+ All Categories
Home > Documents > VEM 3D: set up, implementation and applications · VEM 3D: set up, implementation and applications...

VEM 3D: set up, implementation and applications · VEM 3D: set up, implementation and applications...

Date post: 18-Feb-2019
Category:
Upload: dodiep
View: 220 times
Download: 0 times
Share this document with a friend
77
VEM 3D: set up, implementation and applications F. Dassi 1 and S. Scial` o 2 1 Dipartimento di Matematica e Applicazioni Universit ` a Milano - Bicocca [email protected] 2 Dipartimento di Scienze Matematiche “ Giuseppe Luigi Lagrange ” Politecnico di Torino [email protected] [email protected] joint work with L. Beir ˜ ao da Veiga, S. Berrone, A. Borio, F. Brezzi, A. D’Auria, L. Mascotto, L. D. Marini, S. Pieraccini, A. Russo, G. Vacca and F. Vicini GNCS 2018 Montecatini - Italy 14 th February 2018 F. Dassi and S. Scial` o (MIBI-DISMA PoliTo) February 14, 2018 1 / 43
Transcript

VEM 3D: set up, implementation and applications

F. Dassi1 and S. Scialo2

1 Dipartimento di Matematica e ApplicazioniUniversita Milano - Bicocca

[email protected] Dipartimento di Scienze Matematiche “ Giuseppe Luigi Lagrange ”

Politecnico di [email protected]

[email protected]

joint work withL. Beirao da Veiga, S. Berrone, A. Borio, F. Brezzi, A. D’Auria, L. Mascotto, L. D. Marini, S. Pieraccini,

A. Russo, G. Vacca and F. Vicini

GNCS 2018 Montecatini - Italy

14th February 2018

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 1 / 43

Progetto GNCS 2017

Titolo:“Tecniche numeriche avanzate basate su discretizzazioni con elementi poligonali/poliedrici percontesti applicativi caratterizzati da una elevata complessita geometrica”.Responsabile: Stefano BerroneUnita del progetto:

Dipartimento di Scienza Metematiche - Politecnico di Torino.Partecipanti strutturati: Stefano Berrone, Claudio Canuto, Sandra Pieraccini, Stefano Scialo.Partecipanti non strutturati: Alessandro D’Auria, Fabio Vicini.

Dipartimento di Matematica e Applicazioni - Universita di Milano - Bicocca.Partecipanti strutturati: Lourenco Beirao da Veiga, Alessandro Russo.Partecipanti non strutturati: Franco Dassi, Giuseppe Vacca.

Istituto di Matematica Applicata e Tecnologie Informatiche - CNR.Partecipanti strutturati: Silvia Bertoluzza, Paola Pietra.Partecipanti non strutturati: Yumeng Zhang.

Dipartimento di Matematica - Universita di MilanoPartecipanti strutturati: Carlo Lovadina.Partecipanti non strutturati: Lorenzo Mascotto.

MOX - Dipartimento di Matematica - Politecnico di MilanoPartecipanti strutturati: Marco Verani.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 2 / 43

What is the Virtual Element Method (VEM)?

Novel way to solve Partial Differential Equations in 2d and 3d

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 3 / 43

Why VEM?

general polyhedral meshes

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

no need to avoid hanging nodes/edges

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

better isotropy

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

generality of the discretization space

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

naturally more robust with respect to mesh distortion ordegeneration than FEM

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

similar to FEM for coding

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

compatibility with FEM

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 4 / 43

Why VEM?

