+ All Categories
Home > Documents > Valorisation of Low-Grade Waste Heat

Valorisation of Low-Grade Waste Heat

Date post: 23-Feb-2016
Category:
Upload: justis
View: 30 times
Download: 0 times
Share this document with a friend
Description:
Vision: No useful heat flow without use !. Valorisation of Low-Grade Waste Heat. Felix Ziegler | Institut für Energietechnik. Options Absorption cooling Steam jet cycle Honigmann cycle Efficiency, and cost. Valorisation of Low-Grade Waste Heat. - PowerPoint PPT Presentation
Popular Tags:
24
Valorisation of Low-Grade Waste Heat Felix Ziegler | Institut für Energietechnik Vision: No useful heat flow without use!
Transcript
Page 1: Valorisation of Low-Grade  Waste Heat

Valorisation of Low-Grade Waste Heat

Felix Ziegler | Institut für Energietechnik

Vision: No useful heat flow without use!

Page 2: Valorisation of Low-Grade  Waste Heat

Felix Ziegler | Institut für Energietechnik

OptionsAbsorption coolingSteam jet cycleHonigmann cycleEfficiency, and cost

Valorisation of Low-Grade Waste Heat

Page 3: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 3

in

out

in

out

in

out

in

out

in

out

in

in

in

out

out

Temperature of heat flow

upgraded:T3=120°C

source: T2=80°C

work: T→∞

cold: T0=5°C

ambient: T1=35°C

#1 #2 #3 #4 #5

High source:T4=180°C

Page 4: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 4

in

out

in

out

in

out

in

out

in

out

in

in

in

out

out

Temperature of heat flow

upgraded:T3=120°C

source: T2=80°C

work: T→∞

cold: T0=-150°C

ambient: T1=35°C

High source:T4=180°C

#1 #2 #3 #4 #5

Page 5: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 5

Cold is produced from heat

Q1´´

Q0

EV

K

V

Q2

A

Q1´

LEVLP

LWT

G

Cold

Drive

Heat sink

Heat sink

Single-effect absorption chiller

Page 6: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 6

Nominal cooling capacity 50kW

Page 7: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 7

Dt@40kW=13K 40K

Variation of driving heat @ tsink=30°C, Vsink=3,8l/s, tcold=21/16°C

50 60 70 80 90 1000

10

20

30

40

50

60

70

Driving temperature in [°C]

0,9 l/s0,6 l/s

0,3 l/s

0,1 l/sCoo

ling

capa

city

[kW

]

Page 8: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 8

Control: Minimisation of auxiliaries

Control strategy SEERel SEERth

#1: Classic drive(Temperature) 13 0,75

#2: Heat sink (Temperature and flow rate) 19 0,75

#3: Drive (Temperature and flow rate) 14 0,75

#4: Combination (#2+#3) 22 0,75

Seasonal Energy Efficiency Ratio:

10WQSEER cold

el 60.QQSEERdrive

coldth

Page 9: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 9

Pressure

Temperature

Vapour pressure depression„mechanical potential“

Water

Aqueous Solutio

n

Liquid-Vapour-Equilibrium

„Honigmann“ cycle: storage and conversion of low-grade heat

Page 10: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 10

pressure

temperature

Charging (Heat!)

pressure

temperature

Discharging (work!)

Page 11: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 11

Honigmann fireless locomotive (1883)

Quelle: Mähr, Vergessene Erfindungen

Page 12: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 12

in

out

in

out

in

out

in

out

in

out

in

in

in

out

out

Temperature of heat flow

upgraded:T3=120°C

source: T2=80°C

work: T→∞

cold: T0=5°C

ambient: T1=35°C

#1 #2 #3 #4 #5

High source:T4=180°C

Page 13: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 13

Efficiency Example

#1 Work-driven heat pump 23

33TT

TWQCOP

g 9.4COP

#2 Heat-driven heat pump 23

24

4

3

4

3TTTT

TT

QQCOP

g 1.1COP

#3 Power cycle 2

12

2 TTT

QW

g 06.0

#4 Heat transformer 13

12

2

3

2

3TTTT

TT

QQCOP

g 29.0COP

#5 Heat-driven refrigerator 01

12

2

0

2

0TTTT

TT

QQCOP

g 43.0COP

Page 14: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 14

Relative heat turnover Example (see Table 2)

#1 Work-driven heat pump COPQQ3

i 12 1.8

#2 Heat-driven heat pump 23

i

QQ

2

#3 Power cycle 12

W

Qi 32

#4 Heat transformer COPQQ3

i 2 6.9

#5 Heat-driven refrigerator COPQQ0

i 22 6.7

Page 15: Valorisation of Low-Grade  Waste Heat

Valorisation of Low-Grade Waste Heat

Felix Ziegler | Institut für Energietechnik

There are many challenging / promising options

Efficient heat transfer is key to implementation

Page 16: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 16

Q 2

Q 1

Q 0

Steam ejector cycle

Throttle

Condenser

Evaporator

Boiler

Pump

Ejector

Page 17: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 17

combustion engine

Steam jet cycle

com

pres

sor

turb

ine

exhaust hx

CAC

RHX

Page 18: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 18

Page 19: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 19

25 30 35 40 450

10

20

30

40

50

60

1,0 l/s

3,8 l/s

2,0 l/s

1,5 l/s

Heat sink temperature, inlet [°C]

Coo

ling

capa

city

[kW

]

Phydraulic = nominal=100%

Phydraulic = 1/64*nominal= 1,5%

Rückkühlvariationen (Biene)@ t_FW=90°C, m_FW=0,9kg/s, t_KW=21/16°C

Page 20: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 20

Page 21: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 21

Flexible Be- und Entladung Nutzung von Abfallwärme

Keine Selbstentladung

Vorteile des Prozesses

Page 22: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 22

Single-effect absorption chiller

Q1´´

Q0

EV

K

V

Q2

A

Q1´

LEVLP

LWT

G

A solution circulates between absorber A and regenerator G.

In the Regenerator G it is regenerated, consuming the driving heat.

The absorbed refrigerant isvaporised again.

In the absorber it absorbsrefrigerant vapour, rejecting heat.

Page 23: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 23

Q1´´

Q0

EV

K

V

Q2

A

Q1´

LEVLP

LWT

GThe refrigerant is liquefied in the absorber, rejecting heat...

Page 24: Valorisation of Low-Grade  Waste Heat

Valorisation of low-grade waste heat | Felix Ziegler | 24

Q1´´

Q0

EV

K

V

Q2

A

Q1´

LEVLP

LWT

G

The vapour flows to the absorber, again.

...and is vapourised again in the evaporator, consuming

heat (producing cold).

The refrigerant is liquefied in the absorber, rejecting heat...


Recommended