+ All Categories
Home > Documents > Vector Calculus

Vector Calculus

Date post: 31-Dec-2015
Category:
Upload: ross-woodard
View: 86 times
Download: 1 times
Share this document with a friend
Description:
CHAPTER 9.10~9.17. Vector Calculus. Contents. 9.10 Double Integrals 9.11 Double Integrals in Polar Coordinates 9.12 Green’s Theorem 9.13 Surface Integrals 9.14 Stokes’ Theorem 9.15 Triple Integrals 9.16 Divergence Theorem 9.17 Change of Variables in Multiple Integrals. - PowerPoint PPT Presentation
158
Vector Calculus CHAPTER 9.10~9.17
Transcript
Page 1: Vector Calculus

Vector Calculus

CHAPTER 9.10~9.17

Page 2: Vector Calculus

Ch9.10~9.17_2

Contents

9.10 Double Integrals9.11 Double Integrals in Polar Coordinates9.12 Green’s Theorem9.13 Surface Integrals9.14 Stokes’ Theorem9.15 Triple Integrals9.16 Divergence Theorem9.17 Change of Variables in Multiple Integrals

Page 3: Vector Calculus

Ch9.10~9.17_3

9.10 Double Integrals

Recall from Calculus Region of Type I

See the region in Fig 9.71(a) R: a x b, g1(y) y g2(y)

Region of Type IISee the region in Fig 9.71(b)

R: c y d, h1(x) x h2(x)

Page 4: Vector Calculus

Ch9.10~9.17_4

Fig 9.71

Page 5: Vector Calculus

Ch9.10~9.17_5

Iterated Integral

For Type I:

(4)

For Type II:

(5)

xddyyxfxddyyxfb

a

xg

xg

b

a

xg

xg )(

)(

)(

)(

2

1

2

1),(),(

yddxyxfdyxdyxfd

c

yh

yh

d

c

yh

yh )(

)(

)(

)(

2

1

2

1),(),(

Page 6: Vector Calculus

Ch9.10~9.17_6

Let f be continuous on a region R.

(i) For Type I:(6)

(ii) For Type II:(7)

THEOREM 9.12Evaluation of Double Integrals

b

a

xg

xgR

xddyyxfdAyxf)(

)(

2

1),(),(

d

c

yh

yhR

dyxdyxfdAyxf)(

)(

2

1),(),(

Page 7: Vector Calculus

Ch9.10~9.17_7

Note:

Volume =

where z = f(x, y) is the surface.

R

dAyxf ),(

Page 8: Vector Calculus

Ch9.10~9.17_8

Example 1

Evaluate over the region bounded by y = 1, y = 2, y = x, y = −x + 5. See Fig 9.73.

SolutionThe region is Type II

dAeR

yx 3

2

1

42552

1

3

2

1

5 33

)( dyeedye

dydxedAe

yyy

y

yx

y

y

yx

R

yx

64.2771

41

21

41

21

41

21 4789

2

1

425

eeeeee yy

Page 9: Vector Calculus

Ch9.10~9.17_9

Fig 9.73

Page 10: Vector Calculus

Ch9.10~9.17_10

Example 2

Evaluate over the region in the first quadrant bounded by y = x2, x = 0, y = 4.

SolutionFrom Fig 9.75(a) , it is of Type I

However, this integral can not be computed.

Ry dAxe

2

2

0

4

2

22

x

y

R

y dxdyxedAxe

Page 11: Vector Calculus

Ch9.10~9.17_11

Fig 9.75(a) Fig 9.75(b)

Page 12: Vector Calculus

Ch9.10~9.17_12

Example 2 (2)

Trying Fig 9.75(b), it is of Type II

4

00

2

4

0 0

2

22

2dye

x

dydxxedAxe

yy

y y

R

y

)1(41

41

21 16

4

0

4

0

22

eedyye yy

Page 13: Vector Calculus

Ch9.10~9.17_13

Method to Compute Center of Mass

The coordinates of the center of mass are

(10)where

(11)are the moments. Besides, (x, y) is a variable density function.

,),(R

y dAyxxM R

x dAyxyM ),(

mM

ym

Mx xy ,

Page 14: Vector Calculus

Ch9.10~9.17_14

Example 3

A lamina has shape as the region in the first quadrant that is bounded by the y= sin x, y = cos x between x = 0 and x = 4. Find the center of mass if (x, y) = y.

SolutionSee Fig 9.76.

Page 15: Vector Calculus

Ch9.10~9.17_15

Example 3 (2)

4/

0

cos

sin

2

4/

0

cos

sin

2

dxy

dxdyydAym

x

x

x

xR

41

2sin41

2cos21

)sin(cos21

4/

0

4/

0

4/

0

22

xdxx

dxxx

Page 16: Vector Calculus

Ch9.10~9.17_16

Example 3 (3)

162

2cos81

2sin41

2cos21

21

4/

0

4/

0

4/

0

cos

sin

2

4/

0

cos

sin

xxx

dxxx

dxxy

dxdyxydAxyM

x

x

x

xR

y

Page 17: Vector Calculus

Ch9.10~9.17_17

Example 3 (4)

4/

0

33

4/

0

cos

sin

22

)sin(cos31

dxxx

dxdyydAyMx

xR

x

18425

cos31

cossin31

sin31

)]cos1(sin)sin1([cos31

4/

0

33

4/

0

22

xxxx

dxxxxx

Page 18: Vector Calculus

Ch9.10~9.17_18

Example 3 (5)

Hence

29.04/1

16/)2( m

Mx y

68.04/1

18/)425( m

My x

Page 19: Vector Calculus

Ch9.10~9.17_19

Moments of Inertia

(12)

are the moments of inertia about the x-axis and y-axis, respectively.