Novel way to solve PDEs with these advantages

general polyhedral meshes

no need to avoid hanging nodes/edges

better isotropy

generality of the discretization space

naturally more robust with respect to mesh distortion ordegeneration than FEM

similar to FEM for coding

compatibility with FEM

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 5 / 43

VEM in the world

more than 40 publications in the last 4 years!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 6 / 43

Talk outline

1 Introduction

2 Virtual elements 3dDefinition of V k

h on a polyhedron PDefinition of Π∇k,P for a polyhedron

3 Application of 3D VEM

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 7 / 43

Introduction

Introduction

Basic ingredients of VEM (in 3d)

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 9 / 43

Introduction

Basic ingredients of VEM (in 3d)

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 9 / 43

Introduction

Basic ingredients of VEM (in 3d)

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 9 / 43

Introduction

Basic ingredients of VEM (in 3d)

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 9 / 43

Introduction

Basic ingredients of VEM (in 3d)

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 9 / 43

Virtual elements

Virtual elements 3d

Notation for polygons and polyhedrons

polyhedron P polygon f

|P | = volume |f | = area

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 11 / 43

Virtual elements 3d

Notation for 3d monomials

Let P ⊂ R3, k ∈ N\{0} and α = (α1, α2, α3) be a multi-index, wedefine the scaled monomials

mα :=

(x− xPhP

)α1(y − yPhP

)α2(z − zPhP

)α3

,

and the spaces

Pk (P ) = span{mα , 0 ≤ |α| ≤ k} .

where|α| = α1 + α2 + α3 .

The case f ⊂ R2 is analogous but with 2d coordinates system!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 12 / 43

Virtual elements 3d

Notation for 3d monomials

Let P ⊂ R3, k ∈ N\{0} and α = (α1, α2, α3) be a multi-index, wedefine the scaled monomials

mα :=

(x− xPhP

)α1(y − yPhP

)α2(z − zPhP

)α3

,

and the spaces

Pk (P ) = span{mα , 0 ≤ |α| ≤ k} .

where|α| = α1 + α2 + α3 .

The case f ⊂ R2 is analogous but with 2d coordinates system!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 12 / 43

Virtual elements 3d

Notation for 3d monomials

Let P ⊂ R3, k ∈ N\{0} and α = (α1, α2, α3) be a multi-index, wedefine the scaled monomials

mα :=

(x− xPhP

)α1(y − yPhP

)α2(z − zPhP

)α3

,

and the spaces

Pk (P ) = span{mα , 0 ≤ |α| ≤ k} .

where|α| = α1 + α2 + α3 .

The case f ⊂ R2 is analogous but with 2d coordinates system!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 12 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Basic ingredients of VEM

VEM space, Vkh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 13 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Virtual element space for a generic polyhedronWe define the space

V kh (P ) =

{v ∈ H1(P ) : v|f ∈ V k

h (f) ∀f ∈ ∂P ,

∆v ∈ Pk−2(P )},

where

V kh (f) =

{w ∈ H1(f) ∩ C0(f) : w|e ∈ Pk(e), ∀e ∈ ∂f,

∆w ∈ Pk(f) ,∫f

(Π∇k,fw

)pk =

∫f

w pk, ∀pk ∈ Pk(f)\Pk−2(f)

}.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 14 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Dofs for v ∈ V kh (P )

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 15 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Dofs for v ∈ V kh (P )

- the values at v(ν) ∀ν vertex of P ,

- the values at k − 1 nodes on eachedge of P , v(νie),

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 15 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Dofs for v ∈ V kh (P )

- the values at v(ν) ∀ν vertex of P ,

- the values at k − 1 nodes on eachedge of P , v(νie),

- face moments∫f

vpk−2 ∀pk−2 ∈ Pk−2(f),∀f face of P

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 15 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Dofs for v ∈ V kh (P )

- the values at v(ν) ∀ν vertex of P ,

- the values at k − 1 nodes on eachedge of P , v(νie),

- face moments∫f

vpk−2 ∀pk−2 ∈ Pk−2(f),∀f face of P

- internal moments∫P

v pk−2 ∀pk−2 ∈ Pk−2(P )

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 15 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Dofs for v ∈ V kh (P )

- the values at v(ν) ∀ν vertex of P ,

- the values at k − 1 nodes on eachedge of P , v(νie),

- face moments∫f

vpk−2 ∀pk−2 ∈ Pk−2(f),∀f face of P

- internal moments∫P

v pk−2 ∀pk−2 ∈ Pk−2(P )

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 15 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

One more consideration on the space V kh (f )

