+ All Categories
Home > Documents > Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

Date post: 17-Jan-2016
Category:
Upload: bethany-bridges
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
65
Vacuum II G. Franchetti CAS - Bilbao 30/5/2011 G. Franchetti 1
Transcript
Page 1: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 1

Vacuum II

G. FranchettiCAS - Bilbao

30/5/2011

Page 2: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 2

Index

30/5/2011

Creating Vacuum (continuation)

Measuring Vacuum

Partial Pressure Measurements

Page 3: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 3

Diffusion Ejector pump

30/5/2011

Lam

inar

flow

Inlet

Outlet

Cold

sur

face

Boiling oil

Schematic of the pump

operating pressure: 10-3 – 10-8 mbar

Page 4: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 430/5/2011

Lam

inar

flow

Inlet

Outlet

Cold

sur

face

Boiling oil

Pi

Po

Pump principle:

The vacuum gas diffuses into the jet and gets kicked by the oil molecules imprinting a downward momentum

The oil jets produces a skirt which separate the inlet from the outlet

Page 5: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 530/5/2011

Inlet

Outlet

Diffusion

Page 6: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 6

Problems

30/5/2011

Lam

inar

flow

Cold

sur

face

Pi

Po

Inlet

Back streaming

Back-Migration

Page 7: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 7

Cures

30/5/2011

Lam

inar

flow

Cold

sur

face

Pi

Po

Inlet

Baffle

(reduces the pumping speed of 0.3)

Cold

sur

face

Cold Cap

Page 8: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 830/5/2011

with

The pumping speed Sm is proportional to the area of the inlet port

100 mm diameter Sm = ~ 250 l/s for N2

LEYBOLD (LEYBODIFF)

Page 9: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 9

Capture Vacuum Pumps

30/5/2011

Getter Pumps(evaporable, non-evaporable)

Sputter ion Pumps

Cryo Pumps

Principle

Capture vacuum pumps are based on the process of capture of vacuum molecules by surfaces

Page 10: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 10

Getter Pumps

30/5/2011

Solid Bulk

Surface

Gas

Page 11: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

11

Heating in vacuum Oxide dissolution -> activation

T = RT

T = Ta

T = RT

NEGs pump most of the gas except rare gases and methane at room temperature

Native oxide layer-> no pumping Pumping

Getters are materials capable of chemically adsorbing gas molecules. To do so their surface must be clean. For Non-Evaporable Getters a clean surface is obtained by heating to a temperature high enough to dissolve the native oxide layer into the bulk.

Definition of NEG

P. Chiggiato

Page 12: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 1230/5/2011

C.Benvenuti, CAS 2007

Sorption Speed and Sorption Capacity

Page 13: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

13

energy carrier: noble gas ions

substrate to coat: vacuum chamber target material: NEG (cathode) driving force: electrostatic

Choice of the coating technique for thin film: sputtering

NEG composition

The trend in vacuum technology consists in moving the pump progressively closer to the vacuum chamber wall.

The ultimate step of this process consists of transforming the vacuum chamber from a gas source into a pump.

One way to do this is by “ex-situ” coating the vacuum chamber with a NEG thin film that will be activated during the “in situ” bakeout of the vacuum system.

Page 14: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 14

Dipole Coating Facility Quadrupole Coating Facility

30/5/2011

M.C. Bellachioma (GSI)

Page 15: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 15

Sputter ion pumps

30/5/2011

B

-+ -

E

Anode

Cathode

E

P1

P2

Titanum

Page 16: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 16

Sputtering process

30/5/2011

+

The adsorbing material is sputtered around the pumptrapped electrons

Page 17: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 1730/5/2011

A glimpse to the complexity

Adsorbed ions

Trapped electron ionization process

ion bombardment with sputtering

Page 18: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 1830/5/2011

Example of Pumping speed

J.M. Laffterty, Vacuum Science, J. Wiley & Son, 1998

Page 19: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 19

Cryo Pumps

30/5/2011

m

v1

Stick to the Wall !!

Dispersion forces between molecules and surface are stronger then forces between molecules

Cold Wall

Page 20: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 2030/5/2011

cold

Vessel

nw pw

nc pcPump

Pw = pressure warmPc = pressure in the coldIw = flux Vessel PumpIc = flux Pump Vessel

molecules stick to the cold wall

Schematic of a cryo pump

Page 21: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 2130/5/2011

Now By using the state equation

In the same way

If no pumping although

Thermal Transpiration

Relation between pressures

Page 22: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 2230/5/2011

When the two pressures breaks the thermal transpiration condition a particle flow starts

We find

We define and

Pc depends on the capture process

Cryocondensation: Pw is the vapor pressure of the gas at Tc

Page 23: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 23

Summary on Pumps

30/5/2011

N. Marquardt

Page 24: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 24

Gauges

30/5/2011

Liquid Manometers

MacLeod Gauges

Viscosity Gauges

Thermal conductivity Gauges

Hot Cathode Gauges

Alpert-Bayard Gauges

Penning Gauges

Page 25: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 25

Liquid Manometers

30/5/2011

P2

P1 h

Relation between the two pressure

issue: measure precisely “h” by eye +/- 0.1 mm

High accuracy is reached by knowing the liquid density

but with mercury surface tension depress liquid surface

Mercury should be handled with care: serious health hazard

Page 26: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 26

McLeod Gauge

30/5/2011

Δh

Closed

h0

Quadratic response to P2

First mode of use: The reservoir is raised till the mercury reaches the level of the second branch (which is closed)

