+ All Categories
Home > Documents > Vera Rostovtseva, Igor Goncharenko, Dmitrii Khlebnikov ... workshop/Rostovts… · Igor...

Vera Rostovtseva, Igor Goncharenko, Dmitrii Khlebnikov ... workshop/Rostovts… · Igor...

Date post: 22-Oct-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
26
Investigation of the Black, Baltic, Kara and Aral Seas using their sea radiance coefficient spectra obtained by passive remote sensing Vera Rostovtseva, Igor Goncharenko, Dmitrii Khlebnikov, Boris Konovalov P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia
Transcript
  • Investigation of the Black, Baltic, Kara and Aral Seas

    using their sea radiance coefficient spectra obtained by

    passive remote sensing

    Vera Rostovtseva,

    Igor Goncharenko, Dmitrii Khlebnikov, Boris Konovalov

    P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia

  • • Passive remote sensing from board a ship for estimation of the

    main water admixtures concentration.

    • Sea Radiance Coefficient Spectra which depends on water content

    • How to measure the SRC from board a ship

    • SRC spectra for Case 1 and Case 2 waters

    • Calibration using the characteristics of pure sea water

    • SRC spectra and water content in the four different seas

    Passive remote sensing of the sea surface

  • Abstract

    Estimation of water content and admixtures distribution in inland seas and coastal regions of oceans by optical

    remote sensing from board a ship is of great importance. One of the most informative characteristics is the sea

    radiance coefficient spectrum ρ(λ) which we obtained with the special spectrophotometer, named Ro-meter. It was

    developed for measuring the three values: upward sea surface radiation, radiance of the adjacent sky area (it is the

    area that contributes most to the reflection part of the sea surface radiation) and radiance of the horizontal white

    screen (it estimates the total illumination of the sea surface). After subtracting the reflection part from the upward sea

    surface radiation and dividing the result by the total illumination of the sea surface we obtained the sea radiance

    coefficient spectra.

    The measurements were made from board a moving ship in four seas characterized by various water properties: in the

    north-eastern part of the Black Sea at the Vulan-river mouth, in the western part of the Aral Sea, in Gdansk Bay of the

    Baltic Sea, in Gdansk Gulf of the Baltic Sea and in the Kara Sea including the Ob’ Bay. The spectra were normalized

    by the sea radiance coefficients for the four seas at 600nm.

    The obtained sea radiance coefficient spectra were compared to the classification of the shelf sea waters developed

    for different water types. Comparing the types of the obtained spectra to the modeling results one can conclude that

    the Baltic Sea has the high content of dissolved organic matter, the Black Sea has abnormally high scattering, the

    Aral Sea water shows significant adsorption by some pigments though it is extremely saline and the Kara Sea differs

    greatly from the areas where it is similar to the open ocean waters to the areas of the river mouths with high content

    of dissolved organic and suspended matter.

    Then the original calibration method based on the spectrum of pure sea water absorption was used to avoid the

    impact of different weather conditions on the explored spectra and the absorption spectra of sea water in the chosen

    areas of the four seas were calculated. The absorption spectra allowed us to estimate the admixtures concentration

    and the efficiency of the suggested method in each case was discussed.

    The suggested method of optical remote sensing from board a ship can be useful for sub-satellite measurements to

    obtain the coefficients for regional algorithms. It is also necessary for exploring the sea areas, which are too close to

    the coastal line or cannot be seen from satellites because of cloudiness.

  • To obtain Sea Radiance Coefficient from board a ship we have to

    measure three characteristics

    Sea Radiance Coefficient is a characteristic of the water itself:

    intensity of the light backscattered by the water intensity of the incident light

    ρ =

    As the backscattered light depends on the absorption and

    backscattering coefficients of sea water and its

    admixtures concentration, the Sea Radiance

    Coefficient Spectrum (ρ - spectrum) can reveal the

    water content:

    0 b

    b

    k b

    a b

    ρ =

    Passive remote sensing of the sea surface

  • Vulan - Bsea (upward radiation)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    350 450 550 650λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    Vulan - B white screen

    0

    20

    40

    60

    80

    100

    120

    140

    160

    350 450 550 650

    λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    Vulan - Bsky

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    350 450 550 650

    λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    Sea Radiance Coefficient

    Three-channel Spectrophotometer for Measurement

    of Sea Radiance Coefficient

    from board a ship

  • Spectrophotometer for measurement of sea

    radiance coefficient from board a ship

    Main parameters of Rometer-A

    based on spectrophotometer AvaSpec-102 (AVANTES):