V kh (f) =

{w ∈ H1(f) ∩ C0(f) : w|e ∈ Pk(e), ∀e ∈ ∂f,

∆w ∈ Pk(f) ,∫f

(Π∇k,fw

)pk =

∫f

w pk, ∀pk ∈ Pk(f)\Pk−2(f)

}.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 16 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

One more consideration on the space V kh (f )

V kh (f) =

{w ∈ H1(f) ∩ C0(f) : w|e ∈ Pk(e), ∀e ∈ ∂f,

∆w ∈ Pk(f) ,∫f

(Π∇k,fw

)pk =

∫f

w pk, ∀pk ∈ Pk(f)\Pk−2(f)

}.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 16 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Enhancing idea

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 17 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Enhancing idea

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 17 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Enhancing idea

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 17 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Comparison between VEM face spaces

V kh (f) V k

h (f)

w ∈ H1(f) ∩ C0(f) w ∈ H1(f) ∩ C0(f)

w|e ∈ Pk(e) ∀e ∈ ∂f w|e ∈ Pk(e) ∀e ∈ ∂f∆w ∈ Pk(f)

∆w ∈ Pk−2(f)∫f

(Π∇k,fw

)pk =

∫f

w pk

same dofs

both define Π∇k,f via dofs

but only via V kh (f) we can get the 3d projection operator!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 18 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Comparison between VEM face spaces

V kh (f) V k

h (f)

w ∈ H1(f) ∩ C0(f) w ∈ H1(f) ∩ C0(f)

w|e ∈ Pk(e) ∀e ∈ ∂f w|e ∈ Pk(e) ∀e ∈ ∂f∆w ∈ Pk(f)

∆w ∈ Pk−2(f)∫f

(Π∇k,fw

)pk =

∫f

w pk

same dofs

both define Π∇k,f via dofs

but only via V kh (f) we can get the 3d projection operator!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 18 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Comparison between VEM face spaces

V kh (f) V k

h (f)

w ∈ H1(f) ∩ C0(f) w ∈ H1(f) ∩ C0(f)

w|e ∈ Pk(e) ∀e ∈ ∂f w|e ∈ Pk(e) ∀e ∈ ∂f∆w ∈ Pk(f)

∆w ∈ Pk−2(f)∫f

(Π∇k,fw

)pk =

∫f

w pk

same dofs

both define Π∇k,f via dofs

but only via V kh (f) we can get the 3d projection operator!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 18 / 43

Virtual elements 3d Definition of V kh on a polyhedron P

Comparison between VEM face spaces

V kh (f) V k

h (f)

w ∈ H1(f) ∩ C0(f) w ∈ H1(f) ∩ C0(f)

w|e ∈ Pk(e) ∀e ∈ ∂f w|e ∈ Pk(e) ∀e ∈ ∂f∆w ∈ Pk(f)

∆w ∈ Pk−2(f)∫f

(Π∇k,fw

)pk =

∫f

w pk

same dofs

both define Π∇k,f via dofs

but only via V kh (f) we can get the 3d projection operator!

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 18 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Basic ingredients of VEM

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 19 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

H1-projector operator for polyhedrons

We can define a projection Π∇k,P : V kh (P )→ Pk(P ) by

∫P

∇(v − Π∇k,Pv) · ∇pk = 0 ∀pk ∈ Pk(P ) ,

for k = 1:∑ν vertex

ofP

(v(ν)− Π∇k,Pv(ν)

)= 0,

for k ≥ 2:∫P

(v − Π∇k,Pv) = 0.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 20 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

Consider the monomial basis {mα}|α|≤k

Π∇k,Pv =∑|α|≤k

cvαmα .

To find cvα we consider the (k + 1)(k + 2)(k + 3)/6 conditions

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0 ∀|β| ≤ k ,

for k = 1:∑ν vertex

ofP

(v(ν)− Π∇k,Pv(ν)

)= 0,

for k ≥ 2:∫p

(v − Π∇k,Pv) = 0.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 21 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

Consider the monomial basis {mα}|α|≤k

Π∇k,Pv =∑|α|≤k

cvαmα .