R

x dAyxyI ),(2

R

y dAyxxI ),(2

Page 20: Vector Calculus

Ch9.10~9.17_20

Example 4

Refer to Fig 9.77. Find Iy of the thin homogeneous disk of mass m. Fig 9.77

Page 21: Vector Calculus

Ch9.10~9.17_21

Example 4 (2)

Solution Since it is homogeneous, the density is the constant (x, y) = m/r2.

r

r

xr

xrR

y dxdyxr

mdA

r

mxI

22

222

222

2/

2/

222

2222

cossin2

2

dmr

dxxrxr

m r

r

Page 22: Vector Calculus

Ch9.10~9.17_22

Example 4 (3)

22/

2/

2

2/

2/

22

41

)4cos1(4

2sin2

mrdmr

dmr

Page 23: Vector Calculus

Ch9.10~9.17_23

Radius of Gyration

Defined by

(13)In Example 4,

mI

Rg

2/)4/(/ 2 rmrmmIR yg

Page 24: Vector Calculus

Ch9.10~9.17_24

9.11 Double Integrals in Polar Coordinates

Double Integral Refer to the figure.

The double integral is

)(

)(

2

1),(),(

g

gR

ddrrrfdArf

Page 25: Vector Calculus

Ch9.10~9.17_25

Refer to the figure.

The double integral is

b

a

rh

rh

R

drdrrf

dArf

)(

)(

2

1),(

),(

Page 26: Vector Calculus

Ch9.10~9.17_26

Example 1

Refer to Fig 9.83. Find the center of mass wherer = 2 sin 2 in the first quadrant and is proportional to the distance from the pole.

Fig 9.83

Page 27: Vector Calculus

Ch9.10~9.17_27

Example 1 (2)

Solution We have: 0 /2, = kr, then

2/

0

2sin2

0)(||

ddrrrkdArkm

R

2/

0

32/

0

2sin2

0

3

2sin38

3

dkdr

k

kk

dk

916

2cos61

2cos21

38

2sin)2cos1(38

2/

0

3

2/

0

2

Page 28: Vector Calculus

Ch9.10~9.17_28

Example 1 (3)

Since x = r cos andthen

R

y dArxkM ||

2/

0

4

2/

0

2sin2

0

42/

0

2sin2

0

3

cos2sin4

cos4

cos

dk

dr

kddrrM y

2/

0

54

2/

0

44

cossin64

coscossin164

dk

dk

Page 29: Vector Calculus

Ch9.10~9.17_29

Example 1 (4)

Similarly, y = r sin , then

2/

0

864

2/

0

224

cos)sinsin2(sin64

cos)sin1(sin64

dk

d

kk315512

sin91

sin72

sin51

642/

0

975

kddrrkM x 315512

sin2/0

2sin20

2

3532

9/16315/51

kk

yx

Page 30: Vector Calculus

Ch9.10~9.17_30

Change of Variables

Sometimes we would like to change the rectangular coordinates to polar coordinates for simplifying the question. If and then

(3)

Recall: x2 + y2 = r2 and

)(

)(

2

1)sin,cos(),(

g

gR

ddrrrrfdAyxf

ryx 22

,),()(0 21 grg 20

Page 31: Vector Calculus

Ch9.10~9.17_31

Example 2

Evaluate

SolutionFrom the graph is shown in Fig 9.84.Using x2 + y2 = r2, then 1/(5 + x2 + y2 ) = 1/(5 + r2)

2

0

8

22

2

5

1x

xxddy

yx

20,8 2 xxyx

Page 32: Vector Calculus

Ch9.10~9.17_32

Fig 9.84

Page 33: Vector Calculus

Ch9.10~9.17_33

Example 2 (2)

Thus the integral becomes

2/

4/

8

0 2

2/

4/

8

0 2

2

0

8

22

5

221

5

1

5

1

d

r

drrddrr

r

dxdyyx

x

x

2/

4/

8

0

2/

4/

2 )5ln13(ln21

)5ln(21

ddr

513

ln842

)15ln13(ln21

Page 34: Vector Calculus

Ch9.10~9.17_34

Example 3

Find the volume of the solid that is under and above the region bounded by

x2 + y2 – y = 0. See Fig 9.85.

SolutionFig 9.85

221 yxz

Page 35: Vector Calculus

Ch9.10~9.17_35

Example 3 (2)

We find that

and the equations becomeand r = sin . Now

R

dAyxV 221

21 rz

2/

0

sin

0

2/122 )1(21

ddrrrdArVR

2/

0

2/32 ])sin1(1[32

d

Page 36: Vector Calculus

Ch9.10~9.17_36

Example 3 (3)

60.094

3sin

31

sin32

]cos)sin1(1[32

]cos1[32

])(cos1[32

2/

0

3

2/

0

2

2/

0

32/

0

2/32

d

dd

Page 37: Vector Calculus

Ch9.10~9.17_37

Area

If f(r, ) = 1, then the area is

)(

)(

2

1

g

gR

ddrrdAA

Page 38: Vector Calculus

Ch9.10~9.17_38

9.12 Green’s Theorem

Along Simply Closed Curves For different orientations for simply closed curves, please refer to Fig 9.88.

Fig 9.88(a) Fig 9.88(b) Fig 9.88(c)

Page 39: Vector Calculus

Ch9.10~9.17_39

Notations for Integrals Along Simply Closed Curves

We usually write them as the following forms

where and represents in the positive and negative directions, respectively.

