+ All Categories
Home > Documents > Variation in compositional and structural components of...

Variation in compositional and structural components of...

Date post: 24-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
12
J Veg Sci. 2019;30:257–268. wileyonlinelibrary.com/journal/jvs | 257 Journal of Vegetation Science © 2018 International Association for Vegetation Science Received: 25 July 2018 | Revised: 29 November 2018 | Accepted: 3 December 2018 DOI: 10.1111/jvs.12708 RESEARCH ARTICLE Variation in compositional and structural components of community assemblage and its determinants Jie Yao 1 | Chunyu Zhang 1 | Miquel De Cáceres 2,3 | Pierre Legendre 4 | Xiuhai Zhao 1 1 Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China 2 Forest Sciences Centre of Catalonia (CTFC), Solsona, Spain 3 Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Spain 4 Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec, Canada Correspondence Xiuhai Zhao, Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China. Email: [email protected] Funding information Key Project of National Key Research and Development Plan (2017YFC050400101) and Program of National Natural Science Foundation of China (31670643). Co-ordinating Editor: Stephen Roxburgh Abstract Questions: What are the ecological processes that determine the spatial distribution of species and species diversity? Partitioning beta diversity can provide fundamental insights into the processes that determine the spatial variation of species assem- blages. However, studying beta diversity is conventionally based only on species composition data, ignoring the structural component of communities. Study site: Temperate mixed broadleaf–conifer forest in Jiaohe, Jilin Province, north- eastern China. Methods: We characterized the variation of community assemblages in terms of spe- cies composition, size structure, or considering both components. We then employed environmental and spatial variables as explanatory factors to partition the variation in both compositional and structural components of community assemblage and as- sess the relative contributions of the niche and neutral processes to community assembly. Results: The values of overall beta diversity (BD statistics) and the relative contribu- tion of individual sampling units to beta diversity (LCBD indices) depended on whether the species composition, size structure, or both together had been taken into account. The value of compositional–structural beta diversity was the largest, followed by traditional compositional beta diversity; the smallest was the structural beta diversity. The sites with high contributions to beta diversity (LCBD values) var - ied among structural and compositional components. The explanatory power of the environmental variables and the spatial variables also varied widely with different components of a community. The combination of environmental and spatial variables explained the highest proportion of variation (43.8%) in the compositional compo- nent and explained the lowest proportion of variation (25.4%) in the structural com- ponent of community assemblage. Conclusion: Both deterministic and stochastic processes are acting to determine community assemblages in terms of species composition and structure in our tem- perate forest site. Our study highlights the importance of considering the structural component of forest communities, in addition to compositional data, when studying beta diversity. KEYWORDS beta diversity, community assemblage, cumulative abundance profile, local contributions to beta diversity, size structure, species composition, variation partitioning
Transcript
Page 1: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

J Veg Sci 201930257ndash268 wileyonlinelibrarycomjournaljvs emsp|emsp257

Journal of Vegetation Science

copy 2018 International Association for Vegetation Science

Received25July2018emsp |emsp Revised29November2018emsp |emsp Accepted3December2018DOI101111jvs12708

R E S E A R C H A R T I C L E

Variation in compositional and structural components of community assemblage and its determinants

Jie Yao1 emsp|emspChunyu Zhang1emsp|emspMiquel De Caacuteceres23emsp|emspPierre Legendre4emsp|emspXiuhai Zhao1

1ResearchCenterofForestManagementEngineeringofStateForestryandGrasslandAdministrationBeijingForestryUniversityBeijingChina2ForestSciencesCentreofCatalonia(CTFC)SolsonaSpain3CenterforEcologicalResearchandForestryApplications(CREAF)CerdanyoladelVallegravesSpain4DeacutepartementdeSciencesBiologiquesUniversiteacutedeMontreacutealMontreacutealQuebecCanada

CorrespondenceXiuhaiZhaoResearchCenterofForestManagementEngineeringofStateForestryandGrasslandAdministrationBeijingForestryUniversityBeijingChinaEmailzhaoxhbjfueducn

Funding informationKeyProjectofNationalKeyResearchandDevelopmentPlan(2017YFC050400101)andProgramofNationalNaturalScienceFoundationofChina(31670643)

Co-ordinatingEditorStephenRoxburgh

AbstractQuestions WhataretheecologicalprocessesthatdeterminethespatialdistributionofspeciesandspeciesdiversityPartitioningbetadiversitycanprovidefundamentalinsights into the processes that determine the spatial variation of species assem-blages However studying beta diversity is conventionally based only on speciescompositiondataignoringthestructuralcomponentofcommunitiesStudy site TemperatemixedbroadleafndashconiferforestinJiaoheJilinProvincenorth-easternChinaMethods Wecharacterizedthevariationofcommunityassemblagesintermsofspe-ciescompositionsizestructureorconsideringbothcomponentsWethenemployedenvironmentalandspatialvariablesasexplanatoryfactorstopartitionthevariationinbothcompositionalandstructuralcomponentsofcommunityassemblageandas-sess the relative contributions of the niche and neutral processes to communityassemblyResults Thevaluesofoverallbetadiversity(BDstatistics)andtherelativecontribu-tion of individual sampling units to beta diversity (LCBD indices) depended onwhether thespeciescompositionsizestructureorbothtogetherhadbeentakenintoaccountThevalueofcompositionalndashstructuralbetadiversitywasthelargestfollowedbytraditionalcompositionalbetadiversitythesmallestwasthestructuralbetadiversityThesiteswithhighcontributionstobetadiversity(LCBDvalues)var-iedamongstructuralandcompositionalcomponentsTheexplanatorypoweroftheenvironmentalvariablesand thespatialvariablesalsovariedwidelywithdifferentcomponentsofacommunityThecombinationofenvironmentalandspatialvariablesexplainedthehighestproportionofvariation(438)inthecompositionalcompo-nentandexplainedthelowestproportionofvariation(254)inthestructuralcom-ponentofcommunityassemblageConclusion Both deterministic and stochastic processes are acting to determinecommunityassemblagesintermsofspeciescompositionandstructureinourtem-perateforestsiteOurstudyhighlightstheimportanceofconsideringthestructuralcomponentofforestcommunitiesinadditiontocompositionaldatawhenstudyingbetadiversity

K E Y WO RD S

betadiversitycommunityassemblagecumulativeabundanceprofilelocalcontributionstobetadiversitysizestructurespeciescompositionvariationpartitioning

258emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

1emsp |emspINTRODUCTION

Understandingthemechanismsthatdeterminethespatialdistri-butionofspeciesandspeciesdiversityisacentralthemeinecol-ogy (Chave 2004 Chesson 2000 Hutchinson 1961 Ricklefs1990 Vellend 2017) Deterministic niche-based and stochasticneutral processes have beenwidely discussed as potential driv-ers of community assembly (Chesson 2000 HilleRisLambersAdler Harpole Levine ampMayfield 2012Hubbell 2001 2006MayfieldampLevine2010)butthefactorsunderlyingtherelativecontributionof the twoprocessesarestillunresolved (Legendreetal2009Punchi-Manageetal2014vanderPlasetal2015)Niche and neutral theories emphasize different mechanisms assources of species diversity Niche theory predicts that deter-ministicprocessessuchashabitatfilteringandcompetitionshapespeciesassemblagesNeutraltheoryincontrastassumesthatallspecies are essentially functionally equivalent (HilleRisLambersetal 2012Hubbell 20012006Keddy1992) andemphasizesthe importance of stochastic processes in community assemblysuchasrandombirthdeathdispersaleventsspeciationandsto-chasticextinction(Caswell1976Hubbell2001)Itisnowgener-allyacceptedthatboththedeterministicandstochasticprocessesarepotentiallyimportantdeterminantsofthespatialdistributionobserved in community assemblagesAt present however theirrelative importance in shapingdifferent componentsof commu-nityorganization(iethestructuralcompositionalorbothcom-ponentstogether)isnotclear(DeCaacuteceresetal2012Legendreetal2009Punchi-Manageetal2014)Inthepresentstudywedefinedtheldquocompositionalrdquotermasthespeciescompositiondata(egspeciesabundancevalues)Weconstrainedthedefinitionofldquostructuralrdquotorefertothediameteratbreastheightoftheindivid-ualtreesmakingupthecommunity

Thevariationinspeciescompositionobservedamongasetofsamplingunitswithinaregionisoftendescribedasbetadiversity(Whittaker19601972)Theinterestofcommunityecologistsforbetadiversitystemsnotonlyfromthefactthatitlinkslocal(iealphadiversity) and regionaldiversity (ie gammadiversity) (DeCaacuteceresetal2012)butalsobecauseitcanprovidefundamentalinsights into theprocesses thatdetermine the spatialpatternofspecies assemblages (Anderson etal 2011 Chase 2010 Kraftetal 2011 Legendre amp De Caacuteceres 2013Myers etal 2013)Beta diversity can bemeasured inmany different ways (KoleffGastonampLennon2003LegendreBorcardampPeres-Neto2005Legendre amp Legendre 2012 Legendre etal 2009) Beta diver-sityestimatesaremostoftenbasedonspeciescompositionaldata(egspeciesabundancevaluesorspecies incidence)whichtakethe formof a site-by-species datamatrixwith sites in rows andspecies abundances in columns Although species compositiondataarefundamentallyimportanttheyalonemaybeinsufficientfor describing community organization and may neglect othervaluable information to study community assembly processessuchasthestructuralcomponent(egthesizestructureofcon-stituentindividuals)ofacommunity(DeCaacuteceresLegendreampHe

2013FaithAustinBelbinampMargules1985Fangetal2012)The phenomenon of competition asymmetry emphasizes thatlarge individuals usually compete disproportionately with theirsmaller-sized neighbors (Weiner 1990) Big trees control moreabove- and below-ground resources (eg light and mineral nu-trients)thansmalltrees(SchwinningampWeiner1998)ThereforelargerindividualstendtohavegreaterimpactonthefunctionanddynamicsofforestecosystemsthansmallonesMoreovernaturalmulti-species communities may exhibit similar compositions butdifferinotherfeaturessuchasthesizestructureoftheirindividu-als(DeCaacuteceresetal2013)Thedistributionofindividualsizesisalsoan importantcomponenttorepresentandunderstandcom-munity assembly therefore using species abundances only (iethe compositional component) to describe forest beta diversitymay be an oversimplification of the spatial variation of commu-nities In order to get comprehensive insight into the processesthat determine the spatial pattern of species assemblages it isnecessarytoensurefirstthatwehavetheabilitytodescribebetadiversity inacomprehensivewayWhetherornotthestructuralcomponent shouldor couldbeconsideredaltogetherwithotherbeta diversity components has never been investigated and re-mainstobeexplored

In thisstudywegeneralizedtheconventionalapproachto thestudy of beta diversity by considering structural data in additiontocompositionaldataWefirstmeasurethespatialvariationofas-semblagesonthebasisofspeciescompositionandsizestructureofconstituentsWethenusetheenvironmentalandspatialvariablesas explanatory factors to partition the variation in compositionalandstructuralcomponentsofcommunityassemblageWespecifi-callyaddressthefollowingquestions(a)Canwetakeboththespe-ciescompositionalandsizestructuralcomponentsofacommunityintoaccountwhendescribingbetadiversity Isthereacorrelationbetween thesebetadiversity components (b)How is the assess-mentofthesebetadiversitycomponentsaffectedbythesizeofthesampling units (c)When considering both the compositional andstructural components together towhatextentarebetadiversityassessmentsaffectedbytherelativeimportanceaccordedtostruc-tural vs compositional differences (d)What is the relative contri-bution of the environmental and spatial variables to communityassemblyintermsofspeciescompositionsizestructureorconsid-eringbothcomponents

2emsp |emspMATERIAL AND METHODS

21emsp|emspStudy sites and data collection

Ourstudywascarriedout inatemperatemixedbroadleafndashconiferforestinJiaoheJilinProvincenortheasternChinaTheaveragehot-testmonthlytemperatureis217degCinJulyandthecoldestmonthisJanuarywithanaveragedaytemperatureof -186degCTheaverageannualprecipitationis6959mm(ZhangZhaoampGadow2014)Thesoilisabrownforestsoilwitharootabledepthrangingbetween20and100cm (ZhangZhaoZhaoampGadow2012)This studyuses

emspensp emsp | emsp259Journal of Vegetation Science

YAO et Al

datafroma30-ha(500mtimes600m)forestdynamicplot(43deg57928primendash43deg58214primeN127deg45287primendash127deg45790primeE)establishedinthesum-merof2010Theplot issituated inaprotectedold-growthforestina latestageof successionwith littlehumandisturbancedue toits remoteness fromresidential areas (YaoZhangZhangZhaoampGadow2016)

Allindividualswithadiameteratbreastheight(dbh)of1cmormoreintheplotwereidentifiedmeasuredandspatiallymappedin2010Atotalof49684individualtreesbelongingto20familiesand47speciesintheplotwereusedinthepresentstudyTheplotwasdividedinto120(50mtimes50m)750(20mtimes20m)and3000(10mtimes10m)subplotshereaftercalledquadratsTopographicandsoilvari-ableswerealsoavailable foreachquadratFour topographicvari-ables(altitudequadratconvexityslopeandaspect)werecalculatedforeachquadratfollowingtherecommendationofHarmsConditHubbellandFoster(2001)andYamakuraetal(1995)Eightsoilen-vironmentalandnutrientvariablesweremeasuredpHtheamountof organic matter and the total amounts as well as the availablenutrients of nitrogen (N) phosphorus (P) and potassium (K) (ggYanZhangWangZhaoampGadow2015)All laboratoryanalyseswereconductedfollowingtheproceduresrecommendedbytheSoilScienceSocietyofChina(1999)