To find cvα we consider the (k + 1)(k + 2)(k + 3)/6 conditions

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0 ∀|β| ≤ k ,

for k = 1:∑ν vertex

ofP

(v(ν)− Π∇k,Pv(ν)

)= 0,

for k ≥ 2:∫p

(v − Π∇k,Pv) = 0.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 21 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0

∫P

v − ∑|α|≤k

cvαmα

· ∇mβ = 0

∑|α|≤k

cvα =

∑|α|≤k

cvα

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 22 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0

∫P

v − ∑|α|≤k

cvαmα

· ∇mβ = 0

∑|α|≤k

cvα =

∑|α|≤k

cvα

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 22 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0

∫P

v − ∑|α|≤k

cvαmα

· ∇mβ = 0

∑|α|≤k

cvα

∫P

∇mα · ∇mβ =

∫P

∇v · ∇mβ

∑|α|≤k

cvα

∫P

∇mα · ∇mβ = −∫P

∆mβ v︸ ︷︷ ︸dofs

+

∫∂P

(∇mβ · n) v

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 22 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0

∫P

v − ∑|α|≤k

cvαmα

· ∇mβ = 0

∑|α|≤k

cvα

∫P

∇mα · ∇mβ︸ ︷︷ ︸exactly computable

=

∫P

∇v · ∇mβ

∑|α|≤k

cvα

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 22 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫P

∇(v − Π∇k,Pv) · ∇mβ = 0

∫P

v − ∑|α|≤k

cvαmα

· ∇mβ = 0

∑|α|≤k

cvα

∫P

∇mα · ∇mβ =

∫P

∇v · ∇mβ

∑|α|≤k

cvα

∫P

∇mα · ∇mβ = −∫P

∆mβ v︸ ︷︷ ︸dofs

+

∫∂P

(∇mβ · n) v

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 22 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫∂P

(∇mβ · n) v =∑f∈∂P

∫f

(∇mβ · nf ) v

but

∇mβ · nf ∈ Pk−2(f)

∇mβ · nf ∈ Pk−1(f)\Pk−2(f)

so ∑f∈∂P

∫f

(∇mβ · nf ) v =∑f∈∂P

∫f

(∇mβ · nf ) Π∇k,fv

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 23 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫∂P

(∇mβ · n) v =∑f∈∂P

∫f

(∇mβ · nf ) v

but∇mβ · nf ∈ Pk−2(f)

∇mβ · nf ∈ Pk−1(f)\Pk−2(f)

so ∑f∈∂P

∫f

(∇mβ · nf ) v =∑f∈∂P

∫f

(∇mβ · nf ) Π∇k,fv

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 23 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫∂P

(∇mβ · n) v =∑f∈∂P

∫f

(∇mβ · nf ) v

but∇mβ · nf ∈ Pk−2(f) ⇒ face moments

∇mβ · nf ∈ Pk−1(f)\Pk−2(f)

so ∑f∈∂P

∫f

(∇mβ · nf ) v =∑f∈∂P

∫f

(∇mβ · nf ) Π∇k,fv

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 23 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

∫∂P

(∇mβ · n) v =∑f∈∂P

∫f

(∇mβ · nf ) v

but∇mβ · nf ∈ Pk−2(f) ⇒ face moments

∇mβ · nf ∈ Pk−1(f)\Pk−2(f) ⇒ property of V kh (f)

so ∑f∈∂P

∫f

(∇mβ · nf ) v =∑f∈∂P

∫f

(∇mβ · nf ) Π∇k,fv

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 23 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k = 1, we use∑ν vertex

ofP

Π∇k,Pv(ν) =∑ν vertex

ofP

v(ν)

∑ν vertex

ofP

∑|α|≤k

cvα =∑ν vertex

ofP

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 24 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k = 1, we use∑ν vertex

ofP

Π∇k,Pv(ν) =∑ν vertex

ofP

v(ν)

∑ν vertex

ofP

∑|α|≤k

cvαmα(ν) =∑ν vertex

ofP

v(ν)

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 24 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k = 1, we use∑ν vertex

ofP

Π∇k,Pv(ν) =∑ν vertex

ofP

v(ν)

∑ν vertex

ofP

∑|α|≤k

cvα mα(ν)︸ ︷︷ ︸exactly

computable

=∑ν vertex

ofP

v(ν)︸︷︷︸dofs

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 24 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k ≥ 2, we use∫P

Π∇k,Pv =

∫P

v

∑|α|≤k

cvα =

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 25 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k ≥ 2, we use∫P

Π∇k,Pv =

∫P

v

∑|α|≤k

cvα

∫P

mα =

∫P

v

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 25 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Yes, we can find the projection!