( , ) ( , ) ,

( , ) ( , ) ,

( , ) ,

C

c

C

P x y dx Q x y dy

P x y dx Q x y dy

F x y ds

C C

Page 40: Vector Calculus

Ch9.10~9.17_40

Partial ProofFor a region R is simultaneously of Type I and Type II,

IF P, Q, P/y, Q/x are continuous on R, which is bounded by a simply closed curve C, then

THEOREM 9.13Green’s Theorem in the Plane

CR

Q PPdx Qdy dA

x y

dycyhxyhR

bxaxgyxgR

),()(:

),()(:

21

21

Page 41: Vector Calculus

Ch9.10~9.17_41

Fig 9.89(a) Fig 9.89(b)

Page 42: Vector Calculus

Ch9.10~9.17_42

Partial Proof

Using Fig 9.89(a), we have

b

a

b

a

xg

xgR

dxxgxPxgxP

dxdyyP

dAyP

))](,())(,([ 12

)(

)(

2

1

C

a

b

b

a

dxyxP

dxxgxPdxxgxP

),(

))(,())(,( 21

Page 43: Vector Calculus

Ch9.10~9.17_43

Partial Proof

Similarly, from Fig 9.89(b),

From (2) + (3), we get (1).

d

c

d

c

yh

yhR

dyyyhQyyhQ

dydxxQ

dAxQ

)]),(()),(([ 12

)(

)(

2

2

c

d

d

cdyyyhQdyyyhQ )),(()),(( 12

= ( , )C

P x y dx

Page 44: Vector Calculus

Ch9.10~9.17_44

Note:

If the curves are more complicated such as Fig 9.90, we can still decompose R into a finite number of subregions which we can deal with.

Fig 9.90

Page 45: Vector Calculus

Ch9.10~9.17_45

Example 1

Evaluate where C is shown in Fig 9.91.

C

dyxyxdyx )2()( 22

Page 46: Vector Calculus

Ch9.10~9.17_46

Example 1 (2)

SolutionIf P(x, y) = x2 – y2, Q(x, y) = 2y – x, then

andThus

yyP 2/ 1/ xQ

42011

)()(1

0

3461

0

22

3 dxxxxxdxyy

x

x

1

0

22

2

3 )21()21(

)2()(

x

xR

C

dxdyydAy

dyxydxyx

Page 47: Vector Calculus

Ch9.10~9.17_47

Example 2

Evaluate where C is the circle (x – 1)2 + (y – 5)2 = 4 shown in Fig 9.92.

C

y dyexxdyx )2()3(35

Page 48: Vector Calculus

Ch9.10~9.17_48

Example 2 (2)

SolutionWe have P(x, y) = x5 + 3y andthenHence

Since the area of this circle is 4, we have

3

2),( yexyxQ

,3/ yP 2/ xQ

4)2()3(35 C

y dyexdxyx

RR

C

y dAdAdyexdxyx )32()2()3(35

Page 49: Vector Calculus

Ch9.10~9.17_49

Example 3

Find the work done by F = (– 16y + sin x2)i + (4ey + 3x2)j along C shown in Fig 9.93.

Page 50: Vector Calculus

Ch9.10~9.17_50

Example 3 (2)

SolutionWe have

Hence from Green’s theorem

In view of R, it is better handled in polar coordinates, since R: 4/34/,10 r

R

dAxW )166(

C

y

C

dyxedxxy

W

)34()sin16(

22

drF

Page 51: Vector Calculus

Ch9.10~9.17_51

Example 3 (3)

drr

ddrrrW

1

0

4/3

4/

23

4/3

4/

1

0

)8cos2(

)16cos6(

4)8cos2(

4/3

4/ d

Page 52: Vector Calculus

Ch9.10~9.17_52

Example 4

The curve is shown in Fig 9.94. Green’s Theorem is no applicable to the integral

since P, Q, P/x, Q/y are not continuous at the region.

Cdy

yx

xdx

yx

y2222

Page 53: Vector Calculus

Ch9.10~9.17_53

Fig 9.94

Page 54: Vector Calculus

Ch9.10~9.17_54

Region with Holes

Green’s theorem cal also apply to a region with holes. In Fig 9.95(a), we show C consisting of two curves C1 and C2. Now We introduce cross cuts as shown is Fig 9.95(b), R is divided into R1 and R2. By Green’s theorem:

(4)

C

CC

RRR

dyQdxP

dyQdxPdyQdxP

dAyP

xQ

dAyP

xQ

dAyP

xQ

21

21

Page 55: Vector Calculus

Ch9.10~9.17_55

Fig 9.95(a) Fig 9.95(b)

The last result follows from that fact that the line integrals on the crosscuts cancel each other.

Page 56: Vector Calculus

Ch9.10~9.17_56

Example 5

Evaluate

where C = C1 C2 is shown in Fig 9.96.

SolutionBecause

Cdy

yx

xxd

yx

y2222

2222 ),(,),(yx

xyxQ

yx

yyxP

222

22

222

22

)(,

)( yx

xyxQ

yx

xyyP

Page 57: Vector Calculus

Ch9.10~9.17_57

Example 5 (2)

are continuous on the region bounded by C, then

0)()( 222

22

222

22

2222

dAyx

xy

yx

xy

dyyx

xdx

yx

y

R

C

Page 58: Vector Calculus

Ch9.10~9.17_58

Fig 9.96

Page 59: Vector Calculus

Ch9.10~9.17_59

Conditions to Simply the Curves

As shown in Fig 9.97, C1 and C2 are two nonintersecting piecewise smooth simple closed curves that have the same orientation. Suppose that P and Q have continuous first partial derivatives such that P/y = Q/x in the region R bounded between C1 and C2, then we have

021

CCdyQdxPdyQdxP

21 CC

dyQdxPdyQdxP

Page 60: Vector Calculus

Ch9.10~9.17_60

Fig 9.97

Page 61: Vector Calculus

Ch9.10~9.17_61

Example 6

Evaluate the line integral in Example 4.