22emsp|emspStatistical analyses

221emsp|emspCumulative abundance profiles

Theconceptofcumulativeabundanceprofile (CAP)developedbyDeCaacuteceresetal(2013)isdefinedasafunctionthattakestheval-uesofastructuralvariable (egheightdbhetc)as inputandre-turnsthecumulativeabundanceofindividualswhosevaluesofthestructuralvariableareequal toor largerthanthe inputvalueTheCAP framework generalizes traditional species abundance valuesand allows researchers to describe the structural component of acommunityInthepresentstudythestructuralvariablewasdiam-eteratbreastheight(dbh)AccordingtothischoicethevalueofCAPforagivendbhvalueisthecumulativeabundanceoftreeindividualsasbigasorbiggerthantheinputvalueFunctionCAPinfactreplacestheabundancevalueofadbhclassbythesumofabundancesinthisandlargerdbhclasses

222emsp|emspCommunity tables

Following theconventionalmethods speciescomposition tables(ie quadrats in rows species in column and the table contain-ing individual counts)wereassembled in this studywecall thistablethetraditional species composition matrix(YCOMP)InordertogeneralizeatraditionalspeciesabundancevalueanddescribethesizestructurecomponentofthecommunitytheCAPsconsider-ingspeciesidentitywerecalculatedtoobtainthespecies composi-tion combined with structural data matrix(YCOMPndashSTR)TheYCOMPndashSTR isamatrixwithasmanyrowsasplotrecordsandwherecolumnsareorganized inblocksandthereareasmanyblocksasspecies

andeachblockhasasmanycolumnsassizeclassesDisregardingspeciesidentityofthedifferentindividualsCAPswerealsocalcu-latedtoobtainthecommunity structural matrix (YSTR)TheYSTR is amatrixwithasmanyrowsasplotrecordsandasmanycolumnsas size classes

FunctionsldquostratifyvegdatardquoandldquoCAPrdquointhevegclustRpack-age(DeCaacuteceresFontampOliva2010)availableonCRAN(httpsCRANR-projectorgpackage=vegclust) were applied to calculatetheCAPsFunctionsldquostratifyvegdatardquoandldquoCAPrdquorequirediscretiz-ingthestructuralvariableandthenumberofsizebinsaffectstheimportanceaccordedtostructuraldifferencesThustherearede-cisions tobemadewhencreatingYSTR and YCOMPndashSTR particularlyhowwedefine thebinsof thestructuralvariables (egdbhbins)Inthisstudywetestedfrom1-cmbinsizeto15-cmbinsizetodis-cretizedbhintoclassesThat is1cmbinsleadtodbhclasses1ndash22ndash33ndash4andsoonwhereas5cmbinsleadtodbhclasses1ndash56ndash1010ndash15andsoonThesmallerthesizeofdbhbinthemorecolumnswillbeproducedineachblockinthetableYCOMPndashSTRindicatingthatmoreweightisaccordedtodifferencesinstructureandviceversaIfthebinsizewasbigenoughsothatthenumberofcolumnsineachblock in the tableYCOMPndashSTRwasonewewouldhave thatYCOMPndashSTR=YCOMPGenerallythelargerthesizeofdbhbinsthemoresimi-lar will YCOMP and YCOMPndashSTR be

223emsp|emspPairwise dissimilarity in terms of community composition and structure

Wecalculateddissimilaritymatrices between all pairs of quadratsusingthepercentagedifferenceindex(akaBrayndashCurtisdissimilar-ity)oncommunitymatricesYCOMPYSTRandYCOMPndashSTRtoobtainthe compositional dissimilarity matrix (DCOMP) the structural dissimilar-ity matrix (DSTR)andthe compositionalndashstructural dissimilarity matrix (DCOMPndashSTR) respectively In order to explore the pairwise covari-ation between the three kinds of dissimilarity assessments (ieDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTR)wefirstcomputed principal coordinates of each dissimilarity matrix usingprincipalcoordinatesanalysis (PCoA) thencomparedtheresultingmatricesofprincipalcoordinateskeepingallaxesusingtheRVco-efficientWeexpectedthatDCOMPndashSTRwouldbecorrelatedtobothDCOMP and DSTRbutthestrengthofthecorrelationdoesdependonthechosensizeofdiameterbins(ieontheweightgiventostruc-turalvscompositionalinformation)

Function ldquovegdistrdquo with the dissimilarity index ldquobrayrdquo in theveganRpackage(Oksanenetal2018)wasusedtocalculatethedissimilarity matrices D Function ldquopcoardquo in the ape R package(ParadisClaudeampStrimmer2004)wasusedtocomputeprincipalcoordinates of eachdissimilaritymatrixD Thedissimilarities inD matricesweresquare-rootedbeforePCoAinordertomakethema-tricesEuclideanandpreventthegenerationofnegativeeigenvaluesandcomplexPCoAaxes (DeCaacuteceresetal2013)Function ldquocoef-fRVrdquo in the FactoMineR R package (Husson Josse LeampMazet2015)wasusedtocalculatetheRVcoefficientsbetweenthematri-cesofprincipalcoordinates

260emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

224emsp|emspBeta diversity components (BDCOMP BDSTR and BDCOMPndashSTR)

Conventionallybetadiversity (abbreviatedBD) is assessed fromasite-by-speciesdatamatrixotherbasiccharacteristics(egsizeofindividuals)ofthecommunityareignoredInordertogeneral-izetheconceptoftraditionalbetadiversitytoCAPdataweap-pliedtheindexproposedbyLegendreetal (2005)andLegendreandDeCaacuteceres(2013)tocomputebetadiversityasthevarianceofthecommunitydataLegendreandDeCaacuteceres(2013)showedhow to compute the total variance of the community composi-tion datamatrix from a dissimilaritymatrixD The total sum ofsquaresSS(Y)canbeobtainedfromadissimilaritymatrixDusingEquation1(LegendreampDeCaacuteceres2013LegendreampLegendre2012) Dividing SS(Y) by (n - 1) produces the classical unbiasedestimateofthetotalvarianceofYcomputedfromauser-selectedEuclidean dissimilarity matrixD (ie Equation 2)We used thatapproach to calculate the traditional compositional beta diversity (BDCOMP) the structural beta diversity (BDSTR) and the composi-tionalndashstructural beta diversity(BDCOMPndashSTR)respectivelyusingthefollowingequations

D =(Dhi)isanntimesnsymmetricdissimilaritymatrix(eitherDCOMP

DSTRorDCOMPndashSTR) i and h representthesamplingunitsn is thenumberofthesamplingunits If thecalculationsstartwithaper-centagedifferenceDmatrixwhichisnon-Euclideanonecomputesthesquare-rootsoftheDvaluesintheDmatrixtomakeitEuclideanbeforeusingthetransformedDvaluesinEquations1and2

225emsp|emspLocal contributions to beta diversity in terms of community composition and structure

Legendre andDe Caacuteceres (2013) suggested that total beta diver-sity can be partitioned into Local Contributions toBetaDiversity(LCBDwhicharecomparative indicatorsoftheecologicalunique-nessofthesites)TheLocalContributionstoBetaDiversity(LCBDi)represent the relative contributionsof the samplingunit i to betadiversityLCBDi indicateshowexceptional thecompositionofsitei iswhencomparedtothecentroidofallpointswhichwouldrep-resent a theoretical site with the average species composition ofall the sampling units In the present study the LCBD representsthe degree of uniqueness of each sampling unit in terms of com-position andor structure of community assemblages LCBDi indi-cescanbecalculatedfromthedissimilaritymatricesD(LegendreampDeCaacuteceres2013)OnefirsttransformsthedistancematrixDintomatrixA =(ahi)=(ndash05D2

hi) then centers thematrix as proposedbyGower(1966)

where Iisanidentitymatrixofsizen1isavectorofones(oflengthn)and1primeisitstranspose(LegendreampLegendre2012)HereeachdiagonalelementofmatrixGistheSSivalues(iethesquareddis-tancetothecentroidoftheithsamplingunit)Hencethevectoroflocalcontributionsofthesitestobetadiversity(LCBDi)is

The LCBD indices are scaled to sum to 1 We used functionldquoLCBDcomprdquointheadespatialRpackage(Drayetal2018)avail-ableonCRAN(httpsCRANR-projectorgpackage=adespatial)tocalculatetheLCBDindices

Wecheckedwhetherthere isacorrelationbetweentheLCBDcoefficientscalculatedfromspeciescompositionsizestructureorusingthetwocomponentstogetherHencewecalculatedSpearmanrank correlations pairwise between the three typesof LCBDvec-tors (ieLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRandLCBDSTRvsLCBDCOMPndashSTR)SincetheLCBDindicesindicatethede-greeofuniquenessof thesamplingunits in termsof their speciescompositionandorsizestructureweplottedtheLCBDvaluesonmapsof the30-haplotLargeLCBDvalues indicate thesites thathaveuniquespeciesassemblagesandsmallLCBDvaluesindicatethesites thathaveassemblagesthatareverysimilar to those inothersites Againwe expected LCBDCOMPndashSTR to be correlated to bothLCBDCOMP and LCBDSTR butwith the strength of the correlationdependingontheweightgiventostructuralvscompositionalinfor-mationWethusshowedthetwoextremecasesoftheLCBDmapaccordinga largestweighttothestructuralcomponentandcorre-spondinglythesmallestrelativeweighttothecompositionalcompo-nent(ie1-cmbinsize)andgivingthelargestrelativeweighttothecompositionalcomponent(ie15-cmbinsize)

226emsp|emspSets of explanatory variables environmental and spatial variables

Following Legendre etal (2009)we used altitude convexity andslope to construct third-degreepolynomial functions (ie yieldingninevariables)Themonomialswithexponentsallowthemodelingof nonlinear relationships between the topographic variables andthe response variablesWe calculated the aspect of a quadrat astheaverageangleofthefourtriangularplanesthatdeviatefromthenorthdirectionWe thusused the sin (aspect) and cos (aspect) inorder to include it in a linear regressionmodelWe thereforeob-tained11expandedtopographicvariablesWethencombinedthese11 expanded topographic variables with the eight soil variables(described insection21Studysitesanddatacollection) toobtainthe environmental variables data table (ie 19 variables) for eachquadratWe computed eigenfunctions of distance-basedMoranrsquoseigenvector maps (dbMEM also called Principal Coordinates ofNeighbour Matrices PCNM Borcard Legendre Avois-Jacquet amp

(1)SS(Y) =1

n

nminus1sum

h=1

nsum

i=h+1

D2hi

(2)BD = SS(Y)∕(nminus1)

(3)G =

(

Iminus11

n

)

A

(

Iminus11

n

)

(4)(LCBDi) = (SSi)∕SS(Y) = diag(G)∕SS(Y)

emspensp emsp | emsp261Journal of Vegetation Science

YAO et Al

Tuomisto2004LegendreampLegendre2012Legendreetal2009)acrossthe3000(10mtimes10m)750(20mtimes20m)and120(50mtimes50m)quadratsThedbMEMeigenfunctionswithpositiveeigenval-uesonlywereusedasspatialvariablesWeappliedforwardmodelselection(withpermutationtestsatthe5significanceleveloftheincrease in R2 ateachstep) toextract thesignificantenvironmentvariablesandeigenfunctionsofdbMEMusingthefunctionldquoforwardselrdquointhepackageadespatial(Drayetal2018)

227emsp|emspVariation partitioning of DCOMP DSTR and DCOMPndashSTR

Tocompare the influenceofniche-basedandspatialprocessesoncommunityassembly representedbycommunitycompositionsizestructure or the two components together distance-based re-dundancyanalysis (dbRDALegendreampAnderson1999Legendreamp Legendre 2012)was used to partition the variation of each ofthree community matrices (Borcard Legendre amp Drapeau 1992Legendre etal 2009 Peres-Neto Legendre Dray amp Borcard2006) Specificallyweused the two setsof explanatoryvariables(after forwardmodelselection) topartitionvariation in theprinci-palcoordinatetablesextractedfromDCOMPDSTRDCOMPndashSTRsepa-rately into fractions explained by the four different components(a)purehabitat (b)spatiallystructuredhabitat (c)purespaceand(d)undetermined (BorcardampLegendre1994Borcardetal1992DeCaacuteceresetal 2012Legendreetal 2009Myersetal 2013Punchi-Manage etal 2014) We hypothesized that the niche

processesareresponsiblefortheproportionofvariationexplainedbythepurehabitatandthespatially-structuredhabitatcomponents(a+b)(LaliberteacutePaquetteLegendreampBouchard2009Legendreetal2009)Whilewehypothesizedthattheproportionofvariationexplainedbythepurespatialcomponent(c)isrelatedtoindepend-ent biological processes (eg dispersal limitation competition fa-cilitationhistoricaleventsandJanzenndashConnelleffects)(LegendreampLegendre2012Legendreetal2009Punchi-Manageetal2014)Theundeterminedproportionofvariation(d)mayberelatedtosto-chastic processes or undefined non-spatially-structured biologicalor environmental variables (Dumbrell Nelson Helgason DythamampFitter2010)Thatallowedustoassesstherelativecontributionsoftheenvironmentalandspatialvariablestocommunityassemblyin termsof composition structureor taking the twocomponentstogetherAllanalyseswereperformedusingR(RCoreTeam2017)

3emsp |emspRESULTS

31emsp|emspPairwise dissimilarity in terms of community composition and structure

Wefound thatdissimilaritymatricescomputed fromspeciescom-position(DCOMP)sizestructure(DSTR)andconsideringbothcompo-nentstogether(DCOMPndashSTR)werecorrelatedHoweverthestrengthof the correlationdependedon the sizeofbinsused todiscretizethestructuralvariableandonthesizeof thequadrats (Figure1andashc) Overall the correlation between DCOMP vs DCOMPndashSTR was

F IGURE 1emspThecorrelationsbetweenthepairwisedissimilarityintermsofspeciescomposition(DCOMP)sizestructure(DSTR)andbothcomponentstogether(DCOMPndashSTR)ThecorrelationsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRand DSTR vs DCOMPndashSTRvarywithdbhbinsatthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofRVcoefficientsof1ndash15cmdbhbinsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTRrespectively(d)BoxplotsforRVcoefficientsofthethreepairwisedissimilaritycomparisons(aggregatedoverall1ndash15cmdbhbinsizes)foreachofthethreequadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 2: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

258emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

1emsp |emspINTRODUCTION

Understandingthemechanismsthatdeterminethespatialdistri-butionofspeciesandspeciesdiversityisacentralthemeinecol-ogy (Chave 2004 Chesson 2000 Hutchinson 1961 Ricklefs1990 Vellend 2017) Deterministic niche-based and stochasticneutral processes have beenwidely discussed as potential driv-ers of community assembly (Chesson 2000 HilleRisLambersAdler Harpole Levine ampMayfield 2012Hubbell 2001 2006MayfieldampLevine2010)butthefactorsunderlyingtherelativecontributionof the twoprocessesarestillunresolved (Legendreetal2009Punchi-Manageetal2014vanderPlasetal2015)Niche and neutral theories emphasize different mechanisms assources of species diversity Niche theory predicts that deter-ministicprocessessuchashabitatfilteringandcompetitionshapespeciesassemblagesNeutraltheoryincontrastassumesthatallspecies are essentially functionally equivalent (HilleRisLambersetal 2012Hubbell 20012006Keddy1992) andemphasizesthe importance of stochastic processes in community assemblysuchasrandombirthdeathdispersaleventsspeciationandsto-chasticextinction(Caswell1976Hubbell2001)Itisnowgener-allyacceptedthatboththedeterministicandstochasticprocessesarepotentiallyimportantdeterminantsofthespatialdistributionobserved in community assemblagesAt present however theirrelative importance in shapingdifferent componentsof commu-nityorganization(iethestructuralcompositionalorbothcom-ponentstogether)isnotclear(DeCaacuteceresetal2012Legendreetal2009Punchi-Manageetal2014)Inthepresentstudywedefinedtheldquocompositionalrdquotermasthespeciescompositiondata(egspeciesabundancevalues)Weconstrainedthedefinitionofldquostructuralrdquotorefertothediameteratbreastheightoftheindivid-ualtreesmakingupthecommunity

Thevariationinspeciescompositionobservedamongasetofsamplingunitswithinaregionisoftendescribedasbetadiversity(Whittaker19601972)Theinterestofcommunityecologistsforbetadiversitystemsnotonlyfromthefactthatitlinkslocal(iealphadiversity) and regionaldiversity (ie gammadiversity) (DeCaacuteceresetal2012)butalsobecauseitcanprovidefundamentalinsights into theprocesses thatdetermine the spatialpatternofspecies assemblages (Anderson etal 2011 Chase 2010 Kraftetal 2011 Legendre amp De Caacuteceres 2013Myers etal 2013)Beta diversity can bemeasured inmany different ways (KoleffGastonampLennon2003LegendreBorcardampPeres-Neto2005Legendre amp Legendre 2012 Legendre etal 2009) Beta diver-sityestimatesaremostoftenbasedonspeciescompositionaldata(egspeciesabundancevaluesorspecies incidence)whichtakethe formof a site-by-species datamatrixwith sites in rows andspecies abundances in columns Although species compositiondataarefundamentallyimportanttheyalonemaybeinsufficientfor describing community organization and may neglect othervaluable information to study community assembly processessuchasthestructuralcomponent(egthesizestructureofcon-stituentindividuals)ofacommunity(DeCaacuteceresLegendreampHe

2013FaithAustinBelbinampMargules1985Fangetal2012)The phenomenon of competition asymmetry emphasizes thatlarge individuals usually compete disproportionately with theirsmaller-sized neighbors (Weiner 1990) Big trees control moreabove- and below-ground resources (eg light and mineral nu-trients)thansmalltrees(SchwinningampWeiner1998)ThereforelargerindividualstendtohavegreaterimpactonthefunctionanddynamicsofforestecosystemsthansmallonesMoreovernaturalmulti-species communities may exhibit similar compositions butdifferinotherfeaturessuchasthesizestructureoftheirindividu-als(DeCaacuteceresetal2013)Thedistributionofindividualsizesisalsoan importantcomponenttorepresentandunderstandcom-munity assembly therefore using species abundances only (iethe compositional component) to describe forest beta diversitymay be an oversimplification of the spatial variation of commu-nities In order to get comprehensive insight into the processesthat determine the spatial pattern of species assemblages it isnecessarytoensurefirstthatwehavetheabilitytodescribebetadiversity inacomprehensivewayWhetherornotthestructuralcomponent shouldor couldbeconsideredaltogetherwithotherbeta diversity components has never been investigated and re-mainstobeexplored

In thisstudywegeneralizedtheconventionalapproachto thestudy of beta diversity by considering structural data in additiontocompositionaldataWefirstmeasurethespatialvariationofas-semblagesonthebasisofspeciescompositionandsizestructureofconstituentsWethenusetheenvironmentalandspatialvariablesas explanatory factors to partition the variation in compositionalandstructuralcomponentsofcommunityassemblageWespecifi-callyaddressthefollowingquestions(a)Canwetakeboththespe-ciescompositionalandsizestructuralcomponentsofacommunityintoaccountwhendescribingbetadiversity Isthereacorrelationbetween thesebetadiversity components (b)How is the assess-mentofthesebetadiversitycomponentsaffectedbythesizeofthesampling units (c)When considering both the compositional andstructural components together towhatextentarebetadiversityassessmentsaffectedbytherelativeimportanceaccordedtostruc-tural vs compositional differences (d)What is the relative contri-bution of the environmental and spatial variables to communityassemblyintermsofspeciescompositionsizestructureorconsid-eringbothcomponents

2emsp |emspMATERIAL AND METHODS

21emsp|emspStudy sites and data collection

Ourstudywascarriedout inatemperatemixedbroadleafndashconiferforestinJiaoheJilinProvincenortheasternChinaTheaveragehot-testmonthlytemperatureis217degCinJulyandthecoldestmonthisJanuarywithanaveragedaytemperatureof -186degCTheaverageannualprecipitationis6959mm(ZhangZhaoampGadow2014)Thesoilisabrownforestsoilwitharootabledepthrangingbetween20and100cm (ZhangZhaoZhaoampGadow2012)This studyuses

emspensp emsp | emsp259Journal of Vegetation Science

YAO et Al

datafroma30-ha(500mtimes600m)forestdynamicplot(43deg57928primendash43deg58214primeN127deg45287primendash127deg45790primeE)establishedinthesum-merof2010Theplot issituated inaprotectedold-growthforestina latestageof successionwith littlehumandisturbancedue toits remoteness fromresidential areas (YaoZhangZhangZhaoampGadow2016)

Allindividualswithadiameteratbreastheight(dbh)of1cmormoreintheplotwereidentifiedmeasuredandspatiallymappedin2010Atotalof49684individualtreesbelongingto20familiesand47speciesintheplotwereusedinthepresentstudyTheplotwasdividedinto120(50mtimes50m)750(20mtimes20m)and3000(10mtimes10m)subplotshereaftercalledquadratsTopographicandsoilvari-ableswerealsoavailable foreachquadratFour topographicvari-ables(altitudequadratconvexityslopeandaspect)werecalculatedforeachquadratfollowingtherecommendationofHarmsConditHubbellandFoster(2001)andYamakuraetal(1995)Eightsoilen-vironmentalandnutrientvariablesweremeasuredpHtheamountof organic matter and the total amounts as well as the availablenutrients of nitrogen (N) phosphorus (P) and potassium (K) (ggYanZhangWangZhaoampGadow2015)All laboratoryanalyseswereconductedfollowingtheproceduresrecommendedbytheSoilScienceSocietyofChina(1999)

22emsp|emspStatistical analyses

221emsp|emspCumulative abundance profiles

Theconceptofcumulativeabundanceprofile (CAP)developedbyDeCaacuteceresetal(2013)isdefinedasafunctionthattakestheval-uesofastructuralvariable (egheightdbhetc)as inputandre-turnsthecumulativeabundanceofindividualswhosevaluesofthestructuralvariableareequal toor largerthanthe inputvalueTheCAP framework generalizes traditional species abundance valuesand allows researchers to describe the structural component of acommunityInthepresentstudythestructuralvariablewasdiam-eteratbreastheight(dbh)AccordingtothischoicethevalueofCAPforagivendbhvalueisthecumulativeabundanceoftreeindividualsasbigasorbiggerthantheinputvalueFunctionCAPinfactreplacestheabundancevalueofadbhclassbythesumofabundancesinthisandlargerdbhclasses

222emsp|emspCommunity tables

Following theconventionalmethods speciescomposition tables(ie quadrats in rows species in column and the table contain-ing individual counts)wereassembled in this studywecall thistablethetraditional species composition matrix(YCOMP)InordertogeneralizeatraditionalspeciesabundancevalueanddescribethesizestructurecomponentofthecommunitytheCAPsconsider-ingspeciesidentitywerecalculatedtoobtainthespecies composi-tion combined with structural data matrix(YCOMPndashSTR)TheYCOMPndashSTR isamatrixwithasmanyrowsasplotrecordsandwherecolumnsareorganized inblocksandthereareasmanyblocksasspecies

andeachblockhasasmanycolumnsassizeclassesDisregardingspeciesidentityofthedifferentindividualsCAPswerealsocalcu-latedtoobtainthecommunity structural matrix (YSTR)TheYSTR is amatrixwithasmanyrowsasplotrecordsandasmanycolumnsas size classes

FunctionsldquostratifyvegdatardquoandldquoCAPrdquointhevegclustRpack-age(DeCaacuteceresFontampOliva2010)availableonCRAN(httpsCRANR-projectorgpackage=vegclust) were applied to calculatetheCAPsFunctionsldquostratifyvegdatardquoandldquoCAPrdquorequirediscretiz-ingthestructuralvariableandthenumberofsizebinsaffectstheimportanceaccordedtostructuraldifferencesThustherearede-cisions tobemadewhencreatingYSTR and YCOMPndashSTR particularlyhowwedefine thebinsof thestructuralvariables (egdbhbins)Inthisstudywetestedfrom1-cmbinsizeto15-cmbinsizetodis-cretizedbhintoclassesThat is1cmbinsleadtodbhclasses1ndash22ndash33ndash4andsoonwhereas5cmbinsleadtodbhclasses1ndash56ndash1010ndash15andsoonThesmallerthesizeofdbhbinthemorecolumnswillbeproducedineachblockinthetableYCOMPndashSTRindicatingthatmoreweightisaccordedtodifferencesinstructureandviceversaIfthebinsizewasbigenoughsothatthenumberofcolumnsineachblock in the tableYCOMPndashSTRwasonewewouldhave thatYCOMPndashSTR=YCOMPGenerallythelargerthesizeofdbhbinsthemoresimi-lar will YCOMP and YCOMPndashSTR be

223emsp|emspPairwise dissimilarity in terms of community composition and structure

Wecalculateddissimilaritymatrices between all pairs of quadratsusingthepercentagedifferenceindex(akaBrayndashCurtisdissimilar-ity)oncommunitymatricesYCOMPYSTRandYCOMPndashSTRtoobtainthe compositional dissimilarity matrix (DCOMP) the structural dissimilar-ity matrix (DSTR)andthe compositionalndashstructural dissimilarity matrix (DCOMPndashSTR) respectively In order to explore the pairwise covari-ation between the three kinds of dissimilarity assessments (ieDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTR)wefirstcomputed principal coordinates of each dissimilarity matrix usingprincipalcoordinatesanalysis (PCoA) thencomparedtheresultingmatricesofprincipalcoordinateskeepingallaxesusingtheRVco-efficientWeexpectedthatDCOMPndashSTRwouldbecorrelatedtobothDCOMP and DSTRbutthestrengthofthecorrelationdoesdependonthechosensizeofdiameterbins(ieontheweightgiventostruc-turalvscompositionalinformation)

Function ldquovegdistrdquo with the dissimilarity index ldquobrayrdquo in theveganRpackage(Oksanenetal2018)wasusedtocalculatethedissimilarity matrices D Function ldquopcoardquo in the ape R package(ParadisClaudeampStrimmer2004)wasusedtocomputeprincipalcoordinates of eachdissimilaritymatrixD Thedissimilarities inD matricesweresquare-rootedbeforePCoAinordertomakethema-tricesEuclideanandpreventthegenerationofnegativeeigenvaluesandcomplexPCoAaxes (DeCaacuteceresetal2013)Function ldquocoef-fRVrdquo in the FactoMineR R package (Husson Josse LeampMazet2015)wasusedtocalculatetheRVcoefficientsbetweenthematri-cesofprincipalcoordinates

260emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

224emsp|emspBeta diversity components (BDCOMP BDSTR and BDCOMPndashSTR)

Conventionallybetadiversity (abbreviatedBD) is assessed fromasite-by-speciesdatamatrixotherbasiccharacteristics(egsizeofindividuals)ofthecommunityareignoredInordertogeneral-izetheconceptoftraditionalbetadiversitytoCAPdataweap-pliedtheindexproposedbyLegendreetal (2005)andLegendreandDeCaacuteceres(2013)tocomputebetadiversityasthevarianceofthecommunitydataLegendreandDeCaacuteceres(2013)showedhow to compute the total variance of the community composi-tion datamatrix from a dissimilaritymatrixD The total sum ofsquaresSS(Y)canbeobtainedfromadissimilaritymatrixDusingEquation1(LegendreampDeCaacuteceres2013LegendreampLegendre2012) Dividing SS(Y) by (n - 1) produces the classical unbiasedestimateofthetotalvarianceofYcomputedfromauser-selectedEuclidean dissimilarity matrixD (ie Equation 2)We used thatapproach to calculate the traditional compositional beta diversity (BDCOMP) the structural beta diversity (BDSTR) and the composi-tionalndashstructural beta diversity(BDCOMPndashSTR)respectivelyusingthefollowingequations

D =(Dhi)isanntimesnsymmetricdissimilaritymatrix(eitherDCOMP

DSTRorDCOMPndashSTR) i and h representthesamplingunitsn is thenumberofthesamplingunits If thecalculationsstartwithaper-centagedifferenceDmatrixwhichisnon-Euclideanonecomputesthesquare-rootsoftheDvaluesintheDmatrixtomakeitEuclideanbeforeusingthetransformedDvaluesinEquations1and2

225emsp|emspLocal contributions to beta diversity in terms of community composition and structure