P2

Second mode of use: keep the distance Δh constant and measure the distance of the two capillaries linear response in Δh

Page 27: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 27

Viscosity Gauges

30/5/2011

Gasmolecule

ω

φ

It is based on the principle that gas molecules hitting the sphere surface take away rotational momentum

The angular velocity of the sphere decreases

R

ρ = sphere densityα = coefficient of thermal dilatationT = temperatureva = thermal velocity

Page 28: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 2830/5/2011

(K. Jousten, CAS 2007)

F.J. Redgrave, S.P. Downes, “Some comments on the stability of Spinning Rotor Gauges”, Vacuum, Vol. 38, 839-842

Page 29: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 29

Thermal conductivity Gauges

30/5/2011

hot wire

A hot wire is cooled by the energy transport operated by the vacuum gas

Accommodation factor

By measuring dE/dt we measure P

Page 30: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 30

Energy Balance

30/5/2011

V

Wc/2

Wc/2

WR

Energy loss by gas molecules

Energy loss by Radiation

Energy loss by heat conduction

When the energy loss by gas molecule is dominant P can be predicted with contained systematic error

ε = emissivity

Page 31: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 3130/5/2011

The Gauge tube is kept at constant temperature and the current is measured

So that

Through this value E

Pirani Gauge

Example of power dissipated by a Pirani Gauge vs Vacuum pressure

.

Page 32: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 32

Ionization Gauges Principle

30/5/2011

electrons

accelerating gap

L

V

+

Page 33: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 3330/5/2011

V

+

IONIZATION

positiveions

new electrons i+ = current proportional

to the ionization rate

E

i-

Page 34: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 3430/5/2011

Electrons ionization rate

Sensitivity

Page 35: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 35

Hot Cathode Gauges

30/5/2011

Grid

Anode

Hot Cathode

30 V

+

180V

+Electric field

Page 36: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 36

Hot Cathode Gauges

30/5/2011

Grid

Anode

Hot Cathode

30 V

+

180V

+In this region the electrons can ionize vacuum particles

A current between grid and anode is proportional to the vacuum pressure

i+

i+

Page 37: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 37

Limit of use

30/5/2011

Upper limit: it is roughly the limit of the linear response

Lower limit: X-ray limit

Grid

Anodenew electronX-ray

X-ray

The new electron change the ionization current

P

Pm

X-raylimit

Page 38: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 38

Alpert-Bayard Gauge

30/5/2011

Grid

Anode

X-ray

X-ray

Hot Cathode

the probability that a new electron hits the anode is now very small

The X-ray limit is easily suppressed by a factor ~100-1000

Page 39: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 3930/5/2011

Schematic of the original design (K. Jousten, CAS 2007)

Page 40: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 40

Penning Gauge (cold cathode gauges)

30/5/2011

B = magnetic field

E = electric field

Electrons motion

anode

cathode

Page 41: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4130/5/2011

+

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

One electron is trapped

Under proper condition of (E,B) electrons get trapped in the Penning Gauge

Page 42: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4230/5/2011

+

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

One electron is trapped

one vacuumneutral gas enters into the trap

Page 43: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 43

Ionization process

30/5/2011

Neutral vacuum atom

Electron at ionizationspeed

Before Collision Collision Ionization

Charged vacuum atom

Electron at ionizationspeed

New electron

+--

-

Page 44: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4430/5/2011

+

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ionization

Charged vacuum atom

Electron at ionizationspeed

New electron

+

--

this ion has a too large mass and relatively slow velocity, therefore its motion is dominated by the electric field and not by the magnetic field

Page 45: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4530/5/2011

+

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Ionization Charged vacuum atom

New electron

+

--

Motion of stripped ion

Page 46: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4630/5/2011

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

++

++++++

++

++++++

--

--

-

-

-

--

Negative space charge formation

More electrons are formed through the ionization of the vacuum gas and remains inside the trap

Page 47: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4730/5/2011

++ + + + + + +

++ + + + + + +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

++

++++++

++

++++++

--

--

-

-

-

--

--

-

-

--

-

-

-

--

-

When the discharge gets saturated each new ionization produce a current

I

Page 48: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 4830/5/2011

The time necessary for the discharge formation depends upon the level of the vacuum

lower pressure longer time of formation

Sensitivity of a SIP (the same as for the Penning Gauge).