SolutionWe find P = – y / (x2 + y2) and Q = x / (x2 + y2) have continuous first partial derivatives in the region bounded by C and C’. See Fig 9.98.

Page 62: Vector Calculus

Ch9.10~9.17_62

Fig 9.98

Page 63: Vector Calculus

Ch9.10~9.17_63

Example 6 (2)

Moreover,

we have

xQ

yx

xyyP

222

22

)(

CCdy

yx

xdx

yx

ydy

yx

xdx

yx

y22222222

Page 64: Vector Calculus

Ch9.10~9.17_64

Example 6 (3)

Using x = cos t, y = sin t, 0 t 2 , then

Note: The above result is true for every piecewise smooth simple closed curve C with the region in its interior.

2

)cos(sin

)](coscos)sin(sin[

2

0

2

0

22

2

0

2222

dt

dttt

dttttt

dyyx

xdx

yx

yC

Page 65: Vector Calculus

Ch9.10~9.17_65

9.13 Surface Integrals

Let f be a function with continuous first derivatives

fx, fy on a closed region. Then the area of the surface

over R is given by

(2)

DEFINITION 9.11Surface Area

R

yx AdyxfyxfSA 22 )],([)],([1)(

Page 66: Vector Calculus

Ch9.10~9.17_66

Example 1

Find the surface area of portion of x2 + y2 + z2 = a2 and is above the xy-plane and within x2 + y2 = b2, where 0 < b < a.

SolutionIf we definethen

Thus

where R is shown in Fig 9.103.

222),(),,( yxayxfyxfz

,),(222 yxa

xyxfx

222),(

yxa

yyxf y

222

222 )],([)],([1

yxa

ayxfyxf yx

R

dAyxa

aSA

222)(

Page 67: Vector Calculus

Ch9.10~9.17_67

Fig 9.103

Page 68: Vector Calculus

Ch9.10~9.17_68

Example 1 (2)

Change to polar coordinates:

2

0 0

2/122 )()(b

ddrrraaSA

2

0

22

2

0 02/122

)(

)(

dbaaa

draab

)(2 22 baaa

Page 69: Vector Calculus

Ch9.10~9.17_69

Differential of Surface Area

The function

is called the differential of surface area.

dAyxfyxfdS yx22 )],([)],([1

Page 70: Vector Calculus

Ch9.10~9.17_70

Let G be a function of three variables defined over a region of space containing the surface S. Then the surface integral of G over S is given by

(4)

DEFINITION 9.12Surface Integral

n

kkkkk

PS

SzyxGdSzyxG1

***

0) , ,(lim),,(

Page 71: Vector Calculus

Ch9.10~9.17_71

Method of Evaluation

(5)

where we define z = f(x, y) is the equation of S projects onto a region R of the xy-plane.

R

yx

S

dAyxfyxfyxfyxG

dSzyxG

22 )],([)],([1)),(,,(

),,(

Page 72: Vector Calculus

Ch9.10~9.17_72

Projection of S Into Other Planes

If we define y = g(x, z) is the equation of S projects onto a region R of the xz-plane, then

(6)

Similarly, if x = h(y, z) is the equation of S projects onto a region R of the yz-plane, then

(7)

R

zx

S

dAzxgzxgzzxgxG

dSzyxG

22 )],([)],([1)),,(,(

),,(

R

zy

S

dAzyhzyhzyzyhG

dSzyxG

22 )],([)],([1),),,((

),,(

Page 73: Vector Calculus

Ch9.10~9.17_73

Mass of a Surface

Let (x, y, z) be the density of a surface, then the mass m of the surface is

(8) S

dSzyxm ),,(

Page 74: Vector Calculus

Ch9.10~9.17_74

Example 2

Find the mass of the surface of z = 1 + x2 + y2 in the first octant for 1 z 5 if the density at a point is proportional to its distance from the xy-plane.

Solution The projection graph is shown in Fig 9.104. Now, since ρ(x, y, z) = kz and z = 1 + x2 + y2, then

R

S

dAyxyxk

dSkzm

2222 441)1(

Page 75: Vector Calculus

Ch9.10~9.17_75

Fig 9.104

Page 76: Vector Calculus

Ch9.10~9.17_76

Example 2 (2)

Change to polar coordinates

2/

0

2

0

22 41)1(

ddrrrrkm

2/

0

2

0

2/1232/12 ])41()41([

ddrrrrrk

2/

2

2

0

2/522/3222/32 )41(120

1)41(

121

)41(121

drrrrk

kk

2.19403

12017

12)17(5

2

2/52/3

Page 77: Vector Calculus

Ch9.10~9.17_77

Example 3

Evaluate , where S is the portion of y = 2x2 + 1 in the first octant bounded by x = 0, x = 2, z = 4 and z = 8.

Solution The projection graph on the xz-plane is shown in Fig 9.105.

S dSxz2

Page 78: Vector Calculus

Ch9.10~9.17_78

Example 3 (2)

Let y = g(x, z) = 2x2 + 1. Since gx(x, z) = 4x and gz(x, z) = 0, then

2

0

8

4

222 161 dxdzxxzdSxzS

2

0

2/122

0

8

4

23

)161(3

448161

3dxxxdxxx

z

3.1627]165[928

)161(928 2/3

2

0

2/32 x

Page 79: Vector Calculus

Ch9.10~9.17_79

Orientable Surface

A surface is said to be orientable or an oriented surface if there exists a continuous unit normal vector function n, where n(x, y, z) is called the orientation of the surface. Eg: S is defined by g(x, y, z) = 0, then

n = g / ||g||(9)

where is the gradient. kji

zg

yg

xg

g

Page 80: Vector Calculus

Ch9.10~9.17_80

Fig. 9.106

Page 81: Vector Calculus

Ch9.10~9.17_81

Fig 9.107

Page 82: Vector Calculus

Ch9.10~9.17_82

Example 4

Consider x2 + y2 + z2 = a2, a > 0. If we define g(x, y, z) = x2 + y2 + z2 – a2, then

Thus the two orientations are

where n defines outward orientation, n1 = − n defines inward orientation. See Fig 9.108.