To fix the constant, case k ≥ 2, we use∫P

Π∇k,Pv =

∫P

v

∑|α|≤k

cvα

∫P

mα︸ ︷︷ ︸exactly

computable

=

∫P

v︸︷︷︸exactly

computablefrom dofs

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 25 / 43

Virtual elements 3d Definition of Π∇k,P for a polyhedron

Basic ingredients of VEM

VEM space, V kh

projection operators

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 26 / 43

Application of 3D VEM

Application of 3D VEM

Problem description

F

D1

D2

O

D

Let us consider the following problem in D = F ∪(⋃

i=1,2Di)

−∇ · (Ki∇Hi) = fi in Di, i = 1, 2−∇π · (KF∇πHF ) = fF − (Q1 +Q2) in FH1 = H2 = HF on FQi = (Ki∇Hi) · ni i = 1, 2H = 0 on ∂D

being fi, i = 1, 2 and fF known source terms and ni the unit normal vector to F pointingoutward from Di.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 28 / 43

Application of 3D VEM

Functional setting

Let us introduce the following functional spaces, for i = 1, . . . , 2:

Vi ={v ∈ H1

0(Di) : v|F ∈ H10(F)

}VF = H1

0(F) and W = H−1(F)

than it is possible to rewrite the problem as:find (H1, H2, HF ) ∈ V1 ×V2 ×VF and Q1, Q2 ∈W, such that

(Ki∇Hi,∇v)Di

= (fi, v)Di+⟨Qi, v|F

⟩F , ∀v ∈ Vi, i = 1, 2

(KF∇πHF ,∇πv)F = (fF , v)F −∑2i=1 〈Qi, v〉F , ∀v ∈ VF⟨

Hi|F −HF , λ⟩F = 0 ∀λ ∈W, i = 1, 2

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 29 / 43

Application of 3D VEM

Functional settingProblem:find (H1, H2, HF ) ∈ V1 ×V2 ×VF and Q1, Q2 ∈W, such that

(Ki∇Hi,∇v)Di

= (fi, v)Di+⟨Qi, v|F

⟩F , ∀v ∈ Vi, i = 1, 2

(KF∇πHF ,∇πv)F = (fF , v)F −∑2i=1 〈Qi, v〉F , ∀v ∈ VF⟨

Hi|F −HF , λ⟩F = 0 ∀λ ∈W, i = 1, 2

is well posed, as it can be shown observing that:

V ={v : vi = v|Di

∈ Vi, vF ∈ VF , vi = vF = v|F , i = 1, 2}⊂ H1

0(D)

is an Hilbert space with the norm

a(v, v) = (K∇v,∇v)D +(KF∇πv|F ,∇πv|F ,

)F , ∀v ∈ V,

and the problem is equivalent to the unique minimum in V of the quadratic functional

E(w) =1

2

∫D

(∣∣∣√K∇w∣∣∣2 − 2fw

)+

1

2

∫F

(∣∣∣√KF∇πw|F∣∣∣2 − 2fFw

).