J.M. Lafferty, Vacuum Science,p. 322

Page 49: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 49

Summary on Gauges

30/5/2011

N. Marquardt

Page 50: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 50

Partial Pressure Measurements

30/5/2011

These gauges allow the determination of the gas components

Partial pressure gauges are composed

Ion Source

MassAnalyzer

Ion currentdetection System

dataoutput

Page 51: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 51

Ion Sources

30/5/2011

Vacuum gas is ionized via electron-impact

the rate of production of ions is proportional to each ion species

Electron-impact ionization process

ev

inelastic scattering: kinetic energy transfer from the electron to the molecule

me

MBefore Impact After impact

e

vme

M+

e

vme

Page 52: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 5230/5/2011

The minimum energy to ionize M is called “appearance potential”

Electronenergy(eV)

15IP = 15 eV M+ + e-

At the appearance potential the production rate is low

appearance potential

A. von Engel, Ionized Gases, AVS Classics Ser., p. 63. AIP Press, 1994

Page 53: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 53

Ion source

30/5/2011

ionizationregionelectrons

source

acceleration gap

Vf

Vg

electronsions

ion collector

+

+

+

E

E

Vc

Open sourceBayard-Alpert gauge

Vg < Vc

Page 54: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 5430/5/2011

+

+

+

+

+

+

+

+

A schematic

F = ion transmission factorMass analyzer

Ion Detection

Page 55: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 55

Ion Detection

30/5/2011

Faraday Cup Secondary electron Multiplier (SEM)

Idea: an ion enters into the tube, and due to the potential is accelerated to the walls. At each collision new electrons are produced in an avalanche process

# electrons output

# ion inputG =

Gain

L

d V0 = applied voltage

V = initial energy of the electron

K = δ Vc

where

δ = secondary emission coefficientVc = collision energyJ.Adams, B.W. Manley IEEE Transactions on Nuclear Science, vol. 13, issue 3, 1966. p. 88

Page 56: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 56

Mass Analyzers

30/5/2011

Quadrupolar mass spectrometer

x

y s

++

++ ++

++

Ion equation of motion

U, V constant

r0

define:

Page 57: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 5730/5/2011

By rescaling of the coordinates the equation of motion becomes

Mathieu Equation

Stability of motionhorizontal vertical

q=0, a>0 unstable stable

q=0, a<0 stable unstable

The presence of the term q, changes the stability condition

Development of stable motion

The ion motion can be stable or unstable

Stable or unstable motion is referred to a channel which is infinitely long, but typically a length correspondent to 100 linear oscillation is considered enough

Example:For N2 at Ek = 10 eV vs = 8301 m/s

For a length of L = 100 mm 100 rf oscillation f = 8.3 MHz

typically f ~ 2 MHz

Page 58: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 5830/5/2011

5 10 150

5

10

5

10

a

q

Stable in y

5 10 150

5

10

5

10

a

q

Stable in x

Stability Chart of Mathieu equation

Page 59: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 5930/5/2011

5 10 150

5

10

5

10

a

q

a

Stability region in both planes

q

a

q0=0.706 a0=0.237

Page 60: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 6030/5/2011

Stability region in both planes

q

a

(0.706; 0.237)

Given a certain species of mass M1 there are two values U1, V1 so that q=q0 and a=a0

By varying V and keeping the ratio V/U constant, the tip of the stability is crossed and a current is measured at V=V1

V

i+

Page 61: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 6130/5/2011

Magnetic Sector Analyzer

Example: A 900 magnetic sector mass spectrometer

B is varied and when a current is detected then

Ez is the ions kinetic energy

Resolving power

Wsource = source slit widthWcollector = collector slit width J.M. Lafferty, Vacuum Science, p. 462

Page 62: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 62

Omegatron

30/5/2011

Page 63: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 6330/5/2011

The revolution time is independent from ion energy

If the frequency of the RF is 1/τ a resonant process takes place and particle spiral out

collector

B

E

Resolving power

Page 64: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 64

Conclusion

30/5/2011

Creating and controlling vacuum will always be a relevant part of any accelerator new development.

These two lectures provides an introduction to the topic, which is very extensive: further reading material is reported in the following bibliography

THANK YOU FOR YOUR ATTENTION

Page 65: Vacuum II G. Franchetti CAS - Bilbao 30/5/2011G. Franchetti1.

G. Franchetti 6530/5/2011

Kinetic theory and entropy ,C.H. Collie, Longam Group, 1982Thermal Physics, Charles Kittel, (John Wiley and Sons, 1969).Basic Vacuum Technology (2nd Edn), A Chambers, R K Fitch, B S Halliday, IoP

Publishing, 1998, ISBN 0-7503-0495-2Modern Vacuum Physics, A Chambers, Chapman & Hall/CRC, 2004, ISBN 0-8493-

2438-6The Physical Basis of Ultrahigh Vacuum, P. A. Redhead, J. P. Hobson, E. V.

Kornelsen, AIP, 1993, ISBN 1-56396-122-9Foundation of Vacuum Science, J.M. Lafferty, Wiley & Sons, 1998Vacuum in accelerators, CERN Accelerator School, CERN-2007-003 11 June 2007Vacuum technology, CERN Accelerator School, CERN 99-05 1999

Acknowledgements: Maria Cristina Bellachioma


Recommended