    Spectral band – 360 -:- 760 nm

    Spectral resolution – 5 nm

    Integration time interval – 0.1 -:- 60 s

    signal-noise ratio – 1000:1,

    Weight of the device – 720 g

    Dimensions – 175x110x44 mm

    PC-controlled

  • Sea radiance coefficient for open ocean waters (Case 1)

    0

    0,02

    0,04

    0,06

    0,08

    0 2 4 6 8 10

    m

    ays

    asm

    Cp/100

    Natural admixtures concentrations in open ocean waters can be estimated using one parameter, for example water type optical index m which is proportional to water vertical extinction coefficient at 500 nm

    Dependence of the three main natural admixtures concentrations on the water type

    optical index m:

    1. "yellow substance" is given in m-1

    2. suspended matter concentrations is given in m-1.

    3. Phytoplankton pigments concentration is given in mg/m3

    0

    1

    2

    3

    4

    5

    6

    400 450 500 550 600 650 700

    wave length, nm

    ρ (

    λ),

    %

    Clear waters

    Ср = 0,1 mg/m3

    Ср = 0,5 mg/m3

    Ср = 1,0 mg/m3

    Ср = 2,5 mg/m3

  • Sea Radiance Coefficient spectra ρ (λ) measured from

    Russian r/v in the Atlantic Ocean and Antarctic waters

    0

    1

    2

    3

    4

    5

    6

    400 450 500 550 600 650 700

    wave length, nm

    ρ (

    λ),

    %

    Clear waters

    Ср = 0,1 mg/m3

    Ср = 0,5 mg/m3

    Ср = 1,0 mg/m3

    Ср = 2,5 mg/m3

    Cp < 0.3 [mg/m3]

    0

    1

    2

    3

    4

    5

    6

    400 500 600 700

    Central Atlantic-1

    Central Atlantic-2

    Central Atlantic-3

    0.5 < Cp < 1.0 [mg/m3]

    0

    1

    2

    3

    4

    5

    6

    400 500 600 700

    Canarian upwelling-1

    Canarian upwelling-2

    Antarctic waters-1

    Antarctic waters-2

    Modeling

    1.0 < Cp < 2.0 [mg/m3]

    0

    1

    2

    3

    4

    5

    6

    400 500 600 700

    Bengelian upwelling

    Canarian upwelling-3

    Antarctic waters-3

    Measurements

  • Sea radiance coefficient for inland seas and sea coastal

    regions (Case 2)

    0

    1

    2

    3

    4

    5

    6

    400 500 600 700

    wave length, nm

    ρ (

    λ),

    %

    M (Cp=0,5 ys=0,004

    sm=0,014)

    M+Y (ys*=0,08)

    M+S (sm*=0,04_b*=0,2)

    M+YS (ys*=0,08,

    sm*=0,04_b*=0,2)

    M+YS' (ys*=0,01,

    sm*=0,04_b*=0,5)

    Modeling

    Measurements

    0

    1

    2

    3

    4

    5

    6

    7

    400 500 600

    Ionic Sea

    Aegen Sea

    Baltic Sea

    (Kattegat)

    Marmora Sea

    Black Sea

    Pure waters

  • Calibration of Sea Radiance Coefficient

    measured from board a ship

    Vulan - Bsea (upward radiation)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    350 450 550 650λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    Vulan - B white screen

    0

    20

    40

    60

    80

    100

    120

    140

    160

    350 450 550 650

    λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    Vulan - Bsky

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    350 450 550 650

    λ, nm

    Vulan-01

    Vulan-02

    Vulan-03

    Vulan-04

    0,02sea sky

    ws

    B BR

    B

    Cloudy sky

    Rough sea

    Windy day

    ρ(λ)= k R – ΔR

    ? ?