Legendre andDe Caacuteceres (2013) suggested that total beta diver-sity can be partitioned into Local Contributions toBetaDiversity(LCBDwhicharecomparative indicatorsoftheecologicalunique-nessofthesites)TheLocalContributionstoBetaDiversity(LCBDi)represent the relative contributionsof the samplingunit i to betadiversityLCBDi indicateshowexceptional thecompositionofsitei iswhencomparedtothecentroidofallpointswhichwouldrep-resent a theoretical site with the average species composition ofall the sampling units In the present study the LCBD representsthe degree of uniqueness of each sampling unit in terms of com-position andor structure of community assemblages LCBDi indi-cescanbecalculatedfromthedissimilaritymatricesD(LegendreampDeCaacuteceres2013)OnefirsttransformsthedistancematrixDintomatrixA =(ahi)=(ndash05D2

hi) then centers thematrix as proposedbyGower(1966)

where Iisanidentitymatrixofsizen1isavectorofones(oflengthn)and1primeisitstranspose(LegendreampLegendre2012)HereeachdiagonalelementofmatrixGistheSSivalues(iethesquareddis-tancetothecentroidoftheithsamplingunit)Hencethevectoroflocalcontributionsofthesitestobetadiversity(LCBDi)is

The LCBD indices are scaled to sum to 1 We used functionldquoLCBDcomprdquointheadespatialRpackage(Drayetal2018)avail-ableonCRAN(httpsCRANR-projectorgpackage=adespatial)tocalculatetheLCBDindices

Wecheckedwhetherthere isacorrelationbetweentheLCBDcoefficientscalculatedfromspeciescompositionsizestructureorusingthetwocomponentstogetherHencewecalculatedSpearmanrank correlations pairwise between the three typesof LCBDvec-tors (ieLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRandLCBDSTRvsLCBDCOMPndashSTR)SincetheLCBDindicesindicatethede-greeofuniquenessof thesamplingunits in termsof their speciescompositionandorsizestructureweplottedtheLCBDvaluesonmapsof the30-haplotLargeLCBDvalues indicate thesites thathaveuniquespeciesassemblagesandsmallLCBDvaluesindicatethesites thathaveassemblagesthatareverysimilar to those inothersites Againwe expected LCBDCOMPndashSTR to be correlated to bothLCBDCOMP and LCBDSTR butwith the strength of the correlationdependingontheweightgiventostructuralvscompositionalinfor-mationWethusshowedthetwoextremecasesoftheLCBDmapaccordinga largestweighttothestructuralcomponentandcorre-spondinglythesmallestrelativeweighttothecompositionalcompo-nent(ie1-cmbinsize)andgivingthelargestrelativeweighttothecompositionalcomponent(ie15-cmbinsize)

226emsp|emspSets of explanatory variables environmental and spatial variables

Following Legendre etal (2009)we used altitude convexity andslope to construct third-degreepolynomial functions (ie yieldingninevariables)Themonomialswithexponentsallowthemodelingof nonlinear relationships between the topographic variables andthe response variablesWe calculated the aspect of a quadrat astheaverageangleofthefourtriangularplanesthatdeviatefromthenorthdirectionWe thusused the sin (aspect) and cos (aspect) inorder to include it in a linear regressionmodelWe thereforeob-tained11expandedtopographicvariablesWethencombinedthese11 expanded topographic variables with the eight soil variables(described insection21Studysitesanddatacollection) toobtainthe environmental variables data table (ie 19 variables) for eachquadratWe computed eigenfunctions of distance-basedMoranrsquoseigenvector maps (dbMEM also called Principal Coordinates ofNeighbour Matrices PCNM Borcard Legendre Avois-Jacquet amp

(1)SS(Y) =1

n

nminus1sum

h=1

nsum

i=h+1

D2hi

(2)BD = SS(Y)∕(nminus1)

(3)G =

(

Iminus11

n

)

A

(

Iminus11

n

)

(4)(LCBDi) = (SSi)∕SS(Y) = diag(G)∕SS(Y)

emspensp emsp | emsp261Journal of Vegetation Science

YAO et Al

Tuomisto2004LegendreampLegendre2012Legendreetal2009)acrossthe3000(10mtimes10m)750(20mtimes20m)and120(50mtimes50m)quadratsThedbMEMeigenfunctionswithpositiveeigenval-uesonlywereusedasspatialvariablesWeappliedforwardmodelselection(withpermutationtestsatthe5significanceleveloftheincrease in R2 ateachstep) toextract thesignificantenvironmentvariablesandeigenfunctionsofdbMEMusingthefunctionldquoforwardselrdquointhepackageadespatial(Drayetal2018)

227emsp|emspVariation partitioning of DCOMP DSTR and DCOMPndashSTR

Tocompare the influenceofniche-basedandspatialprocessesoncommunityassembly representedbycommunitycompositionsizestructure or the two components together distance-based re-dundancyanalysis (dbRDALegendreampAnderson1999Legendreamp Legendre 2012)was used to partition the variation of each ofthree community matrices (Borcard Legendre amp Drapeau 1992Legendre etal 2009 Peres-Neto Legendre Dray amp Borcard2006) Specificallyweused the two setsof explanatoryvariables(after forwardmodelselection) topartitionvariation in theprinci-palcoordinatetablesextractedfromDCOMPDSTRDCOMPndashSTRsepa-rately into fractions explained by the four different components(a)purehabitat (b)spatiallystructuredhabitat (c)purespaceand(d)undetermined (BorcardampLegendre1994Borcardetal1992DeCaacuteceresetal 2012Legendreetal 2009Myersetal 2013Punchi-Manage etal 2014) We hypothesized that the niche

processesareresponsiblefortheproportionofvariationexplainedbythepurehabitatandthespatially-structuredhabitatcomponents(a+b)(LaliberteacutePaquetteLegendreampBouchard2009Legendreetal2009)Whilewehypothesizedthattheproportionofvariationexplainedbythepurespatialcomponent(c)isrelatedtoindepend-ent biological processes (eg dispersal limitation competition fa-cilitationhistoricaleventsandJanzenndashConnelleffects)(LegendreampLegendre2012Legendreetal2009Punchi-Manageetal2014)Theundeterminedproportionofvariation(d)mayberelatedtosto-chastic processes or undefined non-spatially-structured biologicalor environmental variables (Dumbrell Nelson Helgason DythamampFitter2010)Thatallowedustoassesstherelativecontributionsoftheenvironmentalandspatialvariablestocommunityassemblyin termsof composition structureor taking the twocomponentstogetherAllanalyseswereperformedusingR(RCoreTeam2017)

3emsp |emspRESULTS

31emsp|emspPairwise dissimilarity in terms of community composition and structure

Wefound thatdissimilaritymatricescomputed fromspeciescom-position(DCOMP)sizestructure(DSTR)andconsideringbothcompo-nentstogether(DCOMPndashSTR)werecorrelatedHoweverthestrengthof the correlationdependedon the sizeofbinsused todiscretizethestructuralvariableandonthesizeof thequadrats (Figure1andashc) Overall the correlation between DCOMP vs DCOMPndashSTR was

F IGURE 1emspThecorrelationsbetweenthepairwisedissimilarityintermsofspeciescomposition(DCOMP)sizestructure(DSTR)andbothcomponentstogether(DCOMPndashSTR)ThecorrelationsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRand DSTR vs DCOMPndashSTRvarywithdbhbinsatthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofRVcoefficientsof1ndash15cmdbhbinsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTRrespectively(d)BoxplotsforRVcoefficientsofthethreepairwisedissimilaritycomparisons(aggregatedoverall1ndash15cmdbhbinsizes)foreachofthethreequadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 3: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

emspensp emsp | emsp259Journal of Vegetation Science

YAO et Al

datafroma30-ha(500mtimes600m)forestdynamicplot(43deg57928primendash43deg58214primeN127deg45287primendash127deg45790primeE)establishedinthesum-merof2010Theplot issituated inaprotectedold-growthforestina latestageof successionwith littlehumandisturbancedue toits remoteness fromresidential areas (YaoZhangZhangZhaoampGadow2016)

Allindividualswithadiameteratbreastheight(dbh)of1cmormoreintheplotwereidentifiedmeasuredandspatiallymappedin2010Atotalof49684individualtreesbelongingto20familiesand47speciesintheplotwereusedinthepresentstudyTheplotwasdividedinto120(50mtimes50m)750(20mtimes20m)and3000(10mtimes10m)subplotshereaftercalledquadratsTopographicandsoilvari-ableswerealsoavailable foreachquadratFour topographicvari-ables(altitudequadratconvexityslopeandaspect)werecalculatedforeachquadratfollowingtherecommendationofHarmsConditHubbellandFoster(2001)andYamakuraetal(1995)Eightsoilen-vironmentalandnutrientvariablesweremeasuredpHtheamountof organic matter and the total amounts as well as the availablenutrients of nitrogen (N) phosphorus (P) and potassium (K) (ggYanZhangWangZhaoampGadow2015)All laboratoryanalyseswereconductedfollowingtheproceduresrecommendedbytheSoilScienceSocietyofChina(1999)

22emsp|emspStatistical analyses

221emsp|emspCumulative abundance profiles

Theconceptofcumulativeabundanceprofile (CAP)developedbyDeCaacuteceresetal(2013)isdefinedasafunctionthattakestheval-uesofastructuralvariable (egheightdbhetc)as inputandre-turnsthecumulativeabundanceofindividualswhosevaluesofthestructuralvariableareequal toor largerthanthe inputvalueTheCAP framework generalizes traditional species abundance valuesand allows researchers to describe the structural component of acommunityInthepresentstudythestructuralvariablewasdiam-eteratbreastheight(dbh)AccordingtothischoicethevalueofCAPforagivendbhvalueisthecumulativeabundanceoftreeindividualsasbigasorbiggerthantheinputvalueFunctionCAPinfactreplacestheabundancevalueofadbhclassbythesumofabundancesinthisandlargerdbhclasses

222emsp|emspCommunity tables

Following theconventionalmethods speciescomposition tables(ie quadrats in rows species in column and the table contain-ing individual counts)wereassembled in this studywecall thistablethetraditional species composition matrix(YCOMP)InordertogeneralizeatraditionalspeciesabundancevalueanddescribethesizestructurecomponentofthecommunitytheCAPsconsider-ingspeciesidentitywerecalculatedtoobtainthespecies composi-tion combined with structural data matrix(YCOMPndashSTR)TheYCOMPndashSTR isamatrixwithasmanyrowsasplotrecordsandwherecolumnsareorganized inblocksandthereareasmanyblocksasspecies

andeachblockhasasmanycolumnsassizeclassesDisregardingspeciesidentityofthedifferentindividualsCAPswerealsocalcu-latedtoobtainthecommunity structural matrix (YSTR)TheYSTR is amatrixwithasmanyrowsasplotrecordsandasmanycolumnsas size classes

FunctionsldquostratifyvegdatardquoandldquoCAPrdquointhevegclustRpack-age(DeCaacuteceresFontampOliva2010)availableonCRAN(httpsCRANR-projectorgpackage=vegclust) were applied to calculatetheCAPsFunctionsldquostratifyvegdatardquoandldquoCAPrdquorequirediscretiz-ingthestructuralvariableandthenumberofsizebinsaffectstheimportanceaccordedtostructuraldifferencesThustherearede-cisions tobemadewhencreatingYSTR and YCOMPndashSTR particularlyhowwedefine thebinsof thestructuralvariables (egdbhbins)Inthisstudywetestedfrom1-cmbinsizeto15-cmbinsizetodis-cretizedbhintoclassesThat is1cmbinsleadtodbhclasses1ndash22ndash33ndash4andsoonwhereas5cmbinsleadtodbhclasses1ndash56ndash1010ndash15andsoonThesmallerthesizeofdbhbinthemorecolumnswillbeproducedineachblockinthetableYCOMPndashSTRindicatingthatmoreweightisaccordedtodifferencesinstructureandviceversaIfthebinsizewasbigenoughsothatthenumberofcolumnsineachblock in the tableYCOMPndashSTRwasonewewouldhave thatYCOMPndashSTR=YCOMPGenerallythelargerthesizeofdbhbinsthemoresimi-lar will YCOMP and YCOMPndashSTR be

223emsp|emspPairwise dissimilarity in terms of community composition and structure

Wecalculateddissimilaritymatrices between all pairs of quadratsusingthepercentagedifferenceindex(akaBrayndashCurtisdissimilar-ity)oncommunitymatricesYCOMPYSTRandYCOMPndashSTRtoobtainthe compositional dissimilarity matrix (DCOMP) the structural dissimilar-ity matrix (DSTR)andthe compositionalndashstructural dissimilarity matrix (DCOMPndashSTR) respectively In order to explore the pairwise covari-ation between the three kinds of dissimilarity assessments (ieDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTR)wefirstcomputed principal coordinates of each dissimilarity matrix usingprincipalcoordinatesanalysis (PCoA) thencomparedtheresultingmatricesofprincipalcoordinateskeepingallaxesusingtheRVco-efficientWeexpectedthatDCOMPndashSTRwouldbecorrelatedtobothDCOMP and DSTRbutthestrengthofthecorrelationdoesdependonthechosensizeofdiameterbins(ieontheweightgiventostruc-turalvscompositionalinformation)

Function ldquovegdistrdquo with the dissimilarity index ldquobrayrdquo in theveganRpackage(Oksanenetal2018)wasusedtocalculatethedissimilarity matrices D Function ldquopcoardquo in the ape R package(ParadisClaudeampStrimmer2004)wasusedtocomputeprincipalcoordinates of eachdissimilaritymatrixD Thedissimilarities inD matricesweresquare-rootedbeforePCoAinordertomakethema-tricesEuclideanandpreventthegenerationofnegativeeigenvaluesandcomplexPCoAaxes (DeCaacuteceresetal2013)Function ldquocoef-fRVrdquo in the FactoMineR R package (Husson Josse LeampMazet2015)wasusedtocalculatetheRVcoefficientsbetweenthematri-cesofprincipalcoordinates

260emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

224emsp|emspBeta diversity components (BDCOMP BDSTR and BDCOMPndashSTR)

Conventionallybetadiversity (abbreviatedBD) is assessed fromasite-by-speciesdatamatrixotherbasiccharacteristics(egsizeofindividuals)ofthecommunityareignoredInordertogeneral-izetheconceptoftraditionalbetadiversitytoCAPdataweap-pliedtheindexproposedbyLegendreetal (2005)andLegendreandDeCaacuteceres(2013)tocomputebetadiversityasthevarianceofthecommunitydataLegendreandDeCaacuteceres(2013)showedhow to compute the total variance of the community composi-tion datamatrix from a dissimilaritymatrixD The total sum ofsquaresSS(Y)canbeobtainedfromadissimilaritymatrixDusingEquation1(LegendreampDeCaacuteceres2013LegendreampLegendre2012) Dividing SS(Y) by (n - 1) produces the classical unbiasedestimateofthetotalvarianceofYcomputedfromauser-selectedEuclidean dissimilarity matrixD (ie Equation 2)We used thatapproach to calculate the traditional compositional beta diversity (BDCOMP) the structural beta diversity (BDSTR) and the composi-tionalndashstructural beta diversity(BDCOMPndashSTR)respectivelyusingthefollowingequations

D =(Dhi)isanntimesnsymmetricdissimilaritymatrix(eitherDCOMP

DSTRorDCOMPndashSTR) i and h representthesamplingunitsn is thenumberofthesamplingunits If thecalculationsstartwithaper-centagedifferenceDmatrixwhichisnon-Euclideanonecomputesthesquare-rootsoftheDvaluesintheDmatrixtomakeitEuclideanbeforeusingthetransformedDvaluesinEquations1and2

225emsp|emspLocal contributions to beta diversity in terms of community composition and structure

Legendre andDe Caacuteceres (2013) suggested that total beta diver-sity can be partitioned into Local Contributions toBetaDiversity(LCBDwhicharecomparative indicatorsoftheecologicalunique-nessofthesites)TheLocalContributionstoBetaDiversity(LCBDi)represent the relative contributionsof the samplingunit i to betadiversityLCBDi indicateshowexceptional thecompositionofsitei iswhencomparedtothecentroidofallpointswhichwouldrep-resent a theoretical site with the average species composition ofall the sampling units In the present study the LCBD representsthe degree of uniqueness of each sampling unit in terms of com-position andor structure of community assemblages LCBDi indi-cescanbecalculatedfromthedissimilaritymatricesD(LegendreampDeCaacuteceres2013)OnefirsttransformsthedistancematrixDintomatrixA =(ahi)=(ndash05D2

hi) then centers thematrix as proposedbyGower(1966)

where Iisanidentitymatrixofsizen1isavectorofones(oflengthn)and1primeisitstranspose(LegendreampLegendre2012)HereeachdiagonalelementofmatrixGistheSSivalues(iethesquareddis-tancetothecentroidoftheithsamplingunit)Hencethevectoroflocalcontributionsofthesitestobetadiversity(LCBDi)is

The LCBD indices are scaled to sum to 1 We used functionldquoLCBDcomprdquointheadespatialRpackage(Drayetal2018)avail-ableonCRAN(httpsCRANR-projectorgpackage=adespatial)tocalculatetheLCBDindices

Wecheckedwhetherthere isacorrelationbetweentheLCBDcoefficientscalculatedfromspeciescompositionsizestructureorusingthetwocomponentstogetherHencewecalculatedSpearmanrank correlations pairwise between the three typesof LCBDvec-tors (ieLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRandLCBDSTRvsLCBDCOMPndashSTR)SincetheLCBDindicesindicatethede-greeofuniquenessof thesamplingunits in termsof their speciescompositionandorsizestructureweplottedtheLCBDvaluesonmapsof the30-haplotLargeLCBDvalues indicate thesites thathaveuniquespeciesassemblagesandsmallLCBDvaluesindicatethesites thathaveassemblagesthatareverysimilar to those inothersites Againwe expected LCBDCOMPndashSTR to be correlated to bothLCBDCOMP and LCBDSTR butwith the strength of the correlationdependingontheweightgiventostructuralvscompositionalinfor-mationWethusshowedthetwoextremecasesoftheLCBDmapaccordinga largestweighttothestructuralcomponentandcorre-spondinglythesmallestrelativeweighttothecompositionalcompo-nent(ie1-cmbinsize)andgivingthelargestrelativeweighttothecompositionalcomponent(ie15-cmbinsize)

226emsp|emspSets of explanatory variables environmental and spatial variables

Following Legendre etal (2009)we used altitude convexity andslope to construct third-degreepolynomial functions (ie yieldingninevariables)Themonomialswithexponentsallowthemodelingof nonlinear relationships between the topographic variables andthe response variablesWe calculated the aspect of a quadrat astheaverageangleofthefourtriangularplanesthatdeviatefromthenorthdirectionWe thusused the sin (aspect) and cos (aspect) inorder to include it in a linear regressionmodelWe thereforeob-tained11expandedtopographicvariablesWethencombinedthese11 expanded topographic variables with the eight soil variables(described insection21Studysitesanddatacollection) toobtainthe environmental variables data table (ie 19 variables) for eachquadratWe computed eigenfunctions of distance-basedMoranrsquoseigenvector maps (dbMEM also called Principal Coordinates ofNeighbour Matrices PCNM Borcard Legendre Avois-Jacquet amp

(1)SS(Y) =1

n

nminus1sum

h=1

nsum

i=h+1

D2hi

(2)BD = SS(Y)∕(nminus1)

(3)G =

(

Iminus11

n

)

A

(

Iminus11

n

)

(4)(LCBDi) = (SSi)∕SS(Y) = diag(G)∕SS(Y)

emspensp emsp | emsp261Journal of Vegetation Science

YAO et Al

Tuomisto2004LegendreampLegendre2012Legendreetal2009)acrossthe3000(10mtimes10m)750(20mtimes20m)and120(50mtimes50m)quadratsThedbMEMeigenfunctionswithpositiveeigenval-uesonlywereusedasspatialvariablesWeappliedforwardmodelselection(withpermutationtestsatthe5significanceleveloftheincrease in R2 ateachstep) toextract thesignificantenvironmentvariablesandeigenfunctionsofdbMEMusingthefunctionldquoforwardselrdquointhepackageadespatial(Drayetal2018)

227emsp|emspVariation partitioning of DCOMP DSTR and DCOMPndashSTR

Tocompare the influenceofniche-basedandspatialprocessesoncommunityassembly representedbycommunitycompositionsizestructure or the two components together distance-based re-dundancyanalysis (dbRDALegendreampAnderson1999Legendreamp Legendre 2012)was used to partition the variation of each ofthree community matrices (Borcard Legendre amp Drapeau 1992Legendre etal 2009 Peres-Neto Legendre Dray amp Borcard2006) Specificallyweused the two setsof explanatoryvariables(after forwardmodelselection) topartitionvariation in theprinci-palcoordinatetablesextractedfromDCOMPDSTRDCOMPndashSTRsepa-rately into fractions explained by the four different components(a)purehabitat (b)spatiallystructuredhabitat (c)purespaceand(d)undetermined (BorcardampLegendre1994Borcardetal1992DeCaacuteceresetal 2012Legendreetal 2009Myersetal 2013Punchi-Manage etal 2014) We hypothesized that the niche

processesareresponsiblefortheproportionofvariationexplainedbythepurehabitatandthespatially-structuredhabitatcomponents(a+b)(LaliberteacutePaquetteLegendreampBouchard2009Legendreetal2009)Whilewehypothesizedthattheproportionofvariationexplainedbythepurespatialcomponent(c)isrelatedtoindepend-ent biological processes (eg dispersal limitation competition fa-cilitationhistoricaleventsandJanzenndashConnelleffects)(LegendreampLegendre2012Legendreetal2009Punchi-Manageetal2014)Theundeterminedproportionofvariation(d)mayberelatedtosto-chastic processes or undefined non-spatially-structured biologicalor environmental variables (Dumbrell Nelson Helgason DythamampFitter2010)Thatallowedustoassesstherelativecontributionsoftheenvironmentalandspatialvariablestocommunityassemblyin termsof composition structureor taking the twocomponentstogetherAllanalyseswereperformedusingR(RCoreTeam2017)

3emsp |emspRESULTS

31emsp|emspPairwise dissimilarity in terms of community composition and structure

Wefound thatdissimilaritymatricescomputed fromspeciescom-position(DCOMP)sizestructure(DSTR)andconsideringbothcompo-nentstogether(DCOMPndashSTR)werecorrelatedHoweverthestrengthof the correlationdependedon the sizeofbinsused todiscretizethestructuralvariableandonthesizeof thequadrats (Figure1andashc) Overall the correlation between DCOMP vs DCOMPndashSTR was

F IGURE 1emspThecorrelationsbetweenthepairwisedissimilarityintermsofspeciescomposition(DCOMP)sizestructure(DSTR)andbothcomponentstogether(DCOMPndashSTR)ThecorrelationsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRand DSTR vs DCOMPndashSTRvarywithdbhbinsatthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofRVcoefficientsof1ndash15cmdbhbinsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTRrespectively(d)BoxplotsforRVcoefficientsofthethreepairwisedissimilaritycomparisons(aggregatedoverall1ndash15cmdbhbinsizes)foreachofthethreequadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 4: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

260emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

224emsp|emspBeta diversity components (BDCOMP BDSTR and BDCOMPndashSTR)

Conventionallybetadiversity (abbreviatedBD) is assessed fromasite-by-speciesdatamatrixotherbasiccharacteristics(egsizeofindividuals)ofthecommunityareignoredInordertogeneral-izetheconceptoftraditionalbetadiversitytoCAPdataweap-pliedtheindexproposedbyLegendreetal (2005)andLegendreandDeCaacuteceres(2013)tocomputebetadiversityasthevarianceofthecommunitydataLegendreandDeCaacuteceres(2013)showedhow to compute the total variance of the community composi-tion datamatrix from a dissimilaritymatrixD The total sum ofsquaresSS(Y)canbeobtainedfromadissimilaritymatrixDusingEquation1(LegendreampDeCaacuteceres2013LegendreampLegendre2012) Dividing SS(Y) by (n - 1) produces the classical unbiasedestimateofthetotalvarianceofYcomputedfromauser-selectedEuclidean dissimilarity matrixD (ie Equation 2)We used thatapproach to calculate the traditional compositional beta diversity (BDCOMP) the structural beta diversity (BDSTR) and the composi-tionalndashstructural beta diversity(BDCOMPndashSTR)respectivelyusingthefollowingequations

D =(Dhi)isanntimesnsymmetricdissimilaritymatrix(eitherDCOMP

DSTRorDCOMPndashSTR) i and h representthesamplingunitsn is thenumberofthesamplingunits If thecalculationsstartwithaper-centagedifferenceDmatrixwhichisnon-Euclideanonecomputesthesquare-rootsoftheDvaluesintheDmatrixtomakeitEuclideanbeforeusingthetransformedDvaluesinEquations1and2

225emsp|emspLocal contributions to beta diversity in terms of community composition and structure

Legendre andDe Caacuteceres (2013) suggested that total beta diver-sity can be partitioned into Local Contributions toBetaDiversity(LCBDwhicharecomparative indicatorsoftheecologicalunique-nessofthesites)TheLocalContributionstoBetaDiversity(LCBDi)represent the relative contributionsof the samplingunit i to betadiversityLCBDi indicateshowexceptional thecompositionofsitei iswhencomparedtothecentroidofallpointswhichwouldrep-resent a theoretical site with the average species composition ofall the sampling units In the present study the LCBD representsthe degree of uniqueness of each sampling unit in terms of com-position andor structure of community assemblages LCBDi indi-cescanbecalculatedfromthedissimilaritymatricesD(LegendreampDeCaacuteceres2013)OnefirsttransformsthedistancematrixDintomatrixA =(ahi)=(ndash05D2

hi) then centers thematrix as proposedbyGower(1966)

where Iisanidentitymatrixofsizen1isavectorofones(oflengthn)and1primeisitstranspose(LegendreampLegendre2012)HereeachdiagonalelementofmatrixGistheSSivalues(iethesquareddis-tancetothecentroidoftheithsamplingunit)Hencethevectoroflocalcontributionsofthesitestobetadiversity(LCBDi)is

The LCBD indices are scaled to sum to 1 We used functionldquoLCBDcomprdquointheadespatialRpackage(Drayetal2018)avail-ableonCRAN(httpsCRANR-projectorgpackage=adespatial)tocalculatetheLCBDindices

Wecheckedwhetherthere isacorrelationbetweentheLCBDcoefficientscalculatedfromspeciescompositionsizestructureorusingthetwocomponentstogetherHencewecalculatedSpearmanrank correlations pairwise between the three typesof LCBDvec-tors (ieLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRandLCBDSTRvsLCBDCOMPndashSTR)SincetheLCBDindicesindicatethede-greeofuniquenessof thesamplingunits in termsof their speciescompositionandorsizestructureweplottedtheLCBDvaluesonmapsof the30-haplotLargeLCBDvalues indicate thesites thathaveuniquespeciesassemblagesandsmallLCBDvaluesindicatethesites thathaveassemblagesthatareverysimilar to those inothersites Againwe expected LCBDCOMPndashSTR to be correlated to bothLCBDCOMP and LCBDSTR butwith the strength of the correlationdependingontheweightgiventostructuralvscompositionalinfor-mationWethusshowedthetwoextremecasesoftheLCBDmapaccordinga largestweighttothestructuralcomponentandcorre-spondinglythesmallestrelativeweighttothecompositionalcompo-nent(ie1-cmbinsize)andgivingthelargestrelativeweighttothecompositionalcomponent(ie15-cmbinsize)

