+ All Categories
Home > Documents > Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Date post: 22-Dec-2015
Category:
Upload: jasper-logan
View: 233 times
Download: 2 times
Share this document with a friend
45
Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak
Transcript
Page 1: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Vapor-Liquid Separator Design

• Presented to CBE 497

• 15 Jan., 2002.

• By R. A. Hawrelak

Page 2: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

The Equation of State• Composition, temperature and pressure

define the Equation Of State (EOS) for process streams in a chemical plant.

• The EOS often shows a particular stream to be a two-phase mixture of vapor and liquid.

• Chemical processes often require separation of the vapor stream from the liquid stream.

• The separation usually takes place in a vapor-liquid separator called a knock-out pot.

Page 3: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

There are 3 Basic Design Zones in any Knock-out Pot

• The vapor-liquid inlet line.

• The vapor zone.

• The liquid zone.

Page 4: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Basis – Inlet Line

• Inlet line: Baker Two Phase Flow in Perry VI, CEHB, Page 5-41.

• Avoid high, two phase velocity which may atomize liquid into particles too small for fluid dynamic separation.

• Avoid “Slug Flow” regime where vibrations may be damaging to inlet pipe.

Page 5: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Baker Chart – Horizontal Flow

Page 6: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Basis – Vapor Zone

• The Vapor Zone: Perry VI, CEHB, Eq 5-263, page 5-66.

• Establish a design basis for liquid entrainment in the vapor stream.

• Select a design liquid particle diameter for liquid entrainment in the vapor stream.

• Select a vessel diameter to establish a terminal velocity that will entrain particles smaller than the design particle diameter.

Page 7: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Basis – Liquid Zone

• The Liquid Zone: Based on Liquid retention time.

• Establish liquid residence times for normal liquid level variation.

• Establish liquid residence times for alarming and shut-downs beyond normal liquid level variation.

Page 8: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Basis – Vessel Economics

• Combine the three design zones with Pressure Vessel Economics to obtain the most cost effective KO Pot.

Page 9: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Types of KO Vessels

• Vertical – No Internals

Page 10: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Vertical KO – With Demister Mesh

Page 11: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Peerless KO Pots With Horizontal Flow Chevrons

Page 12: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

FWG – Vertical Flow Chevron Vanes

Page 13: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Cyclone KO Pot With Tangential Entry

Page 14: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Porta-Test Centrifugal Separator

Page 15: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Horizontal KO Pots

• API-521 Horizontal KO Pot With No Internals

Page 16: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

API-521 Horizontal KO Pot With Mesh Pad

Page 17: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Wu – Horizontal With Extended Inlet

Page 18: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Kettle Refrigeration Exchanger

Page 19: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

This Presentation Considers

• Vertical KO Vessel With No Internals

• Vertical KO With Mesh Pad

• As CBE 497 does not get to Phase III Engineering where line sizing is a factor, Inlet Line design is not part of this presentation.

Page 20: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Problem Statement

• Design a KO Pot to separate 49,423 lb/hr of vapor from 382,290 lb/hr of liquid.

• Working Range liquid level holdup shall be +/- 2 minutes on normal liquid level.

• Provide 2 minutes liquid holdup from high opg LL to Max LL.

• Provide 2 minutes liquid holdup from low opg LL to Min. LL.

• Total Liquid Retention time = 8 minutes.

Page 21: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

First Design Consideration

• As the liquid rate is high (382,290 lb/hr), liquid volume will probably be the controlling design factor.

• Consider using a Standard Vertical KO Pot with No Internals.

Page 22: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.
Page 23: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Problem Statement Cont’d

• Vapor Destination – centrifugal compressor.• Liquid Destination – C2 Splitter reflux.• Compressor Spec – To prevent damage to the

compressor, the liquid droplet size in the inlet vapor stream shall not exceed a particle diameter, Dp, of 150 to 300 microns.

• Design Spec – To achieve a goal of 150 microns, design the KO Pot for a particle diameter, Dp = 100 microns.

• Rate a 10 ft. dia. x 31 ft. t-t KO Pot.

Page 24: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Summary Of All Req’d Input

Page 25: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (1): Calc CFS Of Vapor

• CFS = Vapor cubic feet per second.

• CFS Vapor = Wv / 3600 / Dv.

• CFS Vapor = 16.29 cubic ft. per sec.

Page 26: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (2): Calc ( C )( Re^2 )

• CRe^2 from Perry VI - Eq 5-263• CRe^2 = (A)( Constant)• A = (Dp/304800)^3 (DL - Dv)(Dv) / cP^2• Constant = (4*32.2/3/0.00067197^2)• CRe^2 = 1,411.49

Where C = Drag Coefficient

Re = Particle Reynolds Number

Page 27: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (3): Calc Drag Coefficient, C

• Table 5-22, Perry VI, Page 5-67, gives C values versus CRe^2. These values have been curve fitted to a polynomial for the Re range 0.1 to 2,000 as follows:

• C = EXP(6.496-1.1478*LN(CRe^2)

+0.058065*LN(CRe^2)^2 -0.00097081*LN(CRe^2)^3)

• C = 2.35 for the example presented

Page 28: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (4): Calc Particle Reynolds Number, Re

• Re = (CRe^2 / C)^0.5

• Re = 24.5

• Re falls within range 0.1 < Re < 2,000

OK to proceed to Step (5)

Page 29: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (5): Calc Drop Out Velocity

• Drop Out velocity, ut, from Perry VI - Eq 5-264.