, 222 kji zyxg azyxg 2444|||| 222

, kjinaz

ay

ax kjinn

az

ay

ax 1

Page 83: Vector Calculus

Ch9.10~9.17_83

Fig 9.108

Page 84: Vector Calculus

Ch9.10~9.17_84

Computing Flux

We have

(10)

See Fig 9.109.

S

dS).(flux nF

Page 85: Vector Calculus

Ch9.10~9.17_85

Example 5

Let F(x, y, z) = zj + zk represent the flow of a liquid. Find the flux of F through the surface S given by that portion of the plane z = 6 – 3x – 2y in the first octant oriented upward.

SolutionRefer to the figure.

Page 86: Vector Calculus

Ch9.10~9.17_86

Example 5 (2)

We define g(x, y, z) = 3x + 2y + z – 6 = 0. Then a unit normal with a positive k component (it should be upward) is

Thus

With R the projection of the surface onto the xy-plane, we have

kjin141

142

143

||||

gg

SS

dSzdS 3141

).(flux nF

18)236(3

)14)(236(3141

flux

2

0

2/33

0

x

R

dxdyyx

dAyx

Page 87: Vector Calculus

Ch9.10~9.17_87

9.14 Stokes’ Theorem

Vector Form of Green’s Theorem If F(x, y) = P(x, y)i + Q(x, y)j, then

Thus, Green’s Theorem can be written as

k

kji

FF

yP

xQ

Pzyx

00

curl

(1) .)curl(.. R

CCdAdsd kFTFrF

Page 88: Vector Calculus

Ch9.10~9.17_88

Let S be a piecewise smooth orientable surface bounded by a piecewise smooth simple closed curve C. Let F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k be a vector field for which P, Q, R, are continuous and havecontinuous first partial derivatives in a region of 3-space containing S. If C is traversed in the positive direction, then

where n is a unit normal to S in the direction of the orientation of S.

THEOREM 9.14Stokes’ Theorem

S

CCdSdSd nFTFrF .)(curl)( ..

Page 89: Vector Calculus

Ch9.10~9.17_89

Example 1

Let S be the part of the cylinder z = 1 – x2 for 0 x 1, −2 y 2. Verify Stokes’ theorem if F = xyi + yzj + xzk.

Fig 9.116

Page 90: Vector Calculus

Ch9.10~9.17_90

Example 1 (2)

Solution See Fig 9.116. Surface Integral: From F = xyi + yzj + xzk, we find

14

2 is normalupper the

cylinder, thedefines 01 If

curl

2

x

xgg

xzzyx

xzy

xzyzxyzyx

kin

kji

kji

F

Page 91: Vector Calculus

Ch9.10~9.17_91

Example 1 (3)

(7) 2)4()2(

)2(14

2

:9.13 Sec of (5) Using

14

2) (curl Therefore

1

0

1

0

2

2

2

2

dxxdydxxxy

dAxxydSx

xxy

dSx

xxydS

RS

SS

nF

Page 92: Vector Calculus

Ch9.10~9.17_92

Example 1 (4)

1511

)222(

)2)(1(0)1(22 so

,2,0,1,2:on

00)0()0( so

,0,0,0,1:on

write we:Integral Line

0

1

42

22

22

1

1

1

2 431

dxxxx

xdxxxxxdx

xdzdyxzyC

dyyy

dzdxzxC

C

C

C C CCC

Page 93: Vector Calculus

Ch9.10~9.17_93

Example 1 (5)

1519

)222(

)2)(1(0)1(22 so

,2,0,1,2:on

000 so

,0,0,1,0:on

1

0

42

22

24

2

2

3

4

3

dxxxx

xdxxxxxdx

xdzdyxzyC

ydyydy

dzdxzxC

C

C

(7). with agreeswhich

21519

01511

0 Hence C xzdzyzdyxydx

Page 94: Vector Calculus

Ch9.10~9.17_94

Example 2

Evaluate

where C is the trace of the cylinder x2 + y2 = 1 in the plane y + z = 2. Orient C counterclockwise as viewed from above. See Fig 9.117.

C

ydzxdyzdx

Page 95: Vector Calculus

Ch9.10~9.17_95

Fig 9.117

Page 96: Vector Calculus

Ch9.10~9.17_96

Example 2 (2)

Solution

The given orientation of C corresponding to an upward orientation of the surface S.

kji

kji

F

kjiF

yxzzyx

yxz

curl

then , If

Page 97: Vector Calculus

Ch9.10~9.17_97

Example 2 (3)

Thus if g(x, y, z) = y + z – 2 = 0 defines the plane, then the upper normal is

2222

)2

12

1()(

(2), from Hence

2

12

1

RS

SC

dAdS

dSd

gg

kjkjirF

kjn

Page 98: Vector Calculus

Ch9.10~9.17_98

9.15 Triple Integrals

Let F be a function of three variables defined over a

Closed region D of space. Then the triple integral of F

over D is given by

(1)

DEFINITION 9.13The Triple Integral

* * *

0 1

( , , ) lim ( , , )n

k k k kP kD

F x y z dV F x y z V

Page 99: Vector Calculus

Ch9.10~9.17_99

Evaluation by Iterated Integrals:

See Fig 9.123.