226emsp|emspSets of explanatory variables environmental and spatial variables

Following Legendre etal (2009)we used altitude convexity andslope to construct third-degreepolynomial functions (ie yieldingninevariables)Themonomialswithexponentsallowthemodelingof nonlinear relationships between the topographic variables andthe response variablesWe calculated the aspect of a quadrat astheaverageangleofthefourtriangularplanesthatdeviatefromthenorthdirectionWe thusused the sin (aspect) and cos (aspect) inorder to include it in a linear regressionmodelWe thereforeob-tained11expandedtopographicvariablesWethencombinedthese11 expanded topographic variables with the eight soil variables(described insection21Studysitesanddatacollection) toobtainthe environmental variables data table (ie 19 variables) for eachquadratWe computed eigenfunctions of distance-basedMoranrsquoseigenvector maps (dbMEM also called Principal Coordinates ofNeighbour Matrices PCNM Borcard Legendre Avois-Jacquet amp

(1)SS(Y) =1

n

nminus1sum

h=1

nsum

i=h+1

D2hi

(2)BD = SS(Y)∕(nminus1)

(3)G =

(

Iminus11

n

)

A

(

Iminus11

n

)

(4)(LCBDi) = (SSi)∕SS(Y) = diag(G)∕SS(Y)

emspensp emsp | emsp261Journal of Vegetation Science

YAO et Al

Tuomisto2004LegendreampLegendre2012Legendreetal2009)acrossthe3000(10mtimes10m)750(20mtimes20m)and120(50mtimes50m)quadratsThedbMEMeigenfunctionswithpositiveeigenval-uesonlywereusedasspatialvariablesWeappliedforwardmodelselection(withpermutationtestsatthe5significanceleveloftheincrease in R2 ateachstep) toextract thesignificantenvironmentvariablesandeigenfunctionsofdbMEMusingthefunctionldquoforwardselrdquointhepackageadespatial(Drayetal2018)

227emsp|emspVariation partitioning of DCOMP DSTR and DCOMPndashSTR

Tocompare the influenceofniche-basedandspatialprocessesoncommunityassembly representedbycommunitycompositionsizestructure or the two components together distance-based re-dundancyanalysis (dbRDALegendreampAnderson1999Legendreamp Legendre 2012)was used to partition the variation of each ofthree community matrices (Borcard Legendre amp Drapeau 1992Legendre etal 2009 Peres-Neto Legendre Dray amp Borcard2006) Specificallyweused the two setsof explanatoryvariables(after forwardmodelselection) topartitionvariation in theprinci-palcoordinatetablesextractedfromDCOMPDSTRDCOMPndashSTRsepa-rately into fractions explained by the four different components(a)purehabitat (b)spatiallystructuredhabitat (c)purespaceand(d)undetermined (BorcardampLegendre1994Borcardetal1992DeCaacuteceresetal 2012Legendreetal 2009Myersetal 2013Punchi-Manage etal 2014) We hypothesized that the niche

processesareresponsiblefortheproportionofvariationexplainedbythepurehabitatandthespatially-structuredhabitatcomponents(a+b)(LaliberteacutePaquetteLegendreampBouchard2009Legendreetal2009)Whilewehypothesizedthattheproportionofvariationexplainedbythepurespatialcomponent(c)isrelatedtoindepend-ent biological processes (eg dispersal limitation competition fa-cilitationhistoricaleventsandJanzenndashConnelleffects)(LegendreampLegendre2012Legendreetal2009Punchi-Manageetal2014)Theundeterminedproportionofvariation(d)mayberelatedtosto-chastic processes or undefined non-spatially-structured biologicalor environmental variables (Dumbrell Nelson Helgason DythamampFitter2010)Thatallowedustoassesstherelativecontributionsoftheenvironmentalandspatialvariablestocommunityassemblyin termsof composition structureor taking the twocomponentstogetherAllanalyseswereperformedusingR(RCoreTeam2017)

3emsp |emspRESULTS

31emsp|emspPairwise dissimilarity in terms of community composition and structure

Wefound thatdissimilaritymatricescomputed fromspeciescom-position(DCOMP)sizestructure(DSTR)andconsideringbothcompo-nentstogether(DCOMPndashSTR)werecorrelatedHoweverthestrengthof the correlationdependedon the sizeofbinsused todiscretizethestructuralvariableandonthesizeof thequadrats (Figure1andashc) Overall the correlation between DCOMP vs DCOMPndashSTR was

F IGURE 1emspThecorrelationsbetweenthepairwisedissimilarityintermsofspeciescomposition(DCOMP)sizestructure(DSTR)andbothcomponentstogether(DCOMPndashSTR)ThecorrelationsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRand DSTR vs DCOMPndashSTRvarywithdbhbinsatthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofRVcoefficientsof1ndash15cmdbhbinsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTRrespectively(d)BoxplotsforRVcoefficientsofthethreepairwisedissimilaritycomparisons(aggregatedoverall1ndash15cmdbhbinsizes)foreachofthethreequadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 5: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

emspensp emsp | emsp261Journal of Vegetation Science

YAO et Al

Tuomisto2004LegendreampLegendre2012Legendreetal2009)acrossthe3000(10mtimes10m)750(20mtimes20m)and120(50mtimes50m)quadratsThedbMEMeigenfunctionswithpositiveeigenval-uesonlywereusedasspatialvariablesWeappliedforwardmodelselection(withpermutationtestsatthe5significanceleveloftheincrease in R2 ateachstep) toextract thesignificantenvironmentvariablesandeigenfunctionsofdbMEMusingthefunctionldquoforwardselrdquointhepackageadespatial(Drayetal2018)

227emsp|emspVariation partitioning of DCOMP DSTR and DCOMPndashSTR

Tocompare the influenceofniche-basedandspatialprocessesoncommunityassembly representedbycommunitycompositionsizestructure or the two components together distance-based re-dundancyanalysis (dbRDALegendreampAnderson1999Legendreamp Legendre 2012)was used to partition the variation of each ofthree community matrices (Borcard Legendre amp Drapeau 1992Legendre etal 2009 Peres-Neto Legendre Dray amp Borcard2006) Specificallyweused the two setsof explanatoryvariables(after forwardmodelselection) topartitionvariation in theprinci-palcoordinatetablesextractedfromDCOMPDSTRDCOMPndashSTRsepa-rately into fractions explained by the four different components(a)purehabitat (b)spatiallystructuredhabitat (c)purespaceand(d)undetermined (BorcardampLegendre1994Borcardetal1992DeCaacuteceresetal 2012Legendreetal 2009Myersetal 2013Punchi-Manage etal 2014) We hypothesized that the niche

processesareresponsiblefortheproportionofvariationexplainedbythepurehabitatandthespatially-structuredhabitatcomponents(a+b)(LaliberteacutePaquetteLegendreampBouchard2009Legendreetal2009)Whilewehypothesizedthattheproportionofvariationexplainedbythepurespatialcomponent(c)isrelatedtoindepend-ent biological processes (eg dispersal limitation competition fa-cilitationhistoricaleventsandJanzenndashConnelleffects)(LegendreampLegendre2012Legendreetal2009Punchi-Manageetal2014)Theundeterminedproportionofvariation(d)mayberelatedtosto-chastic processes or undefined non-spatially-structured biologicalor environmental variables (Dumbrell Nelson Helgason DythamampFitter2010)Thatallowedustoassesstherelativecontributionsoftheenvironmentalandspatialvariablestocommunityassemblyin termsof composition structureor taking the twocomponentstogetherAllanalyseswereperformedusingR(RCoreTeam2017)

3emsp |emspRESULTS

31emsp|emspPairwise dissimilarity in terms of community composition and structure

Wefound thatdissimilaritymatricescomputed fromspeciescom-position(DCOMP)sizestructure(DSTR)andconsideringbothcompo-nentstogether(DCOMPndashSTR)werecorrelatedHoweverthestrengthof the correlationdependedon the sizeofbinsused todiscretizethestructuralvariableandonthesizeof thequadrats (Figure1andashc) Overall the correlation between DCOMP vs DCOMPndashSTR was

F IGURE 1emspThecorrelationsbetweenthepairwisedissimilarityintermsofspeciescomposition(DCOMP)sizestructure(DSTR)andbothcomponentstogether(DCOMPndashSTR)ThecorrelationsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRand DSTR vs DCOMPndashSTRvarywithdbhbinsatthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofRVcoefficientsof1ndash15cmdbhbinsofDCOMP vs DSTRDCOMP vs DCOMPndashSTRandDSTR vs DCOMPndashSTRrespectively(d)BoxplotsforRVcoefficientsofthethreepairwisedissimilaritycomparisons(aggregatedoverall1ndash15cmdbhbinsizes)foreachofthethreequadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 6: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

262emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

substantially stronger than that ofDCOMP vs DSTR andofDSTR vs DCOMPndashSTR

The correlation ofDCOMP vs DCOMPndashSTR increasedwith the in-crease of bin size Correspondingly the correlations of DSTR vs DCOMPndashSTR showed the opposite trend (Figure1andashc) As to the ef-fectofthesizeofthesamplingunitsthestrengthofcorrelationsin-creasedwiththequadratsize(Figure1d)exceptforthecorrelationbetweenDCOMP and DCOMPndashSTRwhichexhibitsnosignificantdiffer-encebetweenthe10mtimes10mand20mtimes20mquadrats(p = 023Figure1d)

32emsp|emspThe three components of beta diversity (BD) BDCOMP BDSTR and BDCOMPndashSTR

Thebetadiversity(BD)valueswerecloselyrelatedtowhetherthespecies composition size structure or both components togetherhad been taken into account Among these three components ofbetadiversityBDCOMPndashSTRwasgreatestcloselyfollowedbyBDCOMPandthesmallestwasBDSTR(Figure2)Sincethesizestructureofin-dividualswasnot consideredwhen calculatingBDCOMP this indexwasnotaffectedbythesizeofdbhbins(Figure2andashc)ThevaluesofBDCOMPndashSTRandBDSTRhoweverdecreasedslightlywithanincreaseofbinsizeWhenincreasingdbhbinsizethevaluesofBDCOMPndashSTR graduallyapproachedthevaluesofBDCOMP (Figure2andashc)BDalso

varied as a function of quadrat size (Figure2) values of BDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossbinsizes)systemati-callydecreasedwithincreasingquadratsize(Figure2d)

33emsp|emspLocal contributions to beta diversity in terms of community composition and structure

LocalContributionstoBetaDiversitycalculatedusingspeciescom-positionsizestructureorbothcomponentswerecorrelatedAgainthe strengthof correlationsdependedon the sizeofdbhbins andon the size of quadrats (Figure3andashc) In the case of LCBDCOMP vs LCBDCOMPndashSTR the strength of the correlation increased with anincreaseofbinsizeCorrespondinglythecorrelationofLCBDSTR vs LCBDCOMPndashSTRshowedtheoppositetrend(Figure3andashc)Thecorrela-tionsofLCBDCOMPvsLCBDSTRandLCBDSTRvsLCBDCOMPndashSTR were significantly different for differentquadrat sizesA striking findingwasthatthestrengthofcorrelationswasweakeratthescaleof20mtimes20m than that at the scalesof10mtimes10mor50mtimes50m(Figure3d)HowevercorrelationsbetweenLCBDCOMPvsLCBDCOMPndashSTRwerenotsubstantiallyaffectedbythesizeofquadrats(Figure3d)

TheLCBDivaluesindicatetheithquadratsthatcontributemoreorlessthanthemeantobetadiversity(inotherwordstheithquad-ratswithhighorlowuniquenessofspeciesassemblages)TheresultsindicatedthatthesiteswithhighLCBDvalues(contributemorethan

F IGURE 2emspTheBetaDiversity(BD)intermsofspeciescomposition(BDCOMP)sizestructure(BDSTR)andbothcomponentstogether(BDCOMPndashSTR)ThevaluesofBDCOMPndashSTRandBDSTRvarywiththesizeofbinsofthestructuralvariable(dbhbinsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mThesizestructureofindividuals(iethedbh)isnotconsideredwhencalculatingtheBDCOMPthusthevaluesofBDCOMPwerenotaffectedbythebinsizeIngraphs(a)(b)and(c)thehorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofBDCOMPndashSTRandBDSTRacross1ndash15cmbinsizesrespectively(d)ValuesofBDCOMPBDSTRandBDCOMPndashSTR(afteraveragingacrossdbhbinsizes)varywiththesamplingunitsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 7: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

emspensp emsp | emsp263Journal of Vegetation Science

YAO et Al

themeantobetadiversity)arevariedamongthreecomponentsofacommunity (Figure4)Specifically342(456)290(387)and331 (441)outof750quadratscontributedmorethanthemeanto beta diversity in term of species composition (ie LCBDCOMPFigure4a)sizestructure(ieLCBDSTRFigure4g)andbothcompo-nentstogether(ieLCBDCOMPndashSTRFigure4f)respectively

34emsp|emspVariation partitioning of matrices DCOMP DSTR and DCOMPndashSTR

Theexplanatorypoweroftheenvironmentalvariablesandthespa-tialvariablesvariedforthethreetypesofmatricesandwithquadratsizes (Table 1) The variation explained by the environmental vari-ables(a+b)andbythespatialvariables(b+c)increasedsystemati-callywith increasingscale (Table1)Averagingacrossquadratsizeshabitatandspacejointlyexplained438254and341ofthevariation in compositional component structural component andthe two components together of community assemblage respec-tivelyHoweverthecontributionofthepurehabitatcomponent (a)was negligible The combination of environmental and spatial vari-ablesexplained the lowestproportionofvariation in the structuralcomponentaloneandexplainedthehighestproportionofvariationinthecompositionalcomponentalone(Table1)Boththeenvironmen-talvariables(a+b)andthepurespatialvariables(c)explainedmore

variationinthecompositionalcomponentthanthatinthestructuralcomponentsofcommunityassemblageAdditionallyourfindingsin-dicatethattheunexplained(d)fractionsdominatedthevariancepar-titioningcomputedforthestructuralcomponentYstralone(Table1)