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 30 / 43

Application of 3D VEM

Typical application domains

F2

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 31 / 43

Application of 3D VEM

Typical application domains

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 32 / 43

Application of 3D VEM

Problem discretization

Two different discretization techniques:

VEM based technique coupling VEM-3D to VEM-2D - VEM-VEM approachEfficient generation of a conforming mesh of complex domainsClassical approach (DD)

Optimization-based approach coupling BEM-3D to FEM-2D - OPT approach

(but also FEM-3D to FEM-2D, FEM-3D to VEM-2D, ...)Generation of a mesh non conforming to the interfaces (trivial process!)Flexible and scalable approach

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 33 / 43

Application of 3D VEM

VEM mesh

B1

B2

F

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 34 / 43

Application of 3D VEM

VEM mesh

B1

B2

F

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 35 / 43

Application of 3D VEM

VEM-VEM approach

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 36 / 43

Application of 3D VEM

VEM-VEM approachProblem find (H1, H2, HF ) ∈ V1 ×V2 ×VF and Q1, Q2 ∈W, such that

(Ki∇Hi,∇v)Di= (fi, v)Di

+⟨Qi, v|F

⟩F , ∀v ∈ Vi, i = 1, 2

(KF∇πHF ,∇πv)F = (fF , v)F −∑2i=1 〈Qi, v〉F , ∀v ∈ VF⟨

Hi|F −HF , λ⟩F = 0 ∀λ ∈W, i = 1, 2

after discretization with VEM-3D on the blocks and VEM-2D on the interfaces, is re-written as the followingsaddle-point problem: (

Ab LTAfL O

)(HbHfQ

)=

(qbqf0

)

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 37 / 43

Application of 3D VEM

Numerical results - Problem 1 (6 Blocks, 3 Fractures, 2 Traces)

VEM Order 1

VEM Order 2

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 38 / 43

Application of 3D VEM

Numerical results - Problem 2 (33 Blocks, 9 Fractures, 16 Traces)

VEM Order 1

VEM Order 2

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 39 / 43

Application of 3D VEM

OPT-approachA cost functional is introduced to enforce matching conditions at the interfaces:

J(H,HF , U) =∑`∈L?

∑k∈KΓ`

∥∥∥H`k −HF%(`)

∥∥∥2

H`Γ

+M∑m=1

(∥∥∥HFi|Sm−HFj |Sm

∥∥∥2

HmS

+∥∥Umi + Umj

∥∥2

Um

)

minU,Q

J(H,HF , U) such that:

- for all k = 1, . . . , nD and for all vk ∈ Vk

(K∇Hk,∇vk)Dk= (fk, vk)Dk

+∑`∈Lk

(Q`k, v

`k

)Γ`

,

- and for all i = 1, . . . , I and for all vFi∈ VFi

:

(KFi∇HFi

,∇vFi

)Fi

=∑`∈LFi

(−Q`, vFi

)Fi

+M∑m=1

(Umi , vFi

)Sm

,

being Vk , VFisuitable function spaces.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 40 / 43

Application of 3D VEM

Numerical results - Problem 2 (33 Blocks, 9 Fractures, 16 Traces)

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 41 / 43

Application of 3D VEM

References

M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialo, A hybrid mortar Virtual Element Methodfor discrete fracture network simulations, J. Comput. Phys., 306 (2016), pp. 148-166.

M. F. Benedetto, S. Berrone, A. Borio, S. Pieraccini, and S. Scialo, Order preserving SUPG stabilization forthe virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech.Engrg., 311 (2016), pp. 18-40.

S. Berrone, A. Borio, and S. Scialo, A posteriori error estimate for a PDE constrained optimizationformulation for the flow in DFNs, SIAM Journal Numer. Anal., 54 (2016), pp. 242-261.

S. Berrone, S. Pieraccini, and S. Scialo, Towards effective flow simulations in realistic discrete fracturenetworks, J. Comput. Phys., 310 (2016), pp. 181-201.

S. Berrone, S. Pieraccini, and S. Scialo, Non-stationary transport phenomena in networks of fractures:Effective simulations and stochastic analysis, Comput. Methods Appl. Mech. Engrg., 315 (2017), pp.1098-1112.

S. Berrone, S. Pieraccini, and S. Scialo, Flow simulations in porous media with immersed intersectingfractures, J. Comput. Phys., 345 (2017), pp. 768-791.

M. F. Benedetto, A. Borio, S. Scialo, Mixed Virtual Elements for discrete fracture network simulations FiniteElem. Anal. Des., 134 (2017), pp. 55-67.

F. Dassi and S. Scialo (MIBI-DISMA PoliTo) February 14, 2018 42 / 43


Recommended