(2) )()(

n region the I Type a is if Thus,

)()(

then,),(by below bounded is and

),(by above bounded is region theIf

)(

)(

),(

),(

),(

),(

1

2

2

1

2

1

2

1

b

a

xg

xg

yxf

yxfD

R

yxf

yxfD

dzdydxx,y,zFdVx,y,zF

R

dAdzx,y,zFdVx,y,zF

yxfz

yxfzD

Page 100: Vector Calculus

Ch9.10~9.17_100

Fig 9.123

Page 101: Vector Calculus

Ch9.10~9.17_101

Applications

D

D

dVzyxmD

zyx

dVVD

zyxF

),,( is solid theof

mass then thedensity, is ),,( If

is solid the

of volume then the,1),,( If

:Mass

:Volume

),,( ,),,(

,),,(

Dyz

Dxz

Dxy

dVzyxxMdVzyxyM

dVzyxzM

:MomentFirst

Page 102: Vector Calculus

Ch9.10~9.17_102

centroid. thecalled is mass

ofcenter theconstant, is ),,( If

,,

are mass ofcenter theof scoordintae The

zyx

m

Mz

mM

ym

Mx xyxzyz

:Centroid

:Mass ofCenter

Page 103: Vector Calculus

Ch9.10~9.17_103mI

R

I

dVzyxyxI

dVzyxzxI

dVzyxzyI

g

Dz

Dy

Dx

isgyration of radius then the

axis,given aabout solid theof inertia ofmoment a is If

),,()(

),,()(

,),,()(

22

22

22

:Gyration of Radius

:Moment Second

Page 104: Vector Calculus

Ch9.10~9.17_104

Example 1

Find the volume of the solid in the first octant bounded by z = 1 – y2, y = 2x and x = 3.

Fig 9.125(a) Fig 9.125(b)

Page 105: Vector Calculus

Ch9.10~9.17_105

Example 1 (2)

Solution Referring to Fig 9.125(a), the first integration with respect to z is from 0 to 1 – y2. From Fig 9.125(b), we see that the projection of D in the xy-plane is a region of Type II. Hence

815

21

21

332/

3)(

)1(

1

0

321

0

2

1

0

3

2/

21

0

3

2/

1

0

2

dyyyydyy

yxx

dxdyydzdxdydVVyy

y

D

Page 106: Vector Calculus

Ch9.10~9.17_106

Example 2

Change the order of integration in

Fig 9.126(a) Fig 9.126(b)

. to

),,(6

0

3/24

0

4/32/3

0

dydxdz

dzdydxzyxFx yx

Page 107: Vector Calculus

Ch9.10~9.17_107

Example 2 (2)

Solution As in Fig 9.126(a), the region D is the solid in the first octant bounded by the three coordinates and the plane 2x + 3y + 4x = 12. Referring to Fig 9.126(b) and the table, we have

3

0

26

0

3/43/24

0

6

0

3/24

0

4/32/3

0

),,(

),,(

z zx

x yx

dydxdzzyxF

dzdydxzyxF

Page 108: Vector Calculus

Ch9.10~9.17_108

Example 2 (3)

3 to0 26 to0 34

32

4 to0

6 to0 3/24 to0 4

32

3 to0

3rd 2nd 1st Order

zzx

dydxdz

xyx

dzdydx

Page 109: Vector Calculus

Ch9.10~9.17_109

Cylindrical Coordinates

Refer to Fig 9.127.

Page 110: Vector Calculus

Ch9.10~9.17_110

Conversion of Cylindrical Coordinates to Rectangular Coordinates

Thus between the cylindrical coordinates (r, , z) and rectangular coordinates (x, y, z), we have

x = r cos , y = r sin , z = z (3)

Page 111: Vector Calculus

Ch9.10~9.17_111

Example 1

Convert (8, /3, 7) in cylindrical coordinates to rectangular coordinates.

SolutionFrom (3)

7

34)3/8sin(

,4)3/8cos(

z

y

x

Page 112: Vector Calculus

Ch9.10~9.17_112

Conversion of Rectangular Coordinates to Cylindrical Coordinates

Also we have

(4) ,tan,222 zzxy

yxr

Page 113: Vector Calculus

Ch9.10~9.17_113

Example 4

Solution

s.coordinate lcylindrica

toscoordinater rectangulain )1,2,2(Convert

.4/3 takewe

,0,0fact ith thetogether w,2 take weIf

11,2

2tan,4)2()2( 222

yxr

zr

Page 114: Vector Calculus

Ch9.10~9.17_114

Fig 9.128

Page 115: Vector Calculus

Ch9.10~9.17_115

Triple Integrals in Cylindrical Coordinates

See Fig 9.129.We have

)(

)(

),(

),(

),(

),(

2

1

2

1

2

1

),,(

),,(),,(

g

g

rf

rf

R

rf

rfD

rdzdrdzyxF

dAzrFdVzrF

Page 116: Vector Calculus

Ch9.10~9.17_116

Fig 9.129

Page 117: Vector Calculus

Ch9.10~9.17_117

Example 5

A solid in the first octant has the shape determined by the graph of the cone z = (x2 + y2)½ and the planes z = 1, x = 0 and y = 0. Find the center of the mass if the density is given by (r, , z) = r.

Solution

2

0

1

0

322

0

1

0

2

2

0

1

0

1

24)(

1

)(

drdrrdrdr

zr

rdzdrdrrdVmr

D

Page 118: Vector Calculus

Ch9.10~9.17_118

Fig 9.130

Page 119: Vector Calculus

Ch9.10~9.17_119

Example 5 (2)

Similarly, we have

2

0

1

0

422

0

1

0

22

2

0

1

0

1 2

30)(

211

2drdrrdrd

rr

z

dzdrdzrzrdVMr

Dxy

201

coscos

201

sinsin

2

0

1

0

1 32

2

0

1

0

1 32

rD

yz

rD

xz

dzdrdrdVrM

dzdrdrdVrM

Page 120: Vector Calculus

Ch9.10~9.17_120

Example 5 (3)

8.024/30/

,38.024/20/1

,38.024/20/1

Hence

zyx

Page 121: Vector Calculus

Ch9.10~9.17_121

Spherical Coordinates

See Fig 9.131.