  • Vulan - Ro (01-04)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0,07

    400 500 600 700

    Vulan-01 Vulan-02

    Vulan-03 Vulan-04

    SHORE SHORE

    8 1 9 16

    7 2 10 15

    6 3 11 14

    5 4 12 13

    Sea-water backscattering

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    400 500 600 700

    wavelength, nm

    bac

    ksca

    tter

    ing

    co

    effi

    cien

    t, 1

    /m

    bw

    b

    bb

    Sea-water absorption

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0,35

    0,4

    0,45

    0,5

    400 500 600 700

    wavelength, nm

    ab

    so

    rpti

    on

    co

    eff

    icie

    nt,

    1/m

    aw

    ays

    asm

    ap

    a

    1D

    2D

    Absorption of pure sea water

    Using some peculiarities of pure sea water absorption for

    calibration of Sea Radiance Coefficient

  • Sea-water backscattering

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    400 500 600 700

    wavelength, nm

    bac

    ksca

    tter

    ing

    co

    effi

    cien

    t, 1

    /m

    bw

    b

    bb

    Sea-water absorption

    0

    0,05

    0,1

    0,15

    0,2

    0,25

    0,3

    0,35

    0,4

    0,45

    0,5

    400 500 600 700

    wavelength, nm

    ab

    so

    rpti

    on

    co

    eff

    icie

    nt,

    1/m

    aw

    ays

    asm

    ap

    a

    1D

    2D2600580

    1600700

    1

    ,

    D

    D

  • Sea radiance coefficient spectra obtained at the Vulan-river estuary

    SHORE SHORE

    8 1 9 16

    7 2 10 15

    6 3 11 14

    5 4 12 13

    Vulan - Ro (05-08)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    400 500 600 700

    Vulan-05 Vulan-06

    Vulan-07 Vulan-08

    Vulan - Ro (01-04)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0,07

    400 500 600 700

    Vulan-01 Vulan-02

    Vulan-03 Vulan-04

    Vulan - Ro (09-12)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    400 500 600 700

    Vulan-09 Vulan-10

    Vulan-11 Vulan-12

    Vulan - Ro (13-16)

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    400 500 600 700

    Vulan-13 Vulan-14

    Vulan-15 Vulan-16

    Measurement of Sea Radiance Coefficient

    from board a ship

  • Sea radiance coefficient spectra obtained at the Vulan-river estuary

    Measurement of Sea Radiance Coefficient

    from board a ship

    SHORE SHORE

    8 1 9 16

    7 2 10 15

    6 3 11 14

    5 4 12 13

    Vulan - Ro (05-08)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    400 500 600 700

    Vulan-05 Vulan-06

    Vulan-07 Vulan-08

    (a+b) b1/b

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    400 500 600 700

    V08 V07 V06 V05 aw

    Vulan - Ro (01-04)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    0,07

    400 500 600 700

    Vulan-01 Vulan-02

    Vulan-03 Vulan-04

    (a+b) b1/b

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    400 500 600 700

    V01 V02 V03 V04 aw

    Vulan - Ro (09-12)

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    400 500 600 700

    Vulan-09 Vulan-10

    Vulan-11 Vulan-12

    Vulan - Ro (13-16)

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    400 500 600 700

    Vulan-13 Vulan-14

    Vulan-15 Vulan-16

    (a+b) b1/b

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    400 500 600 700

    V09 V10 V11 V12 aw

    (a+b) b1/b

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    400 500 600 700

    V16 V15 V14 V13 aw

  • Spectra of chlorophyll-specific

    light absorption coefficient of

    phytoplankton pigments for

    waters of various trophicity

    (from O1->E4)

    Spectra of specific light

    absorption coefficient of

    suspended particles -

    suspended matter (SM) Gulf of Gdansk and Puck Bay (1-3),

    open Baltic (4-6), mid-Atlantic (7-11)

    Spectra of absorption coefficients

    of Dissolved Organic Matter

    (“Yellow Substance”)

    Chlorophyll of Phytoplankton Suspended Matter

    “Yellow Substance” or DOM Specific absorption ax,ay,as

    0

    0,05

    0,1

    400 500 600 700

    ay

    as

    ax

    Bogdan Wozniak and Jerzy Dera,

    Light Absorption in Sea Water- Springer, 2007

    Modeling of the absorption spectra of the main sea

    admixtures

  • 0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    400 500 600

    Wave length, nm

    Ab

    so

    rbti

    on

    in

    dex,

    1/m

    (a + b) - aw summa_mod

    ap_mod ays_mod

    asm+b_mod

    Cp = 0.7 mg/m3

    ay = 0.007 1/m

    as = 0.035 1/m

    Estimation of water admixtures concentration from ρ(λ) spectra using specific absorption spectra