• Ut = [Re / C*4*32.2 *cP* 0.00067197 *(DL-Dv) / 3 / Dv^2]^0.333333.

• Ut = 0.4659 ft./sec.

Page 30: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (6): Calc Vessel Diameter

• Area = (CFS / ut) = (3.14 / 4 )(D)^2.

• KO Dia = (CFS / ut /0.785)^0.5.

• KO Dia = 6.67 ft.

• Round Diameter to Nearest 3.”

• Rounded Diameter = 7’ 0.”

Page 31: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (7): Calc Ht. Above C.L. Of Inlet Nozzle, L1

• L1 Vapor ht. Referenced to C.L. Of inlet nozzle.

• L1 Vapor ht. = 3 ft. + 0.5(Noz Diam.).

• L1 Vapor ht. = 3.83 ft. (C.L. to top t-L).

• See Design Uncertainty at end of this report for future addition of a demister pad, if required.

Page 32: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (8): Calc Liquid Vol, L3, For Specified Retention Time

• Cubic Ft. Of Liquid = Vol L3.

• Vol L3 = (WL)(Ø min.) / DL / 60 cu. ft.

• Vol L3 = 1,629.02 cu. Ft.

Page 33: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (9): Calc Liq Vol for minimum of 2 ft. Liquid.• Liq Vol For 2 Ft. Minimum Liq Vol =

Vol L2 ft. = ()(2)(Dia)^2 / 4.

• Vol L2 ft. = 76.97 cu. Ft.

Page 34: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (10): Select Maximum of L3 Vol or L2 ft. Vol.• Vol L3 = 1,629.02 cu. Ft.

• Vol L2 = 76.97 ft. cu. Ft. = cu. Ft.

• Max Liquid Vol = 1,629.02 cu. Ft.

Page 35: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (11): calculate L3, ft.

• L3 = (Vol L3)(4) / ()(Vessel Dia)^2.

• L3 = 42.33 ft.

• This makes the vessel roughly 7 ft. in diam with an unusually high liquid level (L3).

Page 36: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (12): Document Liquid Retention Time

• Stated Liquid Retention Time Required from Max to Min Liquid Level = 8 minutes.

Page 37: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (13): Calculate L2

• L2 is the height from the C.L. of the inlet nozzle to the max Liquid level.

• L2 = 0.25(L3) + 0.5(Inlet Nozzle dia.).

• L2 = (0.25)(42.33) + (0.5)(20/12) =11.42 ft.

Page 38: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Step (14): Calculate t-t Length• L total t-t = L1 + L2 + L3.• L total t-t = 3.83 + 11.42 + 42.33.• L total t-t = 57.58.• L/D = 57.58 / 6.67 = 8.63.• Economic L/D range between 3 to 4.• Repeat Process with lower Dp to increase

dia and lower t-t length.• Second Pass. Try Dp = 50 microns.

Page 39: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Other Design Steps

• Step (15): Check L/D ratio (Goal 4-6)

• Step 16: Old Schieman Sizing Method.

• Step (17):Calculate Liquid Entrainment (HTRI).

• Step (18): Determine Flow Regime for Inlet Pipe using Baker Chart for Horizontal Flow.

Page 40: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Summary

1st pass 2nd pass final passDp, microns 100 50 54Ret Minutes 8 8 8.3

Step 6 Ves Dia ft. 6.67 10.51 9.95Step 7 L1, ft. 3.83 3.83 3.83Step 11 L3, ft. 42.33 17.14 21.52Step 13 L2, ft. 11.42 5.12 6.21Step 14 t-t length, ft. 57.58 26.09 31.57

L/D 8.63 2.48 3.17

Page 41: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Vertical KO Pot with Demister

Pad

Page 42: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Basis• Design is vapor liquid systems with lower

liquid rates.• The particl size is usually set at a default

value of 500 microns, which is rain drop sized particles.

• The wire mesh demister pad is usually 6 to 12 inches thick.

• The vapor stream will exit with liquid drops no greater than 3 microns.

Page 43: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Procedure

• The design procedure is exactly the same as for KO Pots without internals.

• Set the particle size at 500 microns and proceed as before till an economic vessel with and L/D range of 3 to 4 is found.

Page 44: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Design Uncertainty

• If the design is based on a vertical vessel with no internals and there is some uncertainty that the KO Pot will achieve the desired liquid particle size, provision can be made to add a wire mesh demister pad at a later date.

Page 45: Vapor-Liquid Separator Design Presented to CBE 497 15 Jan., 2002. By R. A. Hawrelak.

Future Demister Pad

• Make L1 a minimum of 3 ft. + 0.5(inlet nozzle dia.) for vessel diameters 4 ft. and smaller.

• For vessels larger than 4 ft. in dia., make L 1 = 0.75(Vessel dia.).

• This will allow room to add a demister at a later date, if needed.


Recommended