Page 122: Vector Calculus

Ch9.10~9.17_122

Conversion of Spherical Coordinates to Rectangular and Cylindrical Coordinates

We have

(6) cos,,sin

:),,( scoordinate lcylindrica to

),,( scoordinate spherical From

(5) cos,sinsin,cossin

:),,( scoordinater rectangula to

),,( scoordinate spherical From

zr

zr

zyx

zyx

Page 123: Vector Calculus

Ch9.10~9.17_123

Example 6

Convert (6, /4, /3) in spherical coordinates to rectangular and cylindrical coordinates.

Solution

23cos ,3

,23sin

23cos2

63sinsin ,

223

cossin

)3/ ,4/ ,6() , ,(

zr

z

yx

Page 124: Vector Calculus

Ch9.10~9.17_124

Inverse Conversion

(7) cos

tan ,

222

2222

zyx

zxy

zyx

Page 125: Vector Calculus

Ch9.10~9.17_125

Triple Integrals in Spherical Coordinates

See Fig 9.132.

Page 126: Vector Calculus

Ch9.10~9.17_126

We have

)(

)(

),(

),(

22

1

2

1sin),,(

),,(

g

g

f

f

D

dddF

dVF

Page 127: Vector Calculus

Ch9.10~9.17_127

Example 7

Find the moment of inertia about the z-axis of the homogeneous solid bounded between the spheres

x2 + y2 + z2 = a2 and x2 + y2 + z2 = a2, a < bFig 9.133

Page 128: Vector Calculus

Ch9.10~9.17_128

Example 7 (2)

Solution If (, , ) = k is the density, then

2

0 0

222

22222222

22

)sin(sinThen

. , are spheres theof equations The

,sin

have we(5), From .)(

b

az

Dz

dddkI

ba

zyxyx

kdVyxI

Page 129: Vector Calculus

Ch9.10~9.17_129

Example 7 (3)

2

0 0

25

55

2

0 0

35

2

0 0

34

sin)cos1(5

)(5

sin5

sin

ddabk

dda

bk

dddkb

a

)(158

)(154

0cos

31

cos)(5

552

0

55

2

0

355

abk

dabk

dabk

Page 130: Vector Calculus

Ch9.10~9.17_130

9.16 Divergence Theorem

Another Vector Form of Green’s TheoremLet F(x, y) = P(x, y)i + P(x, y)j be a vector field, and let T = (dx/ds)i + (dy/ds)j be a unit tangent to a simple closed plane curve C. If n = (dy/ds)i – (dx/ds)j is a unit normal to C, then

)(

RR

CC

dAyQ

xP

dAyQ

xP

QdxPdydsnF

Page 131: Vector Calculus

Ch9.10~9.17_131

that is,

The result in (1) is a special case of the divergence or Gauss’ theorem.

(1) div)( R

CdAds FnF

Page 132: Vector Calculus

Ch9.10~9.17_132

Let D be a closed and bounded region on 3-space with

a piecewise smooth boundary S that is oriented outward.

Let F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k be

a vector field for which P, Q, and R are continuous

and have continuous first partial derivatives in a region

of 3-space containing D. Then

(2)

THEOREM 9.15Divergence Theorem

( ) div S D

dS dV F n F

Page 133: Vector Calculus

Ch9.10~9.17_133

Example 1

Let D be the region bounded by the hemisphere

SolutionThe closed region is shown in Fig 9.140.

.)1(

if theoremdivergence Verify the .1 plane the

and ,41,9)1( 222

kjiF

zyx

z

zzyx

Page 134: Vector Calculus

Ch9.10~9.17_134

Fig 9.140

Page 135: Vector Calculus

Ch9.10~9.17_135

Example 1 (2)

Triple Integral: Since F = xi + yj + zk, we see div F = 3. Hence

(10)

Surface Integral: We write S = S1 + S2, where S1 is the hemisphere and S2 is the plane z = 1. If S1 is a level surfaces of g(x, y) = x2 + y2 + (z – 1)2, then a unit outer normal is

543div DDD

dVdVdVF

Page 136: Vector Calculus

Ch9.10~9.17_136

Example 1 (3)

RS

dAyx

ds

zyx

zyx

zyx

zyxgg

22

222

222

9

3)3( so and

33

)1(33

Now

31

33)1(

)1(

1

nF

nF

kjikji

n

2

0

3

0

2/12 54)9(9 rdrdr

Page 137: Vector Calculus

Ch9.10~9.17_137

Example 1 (4)

54)( that see weHence,

.0)1( ,1 sinceBut

.1 that so ,On

2

2

S

S

dS

dSzz

zS

nF

nFkn

Page 138: Vector Calculus

Ch9.10~9.17_138

Example 2

IF F = xyi + y2zj + z3k, evaluate S (F n)dS, where S is the unit cube defined by 0 x 1, 0 y 1, 0 z 1.