    SHORE SHORE

    8 1 9 16

    7 2 10 15

    6 3 11 14

    5 4 12 13

  • SHORE SHORE

    8 1 9 16

    7 2 10 15

    6 3 11 14

    5 4 12 13

    Estimation of water admixtures concentration

    from ρ(λ) spectra and in water samples

    "Yellow substance" absorption at 500 nm, 1/m

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    0,04

    8 7 6 5 4 3 2 1 9 10 11 12 13 14 15 16

    Suspended matter absorption, 1/m

    0

    0,04

    0,08

    0,12

    0,16

    8 7 6 5 4 3 2 1 9 10 11 12 13 14 15 16

    Coloured columns for estimates (R) from ρ(λ)

    Brown columns for estimates (S) in water samples

    0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

    Концентрации примесей, измеренных на пробах (нормировано по

    максимуму)

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    О

    тн

    ош

    ен

    ие

    ко

    нц

    ен

    тр

    ац

    ий

    пр

    им

    есе

    й п

    о К

    СЯ

    к ко

    нц

    ен

    тр

    ац

    иям

    в п

    ро

    ба

    х

    ор

    ми

    ро

    ван

    о п

    о м

    акс

    им

    уму)

    r = -0,77; r = -0,47; r = -0,45;

    Ср

    ays(500)asm(500)

    D

    Estimates-S normalized by their maximal value

    Ratio o

    f e

    stim

    ate

    s-R

    to

    estim

    ate

    s-S

    no

    rma

    lize

    d b

    y th

    eir m

    axim

    al va

    lue

    Concentration of Phytoplankton, mg/m3

    00,20,40,60,8

    1

    1,21,41,61,8

    2

    8 7 6 5 4 3 2 1 9 10 11 12 13 14 15 16

  • 38.48 38.5 38.52 38.54 38.56 38.58

    44.3

    44.32

    44.34

    44.36

    0.4

    0.6

    0.8

    1

    1.2

    ArkhipoosipovkaThe Vulan

    Phytoplankton concentration, mg/m3

    38.48 38.5 38.52 38.54 38.56 38.58

    44.3

    44.32

    44.34

    44.36

    0.006

    0.009

    0.012

    0.015

    0.018

    0.021

    ArkhipoosipovkaThe Vulan

    Concentration of "yellow substance", m-1Phytoplankton concentration, mg/m3 “Yellow Substance” concentration, m -1

    38.48 38.5 38.52 38.54 38.56 38.58

    44.3

    44.32

    44.34

    44.36

    0.03

    0.06

    0.09

    0.12

    0.15

    ArkhipoosipovkaThe Vulan

    Concentration of suspended matter, m-1Suspended Matter concentration, m-1

    Estimation of water admixtures distribution

    in aquatorium of the Vulan river mouth

  • Sea radiance coefficient spectra

    measured in Gdansk Gulf from board

    of “Oceania”

    Gdansk - Ro

    B

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    25.08.06 10-45

    25.08.06 10-45

    25.08.06 10-52

    25.08.06 10-52

    Gdansk - Ro

    J

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    0,04

    400 500 600 700

    29.08.06 11-44

    29.08.06 11-47

    Gdansk - Ro

    E, F

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    27.08.06 11-18

    27.08.06 14-30

    Gdansk - Ro

    H, I

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    29.08.06 08-22

    29.08.06 10-32

    Comparison to LIDAR data

  • Gdansk - Ro

    B

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    25.08.06 10-45

    25.08.06 10-45

    25.08.06 10-52

    25.08.06 10-52

    Gdansk - Ro

    J

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    0,04

    400 500 600 700

    29.08.06 11-44

    29.08.06 11-47

    Gdansk - Ro

    E, F

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    27.08.06 11-18

    27.08.06 14-30

    Gdansk - Ro

    H, I

    0

    0,005

    0,01

    0,015

    0,02

    0,025

    0,03

    0,035

    400 500 600 700

    29.08.06 08-22

    29.08.06 10-32

    (axyz+b) (b1/b=1)

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    400 500 600 700

    25.08.06 10-45 27.08.06 11-18 29.08.06 08-22

    29.08.06 11-44 aw

    Cp ays as

    25_08 10-45 1,0 0,006 0,17

    27_08 11-18 - - 0,17

    29_08 08-22 5,0 0,11 0,12

    29_08 11-44 4,0 0,05 0,12

    Estimates of admixtures concentration

    from Sea radiance coefficient spectra

  • Measurement of Sea Radiance Coefficient

    from board a ship in the Aral Sea

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0,14

    0,16

    0,18

    0,2

    400 500 600 700

    wave length, nm

    ab

    so

    rbti

    on

    in

    dex,

    1/m

    (a+b) - aw summa_mod

    ap_mod ays_mod

    asm+b_mod

    Cp = 2.6 mg/m3

    ay = 0.012 1/m

    as = 0.04 1/m

    Aral: Ro(calibrated)/Ro600

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    400 500 600 700

    14-34 (k*Ro-

    delR)/(k*Ro600-delR)