4emsp |emspDISCUSSION

Forest ecosystems can be characterized and evaluated in terms ofboththeirstructureandcomposition(Peet1992)Inpreviousstud-ies the compositional and structural components of a communityassemblagewereusuallyanalyzedseparately(egFangetal2012)Howeverthenatureofspeciesassemblagesindicatesthateitherspe-cies composition or size structure of constituent individuals alonemayoversimplifycommunityorganization (DeCaacuteceresetal2013)Changes in structure and compositionmay be onlyweakly related(egArsenaultampBradfield1995)thereforeassessmentofbothsi-multaneouslyisimportantwhenevaluatingcommunityassemblyInthepresentstudywegeneralizedtheconventionalapproachtocom-munityassemblagebyincorporatingstructuraldataofacommunityinadditiontocompositionaldatausingtheCAPframeworkToourknowledge this is the firstpaper that investigates inasinglestudythevariationinboththecompositionalandstructuralcomponentsofcommunityassemblagessimultaneouslyaswellasitsdeterminants

F IGURE 3emspThecorrelationsbetweentheLocalContributionstoBetaDiversity(LCBD)intermsofcommunitycomposition(LCBDCOMP)structure(LCBDSTR)andbothcomponentstogether(LCBDCOMPndashSTR)ThecorrelationsofLCBDCOMPvsLCBDSTRLCBDCOMP vsLCBDCOMPndashSTRandLCBDSTR vs LCBDCOMPndashSTRwiththesizeofbinsofthestructuralvariable(binsizes=1ndash15cm)atthescaleof(a)10mtimes10m(b)20mtimes20mand(c)50mtimes50mIngraphs(a)(b)and(c)thehorizontalreddottedlineshorizontalbluelong-dashlinesandhorizontalgreensolidlinesrepresentthemeanvaluesofSpearmanrsquosrankcorrelationcoefficientr across 1ndash15 cm binsizeofLCBDCOMPvsLCBDSTRLCBDCOMPvsLCBDCOMPndashSTRLCBDSTR vs LCBDCOMPndashSTRrespectively(d)BoxplotsfortheSpearmanrsquosrankcorrelationcoefficientrbetweenthepairwiseofthethreekindsofLCBDof1ndash15cmbinsizesatdifferentquadratsizes[Colourfigurecanbeviewedatwileyonlinelibrarycom]

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 8: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

264emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

We found thatbothoverall betadiversity (BD) and the rela-tive contribution of sampling units to beta diversity (LCBD) de-pended on whether the species composition size structure orbothcomponentstogetherhadbeentakenintoaccountBetadi-versity partitioning indicated that the explanatory power of the

environmental and the spatial variables also varied widely withdifferentcomponentsofacommunityOur resultshighlight thatconsideringboth species compositional and size structural com-ponentsmaybeamorecomprehensivewaytodescribethecom-munityorganization

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 9: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

emspensp emsp | emsp265Journal of Vegetation Science

YAO et Al

41emsp|emspStructural and compositional components of forest variation

The framework of CAP allowed us to incorporate the distribu-tionof individualtreesize intotheanalysisofcommunityassem-blage thusmaking it possible toquantify the spatial variationofcommunitystructurebetadiversityEvensosuchstructuralbetadiversitycanbequantified independentlyor incombinationwithspecies composition TheBDCOMPndashSTR is the largest among thesethreecomponentsofbetadiversity indicating thatapplyingspe-ciescompositionaloneorsizestructurealonetoassessthebetadi-versitymayunderestimatethevariationofassemblages(Figure2)ThevaluesofBDCOMPareclosertotheBDCOMPndashSTRvaluesthanthatofBDSTR(theBDSTRvaluesarerelativelysmallFigure2)ThusasfarasourCAPframework isconcerned it seemsmoreappropri-atetoquantifybetadiversityusingthespeciescomposition indi-viduallythanusingthesizestructureindividuallyNeverthelessifstructureprovidesindependentinformationandisdeemedimpor-tantoneshouldincorporateitinBDassessmentAsbetadiversityindiceswerecalculatedfromdissimilaritymatrices thestructuralcomponent of beta diversity depended on the weight given to

structural vs compositional informationwhencalculatingdissimi-larity(Figure2andashc)Thelargerthebinsizes(iethesmallerweightgiventospeciesstructuralinformation)thecloserBDCOMPndashSTR val-uesapproachedthevaluesofBDCOMP(Figure2andashc)Ifthebinsizesare big enough theBDCOMPndashSTR value and theBDCOMP value are expected to converge at a certain size of dbh binNeverthelessconsideringthenecessityofcomprehensiveassessmentofbetadi-versityweadvocateforsmallbinsizesastheyprovidemoreinde-pendentstructuralinformationFinallyitisimportanttonotethatthisforestplotincludes47differenttreespecieswhichresultsinastrongrelativeweightofthecompositionalcomponentofBDCOMPndashSTRwhenusingtheCAPframeworkRepeatingourstudyinforestswith lower species richness or in this forest but using a coarsercompositional resolution (eg at the family level)would result inlargerrelativeweightofthestructuralcomponent

42emsp|emspLocal contributions to beta diversity in terms of community composition and structure

EcologicallyLCBDindicesonlyrepresentthedegreeofuniquenessofthesamplingunitsintermsofcommunitycomposition(Legendre

F IGURE 4emspMapsof30-ha(500mtimes600m)plotshowingthelocalcontributionstobetadiversity(LCBD)intermsofcommunitycompositionandstructurefor750quadrats(20mtimes20m)ThesolidcirclesrepresentthevaluesofLCBDiforeachithquadrat(i =[1750])(a)ThemapofLCBDsonlyintermsofspeciescompositionNotethatthesizestructureofindividuals(iedbh)isnotconsideredwhencalculatingtheLCBDCOMPthusthevaluesofLCBDCOMPwerenotaffectedbythesizeofthebinsofthestructuralvariable(b)ndash(e)ThetwoextremecasesoftheLCBDmap(b)and(c)givingthemostweighttothestructuralcomponentandcorrespondinglytheleastweighttothecompositionalcomponent(ie1-cmbinsize)and(d)and(e)givingthemostweighttothecompositionalcomponentandcorrespondinglytheleastweighttothestructuralcomponent(ie15-cmbinsize)(f)and(g)MapsofLCBDsafteraveragingacrossdbhbinsizesSizeofthecirclesisproportionaltotheLCBDivaluesTheblackandgreysolidcirclesrepresentthesiteswithLCBDvalueshigherandlowerthanthemeanrespectively

TABLE 1emspVariationpartitioningresultsforthreetypesofmatricesatdifferentscalesofquadratsThepartitioningisbasedonadjustedR2 statisticsasrecommendedbyPeres-Netoetal(2006)

Quadrat sizes (a) (b) (c) (d) (a + b) (b + c) (a + b + c)

YCOMP

10mtimes10m 00044 00796 01361 07799 00840 02157 02201

20mtimes20m 00028 01783 02862 05327 01811 04645 04673

50mtimes50m 00050 02995 03229 03726 03045 06224 06274

YSTR

10mtimes10m 00123 00131 00296 09450 00254 00427 00550

20mtimes20m 00013 00907 01652 07428 00920 02560 02572

50mtimes50m 00029 02300 02163 05509 02328 04463 04492

YCOMPndashSTR

10mtimes10m 00055 00564 00932 08449 00619 01496 01551

20mtimes20m 00028 01576 02559 05837 01604 04135 04163

50mtimes50m 00013 02543 01948 05496 02556 04492 04504

Fractions(a)ndash(d)(adjustedR2statistics)(a)variationexplainedbytheenvironmentalvariablesaftercontrollingforthespatialstructure(b)variationexplainedbythespatiallystructuredenvironmentalvariables(c)spatiallystructuredvariationexplainedbypurespaceaftercontrollingforenviron-mentalvariation(d)residualvariationEnvironmentalvariablesusedtocomputefraction(a+b)dbMEMeigenfunctionsweretheexplanatoryvaria-blesusedtocomputefraction(b+c)Only5-cm-diameterclasses(iebinsize=5cm)asthestructuralvariablewereusedtocalculatetheYSTR and YCOMPndashSTR

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 10: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

266emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

amp De Caacuteceres 2013) However natural communities may exhibitsimilarspeciescompositionsbutdifferinotherfeaturessuchasthesizestructureof individuals Inthepresentstudyweassessedthedegreeofuniquenessofthequadratsintermsnotonlyoftheirspe-ciescompositionbutalsooftheirsizestructureandbyusingbothcomponentstogetherThedegreeofuniquenessofquadratsintermsofcommunitycompositionindividuallyhadaveryweakcorrelationwithuniqueness in termsof size structure individually (LCBDCOMP vsLCBDSTRFigure3) indicating that sites that areunique in spe-cies composition are not necessarily unique in size structure andvice versa Additionally we found that the spatial distribution ofsiteswithhighLCBDvaluesisdifferentforthetwocomponentsofacommunitywith siteswithhighstructuraluniquenessoccurringinsmallforestpatches(Figure4)Alltheseresultsreinforcetheideathatconsideringbothspeciescompositionalandsizestructuralcom-ponentsmaybeamorecomprehensivewaytodescribethecommu-nityorganizationHoweverifweacceptthefactthatsitesthatareuniqueintermsofsizestructurearetheresultofgapdynamics(seebelow) the non-zero correlation between LCBDCOMP vs LCBDSTR mayindicatethatforestgapsmaybecolonizedbyspeciesthatmaylaterbesuppressedastheforestgrowssothatrecentforestgapshaveadifferentspeciescompositionthanclosedforeststructures(Comitaetal2009)

43emsp|emspPartitioning the structural and compositional components of beta diversity

About344ofthevariationincommunityassemblagewasdeter-minedbyenvironmentalandspatialvariablesdependingonthescale(quadratsize)andonwhichcomponentsofcommunityassemblage(ie compositional component structural component and takingbothcomponents together)were taken intoaccountThispropor-tion isslightly lowerthanthevaluesfound instudiesbyLegendreetal (2009)andPunchi-Manageetal (2014)Areasonforthisre-sult is thatwe incorporateddifferencesboth insizestructureandspeciescomposition intocommunityassemblagesratherthanonlyusingtheconventionalspeciescompositiondataWhenthespeciescomposition and size structure of the constituent individuals areincorporatedintothecommunityatthesametimemorevariationwilloccurincommunityassemblagesInourstudyhabitat(a+b)ex-plainedmorevariationinthecompositionalcomponent(190)thaninthestructuralcomponent(117)ofthecommunityassemblagesBetadiversitypartitioningindicatedthatthevariationinthestruc-turalcomponentislessdictatedbyenvironmentthanvariationinthecompositional componentWe here hypothesize that canopy gapdynamicswillbethepotentialdriversofstructuralvariationWinterinourstudyareaiscoldandlongwithalongsnowfallperiodThesnowfallperiodlastsforhalfayearandthesnowcoverthicknessinmountainousareasreaches40ndash50cmWehypothesizethatpulsesofmoderate-severity disturbancesmay be caused by snowstormsin our site In the absence of stand-replacing disturbances forestcanopiesareopenedperiodicallybythedeathofsinglebigtreesorsmallgroupsofadulttreescreatingcanopygapsSnowstormsmay

havealteredforeststructurebyselectivelyremovinglargercanopytrees Environmental selection of individuals shapes compositionbydeterminingthefitnessof individualswhereasstructuralvaria-tionmayhavesomerelationshipwithenvironmentalconditions(ielargertreesinsiteswherelargersizesaresupportedforenergyorwateravailability)butingeneralisthereflectionofdifferentstagesaroundgapdynamicsPreviousstudiesareconsistentwithourfind-ingsFraverandWhite(2005)forinstancefoundthattherepeatedmoderate-severity disturbances (iewindstorms) causeddramaticstructural changes they caused no significant change in speciescomposition

Becausetherelativeimportanceofbothnicheandneutralthe-oryinstructuringcommunitiesvarieswithspatialscale(Legendreetal 2009 Punchi-Manage etal 2014) we conducted scale-dependentanalyses InsharpcontrasttothefindingbyLegendreetal(2009)forabroad-leavedforestinChinawefoundthattheproportionofundeterminedvariation incompositionalandstruc-turalcomponentsofcommunityassemblageswasveryhighatfinespatialscales(upto945forthestructuralcomponent780forthecompositionalcomponentand844forbothcomponentsto-gether)butdecreasedsystematicallywith increasingspatial scale(up to a minimum of 373 for compositional component at the50-mscale)TheseresultsareinlinewiththefindingsbyPunchi-Manageetal(2014)inaSriLankandipterocarpforestandbyDeCaacuteceresetal(2012)inacomparisonofseveralforestsOntheonehandthehighproportionofunexplainedvariationmayberelatedtounmeasuredandnotspatially-structuredbiologicalorenviron-mentalvariablesXuetal(2016)showedthatthesoilnutrientsintheupper(0ndash10cmconsideredinourstudy)andlowersoillayers(10ndash20cm)andtheheavymetalelements(CuNiCdAsPbZnMoCrMnandMg)inthesoilshowastrongcorrelationwiththespeciesspatialdistributionsatJiaoheThismaypartlyexplainwhythepureenvironmentalvariable(a)explainedsuchlittlevariationinthecommunityassemblagesAnotherexplanationforthehighpro-portionofunexplainedvariationisthatitmaybeduetostochasticprocesseswhich related to theneutral theoryassuming that thedynamicsofpopulationsareprimarilydrivenbyecologicaldriftanddispersal(Legendreetal2009)Ontheotherhandtheproportionofundeterminedvariationincompositionalandstructuralcompo-nents of community assemblages decreased systematically withincreasingspatialscaleThismayindicatethatcommunityassem-blageishighlystochasticintermsofspeciescompositionandtreesizedistributionatfinescales (ie10-mscale)butthisfinescalestochasticitytendstosmoothoutatthe50-mscalewheremoreconsistent habitat-driven species assemblages emerged Whenvariance partitioning is conducted on the structural componentalonetheunexplained(d)fractionisdominantWhiletheinfluenceofenvironmental factorsonsizestructuremaybe less importantthan for thecompositionalcomponent theeffectof localdistur-bances (eg appearanceof canopygaps resulting frommortalityof largetrees)results inrandomspatialpatternsofquadratswithrather different structure contributing to a large unexplainedfraction