SolutionWe see div F = F = x + 2yz + 3z2. Then

1

0

1

0

1

0

2

2

)32(

)32()(

dxdydzzyzy

dVzyzydSD

SnF

Page 139: Vector Calculus

Ch9.10~9.17_139

Example 2 (2)

20

1)

21

2()3

21

(

0

1)3

2(

)32(

321

0

2

1

0

222

1

0

1

0

2

zzz

dzzz

dzyzzyy

dydzzyzy

Page 140: Vector Calculus

Ch9.10~9.17_140

9.17 Change of Variables in Multiple Integrals

Introduction If f is continuous on [a, b], x = g(u) and dx = g(u) du, then

where c = g(a), d = g(b).If we write J(u) = dx/du, then we have

(1) )('))(()( d

c

b

aduugugfdxxf

(2) )())(()( d

c

b

aduuJugfdxxf

Page 141: Vector Calculus

Ch9.10~9.17_141

Double Integrals

If we have x= f(u, v), y = g(u, v)

(3)we expect that a change of variables would take the form

where S is the region in the uv-plane, and R is the region in the xy-plane.

(4) '),()),(),,((),( SR

dAvuJvugvufFdAyxF

Page 142: Vector Calculus

Ch9.10~9.17_142

Example 1

Find the image of the region S shown in Fig 9.146(a) under the transformations x = u2 + v2, y = u2 − v2.

SolutionFig 9.146(a) Fig 9.146(b)

Page 143: Vector Calculus

Ch9.10~9.17_143

Example 1 (2)

9.146(b). Fig See

)1,1( to)1,4(),()0,1( to),(),(

4 then ,1:

)1,4( to)4,4(),(),( to)0,2(),(

4 then ,4:

)4,4( to)1,1(),()0,2( to)0,1(),(

then ,,

then,0:

23

25

223

23

25

222

222222

1

yxvu

yvuS

yxvu

xvuS

yxvu

xyuvuyuvux

vS

Page 144: Vector Calculus

Ch9.10~9.17_144

Some of the Assumptions

1. The functions f, g have continuous first partial derivatives on S.

2. The transformation is one-to-one.

3. Each of region R and S consists of a piecewise smooth simple closed curve and its interior.

4. The following determinant is not zero on S.

(7) uy

vx

vy

ux

vy

uy

vx

ux

Page 145: Vector Calculus

Ch9.10~9.17_145

Equation (7) is called the Jacobian of the transformation T and is denoted by (x, y)/(u, v).Similarly, the inverse transformation of T is denoted by T-1. See Fig 9.147.

Page 146: Vector Calculus

Ch9.10~9.17_146

If it is possible to solve (3) for u, v in terms of x, y, then we have

u = h(x,y), v = k(x,y)(8)The Jacobian of T-1 is

(10) 1),(),(

),(),(

and

(9) ),(),(

yxvu

vuyx

yv

xv

yu

xu

yxvu

Page 147: Vector Calculus

Ch9.10~9.17_147

Example 2

The Jacobian of the transformation x = r cos , y = r sin

is

rr

ry

ry

xrx

ryx

cossin

sincos

),(),(

Page 148: Vector Calculus

Ch9.10~9.17_148

If F is continuous on R, then

(11)

THEOREM 9.6Change of Variables in aDouble Integral

Advuyx

vugvufFAdyxFSR

),(

),()),(),,((),(

Page 149: Vector Calculus

Ch9.10~9.17_149

Example 3

Evaluate

over the region R in Fig 9.148(a).

Fig 9.148(a) Fig 9.148(b)

R

dAyxyx )2cos()2sin(

Page 150: Vector Calculus

Ch9.10~9.17_150

Example 3 (2)

Solution We start by letting u = x + 2y, v = x – 2y.

9.148(b). Fig See

)2,2( to)2,2(),()0,2( to),0(),(

2 then ,22:

)2,2( to)0,0(),(),0( to)0,0(),(

or 2,2 then ,0:

)0,0( to)2,2(),()0,0( to)0,2(),(

or , then ,0:

3

2

1

vuyx

uyxS

vuyx

vuyvyuxS

vuyx

vuxvxuyS

Page 151: Vector Calculus

Ch9.10~9.17_151

Example 3 (3)

The Jacobian matrix is

41

21

41

21

21

),(),(

vy

uy

vx

ux

vuyx

Page 152: Vector Calculus

Ch9.10~9.17_152

Example 3 (4)

Thus

2)2cos1(

41

sin21

sinsin41

cossin41

'41

cossin)2cos()2sin(

2

0

2

02

2

0

2

0

duuudu

duu

uvuvdvduu

dAvudAyxyx

u

u

SR

Page 153: Vector Calculus

Ch9.10~9.17_153

Example 4

Evaluate over the region R in Fig 9.149(a).

Fig 9.149(a) Fig 9.149(b)

R

xydA

Page 154: Vector Calculus

Ch9.10~9.17_154

Example 4 (2)

Solution The equations of the boundaries of R suggest

u = y/x2, v = xy (12)The four boundaries of the region R become u = 1, u = 4, v = 1, v = 5. See Fig 9.149(b).The Jacobian matrix is

uyx

vuyxvu

yx31

3),(),(

1),(),( 2

Page 155: Vector Calculus

Ch9.10~9.17_155

Example 4 (3)

Hence

4ln41

4ln4

14

1

5

231

31

'31

4

1

4

1

2

4

1

5

1

uduu

duu

v

dvduuv

dAu

vxydASR

Page 156: Vector Calculus

Ch9.10~9.17_156

Triple Integrals

Let x = f(u, v, w), y = g(u, v, w), z = h(u, v, w)be a one-to-one transformation T from a region E in the uvw-space to a region in D in xyz-space. If F is continuous in D, then

E

D

dVwvuizyx

wvuhwvugwvufF

dVzyxF

'),,(),,(

)),,(),,,(),,,((

),,(

Page 157: Vector Calculus

Ch9.10~9.17_157

sin),,(),,(

then

(13) cos,sinsin,cossin

ifat verify thPlease

),,(),,(

where

2

wvuzyx

xzyx

wz

vz

uz

wy

vy

uy

wx

vx

ux

wvuzyx

Page 158: Vector Calculus

Recommended