    14-44 (k*Ro-

    delR)/(k*Ro600-delR)

    Aral: Ro

    0

    0,02

    0,04

    0,06

    0,08

    0,1

    0,12

    0,14

    0,16

    0,18

    0,2

    400 500 600 700

    14-34

    14-44

  • Measurement of Sea Radiance Coefficient

    from board a ship in the Kara Sea

    0

    0,5

    1

    1,5

    2

    2,5

    3

    400 500 600 700

    wave length, nm

    ab

    so

    rpti

    on

    in

    dex,

    1/m

    (a+b) - aw summa_mod

    ays_mod asm+b_mod

    ap_mod

    The Ob’ Bay Cp = 15,6 mg/m3

    ay = 0.5 1/m

    as = 0.57 1/m

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    400 500 600 700

    wave length, nm

    ab

    so

    rpti

    on

    in

    dex,

    1/m

    (a+b) - aw summa_mod

    ap_mod ays_mod

    asm+b_mod

    The Kara Sea Cp = 2,3 mg/m3

    ay = 0.1 1/m

    as = 0.34 1/m

    Ro

    0

    0,01

    0,02

    0,03

    0,04

    0,05

    0,06

    400 500 600 700

    The Kara Sea

    The Ob' Bay

    Ro(calibrated)/Ro600

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    1,4

    1,6

    400 500 600 700

    The Kara Sea

    The Ob' Bay

  • 1. A method of express analysis of surface water content in the coastal waters from

    board a moving ship was developed. It consists of three stages: firstly, passive

    remote sensing of the aquatorium from board a moving vehicle with a portative

    device, secondly, calculation and calibration of the sea radiance coefficient spectra

    using the original methodic and thirdly, estimation of the main natural admixtures

    concentrations and visualizing their distribution over the examined area.

    2. The calibration takes into account some pure water absorption peculiarities in the

    580-700 nm which reveal themselves in the sea radiance coefficient spectra. Using

    this calibration one can remove the influence of various weather conditions (cloudy

    sky, wind, rough sea) on the sea radiance coefficient spectra.

    3. After getting the absorption spectra of the investigated sea-water the procedure of

    estimation of main admixtures concentrations by using their specific absorption

    spectra are carried out.

    Сonclusions

  • 4. The method was tested in the Black Sea region (the Vulan-river mouth), the Baltic

    Sea (Gdansk Gulf), the Aral Sea and the Kara Sea and showed its efficiency. It is

    not very suitable for open sea regions as the signal in the band for calibration is

    low. Here the one-parameter scheme can be used.

    Conclusions (continued)

    The Kara Sea

    Cp: 2,3-:-15 mg/m3

    ay: 0.1-:- 0,5 1/m

    as: 0.3-:-0.6 1/m

    The Aral Sea

    Cp = 2.6 mg/m3

    ay = 0.012 1/m

    as = 0.04 1/m

    The Baltic Sea

    Cp: 1-:-5 mg/m3

    ay: 0.006-:- 0,11 1/m

    as: 0.12-:-0.17 1/m

    Ro(calibrated) / Ro600

    0

    1

    2

    3

    4

    5

    400 500 600 700

    The Black Sea

    Cp: 0.4-:-1.4 mg/m3

    ay: 0.007-:- 0,012 1/m

    as: 0.02-:-0.14 1/m

    Ro(calibrated)/Ro600

    0

    1

    2

    3

    4

    5

    400 500 600 700

    Ro(calibrated)/Ro600

    0

    1

    2

    3

    4

    5

    400 500 600 700

    Ro (calibrated)/Ro600

    0

    1

    2

    3

    4

    5

    400 500 600 700

  • Future plans

    1. Development of the device for operating in an automatic regime to get some

    series of spectra on move for better mapping the area under investigation.

    2. Study of the influence of the surface film on the sea radiance coefficient

    spectra and the possibility of its detection by this method

    3. Comparison of the results of passive and active remote sensing: can we

    judge about admixture distribution in depth?

  • Thank You for Attention


Recommended