopticalcontrolofarterialcontraction.JBiomedOpt2010;15:015006.

2.YoonJ,ChoiM,KuT,ChoiWJ,ChoiC.Opticalinductionofmusclecontractionatthetissuescalethroughintrinsiccellularamplifiers.JBiophotonics 2014;7:597-606.

3.XinC,WangRK,SongS,ShenT,WenJ,MartinE,JiangY,PadillaS,JohnstoneM.Aqueousoutflowregulation:Opticalcoherencetomographyimplicatespressure-dependenttissuemotion.Exp EyeRes2016.

4.XinC,JohnstoneM,WangN,WangRK.OCTStudyofMechanicalPropertiesAssociatedwithTrabecularMeshworkandCollectorChannelMotioninHumanEyes.PLoS One2016;11:e0162048.

5.JohnstoneM.Intraocularpressurecontrolthroughlinkedtrabecularmeshworkandcollectorchannelmotion.In:SamplesJR,KnepperPA,eds.GlaucomaResearchandClinicalAdvances:2016to2018.Amsterdam:KuglerPublications,2016

6.CarreonT,vanderMerweE,Fellman RL,JohnstoneM,BhattacharyaSK.Aqueousoutflow- Acontinuumfromtrabecularmeshworktoepiscleralveins.Prog Retin EyeRes2016

7.HaririS,JohnstoneM,JiangY,PadillaS,ZhouZ,Reif R,WangRK.Platformtoinvestigateaqueousoutflowsystemstructureandpressure-dependentmotionusinghigh-resolutionspectraldomainopticalcoherencetomography.JBiomedOpt2014;19:106013.

8.LiP,Reif R,Zhi Z,MartinE,ShenTT,JohnstoneM,WangRK.Phase-sensitiveopticalcoherencetomographycharacterizationofpulse-inducedtrabecularmeshworkdisplacementinexvivononhumanprimateeyes.JBiomedOpt2012;17:076026.

Clinical Settings100%

150%

50%

TMmotion1st Measureable

Recommended