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 11: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

emspensp emsp | emsp267Journal of Vegetation Science

YAO et Al

5emsp |emspCONCLUSIONS

SpeciescompositionandsizestructurearethetwoessentialfeaturesofacommunityOnlyoneofthemindividuallymaybeinsufficienttodescribetheorganizationoftreespeciesassemblagesDefiningandquantifyingbetadiversityusingthespeciescompositionalonemaybesufficienttheninmanyoccasionsNeverthelessspeciescompo-sition is justonedimensionofbiodiversity variation in size struc-tureisalsoimportantIncorporatingstructuraldatainbetadiversityassessmentsallowsecologiststomakeuseofvaluableinformationcollectedduringfieldsurveysIfitisavailablethereisnoreasontoignorethewealthofinformationaboutsizestructurewhencompar-ingspeciesassemblagesOurstudyhighlightstheneedtoincorpo-ratethestructuraldataofacommunityinadditiontocompositionaldatawhenquantifyingandanalyzingbetadiversityFinallyourre-sults suggest thatbothdeterministicandstochasticprocessesarerelevantdeterminantsofcompositionalandstructuralcomponentsof communityassemblages inour temperate forestNeverthelesstheseprocessesarescale-andorresolution-dependent

ACKNOWLEDGEMENTS

WewouldliketothankHeHuaijiangDingShengjianNiRuiqiangandZuoQiangandseveralothersforassistingwiththefielddatacollectionAuthorsaregratefultotheJiaoheManagementBureauof the Forest Experimental Zone for permission to undertake thefieldworkWealsothankthreeanonymousreviewersforprovidingthevaluablecomments

CONFLICTS OF INTEREST

Theauthorsdeclarenocompetingfinancialinterests

DATA ACCESSIBILITY

DataownershipbelongstoBeijingForestryUniversitywhosestaffconductedtheanalysesandwrotethemanuscripthttpwwwbjfueducn

ORCID

Jie Yao httpsorcidorg0000-0002-8606-8158

REFERENCES

Anderson M J Crist T O Chase J M Vellend M InouyeB D Freestone A L hellip Swenson N G (2011) Navigatingthe multiple meanings of β diversity a roadmap for the prac-ticing ecologist Ecology Letters 14 19ndash28 httpsdoiorg101111j1461-0248201001552x

ArsenaultAampBradfieldGE (1995)Structuralndashcompositionalvaria-tioninthreeage-classesoftemperaterainforestsinsoutherncoastalBritishColumbiaCanadian Journal of Botany7354ndash64httpsdoiorg101139b95-007

Borcard D amp Legendre P (1994) Environmental control and spatialstructureinecologicalcommunitiesanexampleusingoribatidmites(Acari Oribatei) Environmental and Ecological Statistics 1 37ndash61httpsdoiorg101007BF00714196

Borcard D Legendre P Avois-Jacquet C amp Tuomisto H (2004)DissectingthespatialstructureofecologicaldataatmultiplescalesEcology851826ndash1832httpsdoiorg10189003-3111

BorcardDLegendrePampDrapeauP(1992)PartiallingoutthespatialcomponentofecologicalvariationEcology731045ndash1055httpsdoiorg1023071940179

Caswell H (1976) Community structure a neutral model anal-ysis Ecological Monographs 46 327ndash354 httpsdoiorg1023071942257

ChaseJM(2010)Stochasticcommunityassemblycauseshigherbiodi-versityinmoreproductiveenvironmentsScience3281388ndash1391httpsdoiorg101126science1187820

ChaveJ(2004)NeutraltheoryandcommunityecologyEcology Letters7241ndash253httpsdoiorg101111j1461-0248200300566x

Chesson P (2000) Mechanisms of maintenance of species diversityAnnual Review of Ecology and Systematics31343ndash366httpsdoiorg101146annurevecolsys311343

ComitaLSUriarteMThompsonJJonckheereICanhamCDampZimmermanJK(2009)Abioticandbioticdriversofseedlingsur-vival inahurricane-impacted tropical forestJournal of Ecology971346ndash1359httpsdoiorg101111j1365-2745200901551x

DeCaacuteceresMFontXampOlivaF(2010)Themanagementofvegeta-tionclassificationswithfuzzyclusteringJournal of Vegetation Science211138ndash1151httpsdoiorg101111j1654-1103201001211x

De Caacuteceres M Legendre P amp He F (2013) Dissimilarity mea-surements and the size structure of ecological communitiesMethods in Ecology and Evolution 4 1167ndash1177 httpsdoiorg1011112041-210X12116

De Caacuteceres M Legendre P Valencia R Cao M Chang L-W Chuyong G hellip He F (2012) The variation of tree betadiversity across a global network of forest plots Global Ecology and Biogeography 21 1191ndash1202 httpsdoiorg101111j1466-8238201200770x

DraySBaumanDBlanchetGBorcardDClappeSGuenardGhellipWagnerHH(2018)adespatial Multivariate multiscale spatial analy-sis R package version 03-2RetrievedfromhttpsCRANR-projectorgpackage=adespatial

Dumbrell A J NelsonM Helgason T Dytham C amp Fitter A H(2010)Relativerolesofnicheandneutralprocesses instructuringa soil microbial community ISME Journal 4 337ndash345 httpsdoiorg101038ismej2009122

FaithDAustinMBelbinLampMargulesC (1985)Numericalclas-sification of profile attributes in environmental studies Journal of Environmental Management2073ndash85

Fang J Shen Z Tang ZWang XWang Z Feng J hellip Zheng C(2012) Forest community survey and the structural character-istics of forests in China Ecography 35 1059ndash1071 httpsdoiorg101111j1600-0587201300161x

FraverSampWhiteAS(2005)Disturbancedynamicsofold-growthPicea rubens forests of northern Maine Journal of Vegetation Science 16 597ndash610 httpsdoiorg101111j1654-11032005tb02401x

Gower J C (1966) Some distance properties of latent root and vec-tormethodsusedinmultivariateanalysisBiometrika53325ndash338httpsdoiorg101093biomet533-4325

Harms K E Condit R Hubbell S P amp Foster R B (2001)Habitat associations of trees and shrubs in a 50-ha neotrop-ical forest plot Journal of Ecology 89 947ndash959 httpsdoiorg101111j1365-2745200100615x

HilleRisLambers J Adler P B Harpole W S Levine J M ampMayfield M M (2012) Rethinking community assembly

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708

Page 12: Variation in compositional and structural components of …adn.biol.umontreal.ca/~numericalecology/Reprints/Yao_et_al_Journal_of... · |259 YA ET A L. Journal of Vegetation Science

268emsp |emsp emspenspJournal of Vegetation Science

YAO et Al

through the lens of coexistence theory Annual Review of Ecology Evolution and Systematics 43 227ndash249 httpsdoiorg101146annurev-ecolsys-110411-160411

HubbellSP(Ed)(2001)The unified theory of biodiversity and biogeogra-phyPrincetonNJPrincetonUniversityPress

Hubbell S P (2006) Neutral theory and the evolution of eco-logical equivalence Ecology 87 1387ndash1398 httpsdoiorg1018900012-9658(2006)87[1387NTATEO]20CO2

HussonFJosseJLeSampMazetJ(2015)FactoMineR Multivariate exploratory data analysis and data mining Version 1314 RetrievedfromhttpsCRANR-projectorgpackage=FactoMineR

Hutchinson G E (1961) The paradox of the plankton American Naturalist95137ndash145httpsdoiorg101086282171

KeddyPA(1992)Assemblyandresponserulestwogoalsforpredic-tive community ecology Journal of Vegetation Science3 157ndash164httpsdoiorg1023073235676

KoleffPGastonKJampLennonJJ(2003)MeasuringbetadiversityforpresencendashabsencedataJournal of Animal Ecology72367ndash382httpsdoiorg101046j1365-2656200300710x

KraftN JBComita L SChase JM SandersN J SwensonNGCrist TOhellipMyers JA (2011)Disentangling thedriversofβdiversityalong latitudinalandelevationalgradientsScience3331755ndash1758httpsdoiorg101126science1208584

LaliberteacuteEPaquetteALegendrePampBouchardA(2009)Assessingthescale-specificimportanceofnichesandotherspatialprocessesonbetadiversityacasestudyfromatemperateforestOecologia159377ndash388httpsdoiorg101007s00442-008-1214-8

Legendre P amp Anderson M J (1999) Distance-based redundancyanalysis testing multispecies responses in multifactorial ecolog-ical experiments Ecological Monographs 69 1ndash24 httpsdoiorg1018900012-9615(1999)069[0001DBRATM]20CO2

Legendre P Borcard D amp Peres-Neto P R (2005) Analyzing betadiversity partitioning the spatial variation of community com-position data Ecological Monographs 75 435ndash450 httpsdoiorg10189005-0549

LegendrePampDeCaacuteceresM(2013)BetadiversityasthevarianceofcommunitydatadissimilaritycoefficientsandpartitioningEcology Letters16951ndash963httpsdoiorg101111ele12141

LegendrePampLegendreL (2012)Numerical ecology Vol 24 (3rded)AmsterdamTheNetherlandsElsevierScienceBV

LegendrePMiXRenHMaKYuMSun I-FampHeF (2009)Partitioning beta diversity in a subtropical broad-leaved forest ofChina Ecology90663ndash674httpsdoiorg10189007-18801

MayfieldMMampLevineJM(2010)Opposingeffectsofcompetitiveex-clusiononthephylogeneticstructureofcommunitiesEcology Letters131085ndash1093httpsdoiorg101111j1461-0248201001509x

MyersJAChaseJMJimeacutenezIJoslashrgensenPMAraujo-MurakamiAPaniagua-ZambranaNampSeidelR(2013)Beta-diversityintem-perateandtropicalforestsreflectsdissimilarmechanismsofcommu-nityassemblyEcology Letters16151ndash157httpsdoiorg101111ele12021

OksanenJBlanchetFGFriendlyMKindtRLegendrePMcGlinnDhellipWagnerH(2018)vegan Community ecology package Version 25-2Retrievedfromhttpscranr-projectorgpackage=vegan

Paradis EClaude JampStrimmerK (2004)APEAnalysesof phylo-genetics and evolution inR languageBioinformatics20 289ndash290httpsdoiorg101093bioinformaticsbtg412

PeetRK (1992)Community structureand function InDCGlenn-LewinRKPeetampTTVeblen(Eds)Plant succession theory and prediction(pp103ndash140)NewYorkNYChapmanampHall

Peres-NetoPRLegendrePDraySampBorcardD(2006)Variationpartitioningofspeciesdatamatricesestimationandcomparisonof

fractionsEcology872614ndash2625httpsdoiorg1018900012-9658(2006)87[2614VPOSDM]20CO2

Punchi-Manage R Wiegand T Wiegand K Getzin S SavitriGunatillekeCV ampNimalGunatilleke IAUN(2014)EffectofspatialprocessesandtopographyonstructuringspeciesassemblagesinaSriLankandipterocarpforestEcology95376ndash386httpsdoiorg10189012-21021

RCoreTeam (2017)R A language and environment for statistical com-puting Vienna Austria R Foundation for Statistical ComputingRetrievedfromhttpswwwR-projectorg

Ricklefs R E (1990) Seabird life histories and the marine environ-mentsomespeculationsColonial Waterbirds13(1)1ndash6httpsdoiorg1023071521414

SchwinningSampWeinerJ(1998)MechanismsdeterminingthedegreeofsizeasymmetryincompetitionamongplantsOecologia113447ndash455httpsdoiorg101007s004420050397

SoilScienceSocietyofChina(Ed)(1999)Soil agricultural chemical analy-sis procedureBeijingChinaChineseAgriculturalSciencePress

van der Plas F Janzen T Ordonez A FokkemaW Reinders JEtienneRSampOlffH(2015)Anewmodelingapproachestimatesthe relative importance of different community assembly pro-cesses Ecology961502ndash1515httpsdoiorg10189014-04541

VellendM(Ed)(2017)The theory of ecological communitiesPrincetonNJPrincetonUniversityPresshttpsdoiorg1015159781400883790

Weiner J (1990) Asymmetric competition in plant popula-tions Trends in Ecology and Evolution 5 360ndash364 httpsdoiorg1010160169-5347(90)90095-U

WhittakerRH (1960)VegetationoftheSiskiyoumountainsOregonand California Ecological Monographs 30 279ndash338 httpsdoiorg1023071943563

WhittakerRH(1972)EvolutionandmeasurementofspeciesdiversityTaxon21213ndash251httpsdoiorg1023071218190

XuWHaoMWangJZhangCZhaoXampvonGadowK(2016)Soilelementsinfluencingcommunitystructureinanold-growthfor-est innortheasternChinaForests7159httpsdoiorg103390f7080159

YamakuraTKanzakiMItohAOhkuboTOginoKChaiEOKhellipAshtonPS(1995)Topographyofalarge-scaleresearchplotes-tablishedwithinatropicalrainforestatLambirSarawakTropics541ndash56httpsdoiorg103759tropics541

YanYZhangCWangYZhaoXampvonGadowK(2015)Driversofseedlingsurvivalinatemperateforestandtheirrelativeimportanceat threestagesofsuccessionEcology and Evolution54287ndash4299httpsdoiorg101002ece31688

YaoJZhangXZhangCZhaoXampvonGadowK(2016)EffectsofdensitydependenceinatemperateforestinnortheasternChinaScientific Reports632844httpsdoiorg101038srep32844

ZhangCZhaoXampvonGadowK(2014)Analyzingselectiveharvestevents inthree largeforestobservationalstudies inNorthEasternChina Forest Ecology and Management 316 100ndash109 httpsdoiorg101016jforeco201307018

ZhangCZhaoYZhaoXampvonGadowK (2012)Species-habitatassociations inanorthern temperate forest inChinaSilva Fennica46501ndash519

How to cite this articleYaoJZhangCDeCaacuteceresMLegendrePZhaoXVariationincompositionalandstructuralcomponentsofcommunityassemblageanditsdeterminantsJ Veg Sci 201930257ndash268 httpsdoiorg101111jvs12708


Recommended