+ All Categories
Home > Documents > Verification of LHP Stabilityyy Theory Part I - TFAWS … of LHP Stabilityyy Theory Part I ... •...

Verification of LHP Stabilityyy Theory Part I - TFAWS … of LHP Stabilityyy Theory Part I ... •...

Date post: 19-May-2018
Category:
Upload: duongduong
View: 217 times
Download: 0 times
Share this document with a friend
21
Verification of LHP Verification of LHP Stability Theory Part I Stability Theory Part I Triem T. Hoang Triem T. Hoang TTH R hI TTH R hI TTH Research Inc. TTH Research Inc. Robert W. Baldauff Robert W. Baldauff GSFC· 2015 U.S. Naval Research Laboratory U.S. Naval Research Laboratory
Transcript

Verification of LHP Verification of LHP Stability Theory Part IStability Theory Part Iy yy y

Triem T. HoangTriem T. HoangTTH R h ITTH R h ITTH Research Inc.TTH Research Inc.

Robert W. BaldauffRobert W. BaldauffGSFC· 2015 U.S. Naval Research LaboratoryU.S. Naval Research Laboratory

Outline

• Loop Heat Pipe (LHP) Stability Theoryp p ( ) y y

• Instability Criterion for Low-Frequency Oscillations

• Theory Verification Process

• Model Predictions vs Test DataModel Predictions vs. Test Data

• Summary / Conclusion

Loop Heat Pipe

(E)T

EG

(E)WT

EQ

EPMc

Heat Source

(E)

Attached Payload

( )SATT

(R)WT

)W(RPMc

Evaporator Pump

ReservoirTSAT, PE

(E)

TL(IN)

EPMc

1

VQm

2Q

PrimaryWick

(R)SATT

(L)RG

(W)RG

W

(R) )W(

Evaporator Pump

VapoLiqu

id m

L

TSAT, PR(R)

PLOOP PE PR Non-wickFlow PathSecondary

Wi k(R)LT )W(

RPMcCondenser

or mV

Wick

Metal Casing

Secondary

Heat Sink

TSAT, PLVI(LVI)

TSAT(C)

Secondary Wick

Not Shown

LHP is a capillary-pumped device having no mechanical moving part

LHP Linear Stability Theory

Is LHP state x capable of reaching steady state xSS ?

tk

ke(t) Axx SS2050

/K)

TSINK = 10oC and TAMB = +23oC

x

k

ke(t) Axx SS

10

12

14

16

18

25

30

35

40

45

mpe

ratu

re (o C

)

ance

1/R

LHP

(W/

1/RLHPPoint 1xSS x xSS

2

4

6

8

10

5

10

15

20

25

Satu

ratio

n Te

m

herm

al C

ondu

cta

TSAT

Point 3

02 4

000 100 200 300 400 500 600 700

ThPower Input (Watts)

Point 3

)CRIT(

)L(RP

)W(RP

)E(W 11McMcT

Instability Criterion for Low-Frequency/High-Amplitude Oscillations

)CRIT(LFHAINPEPSSE GQcMcQ

LHP Linear Stability Theory

Is LHP state x capable of reaching steady state xSS ?

tk

ke(t) Axx SS2050

/K)

TSINK = 10oC and TAMB = +23oC

x

k

ke(t) Axx SS

10

12

14

16

18

25

30

35

40

45

mpe

ratu

re (o C

)

ance

1/R

LHP

(W/

1/RLHPPoint 1

TW(E)

QIN/GE

xSS x xSS

2

4

6

8

10

5

10

15

20

25

Satu

ratio

n Te

m

herm

al C

ondu

cta

TSAT

Point 3

02 4

000 100 200 300 400 500 600 700

ThPower Input (Watts)

Point 3

)CRIT(

)L(RP

)W(RP

)E(W 11McMcT

Instability Criterion for Low-Frequency/High-Amplitude Oscillations

)CRIT(LFHAINPEPSSE GQcMcQ

Criterion for Low Frequency Oscillations

)CRIT(

LFHAINPEP

)L(RP

)W(RP

SSE

)E(W

G1

Q1

cMcMcMc

QT

For Unstable LHP Operation:ESS

0e

Zone 1 Zone 2Zone 3

(E)WT

0

SSIN

)E(W

QT

nduc

tanc

e

13

)CRIT(G/1ture

or C

on

)3(INQ)1(

INQ

for large attachedLFHAG/1

Tem

pera

t for large attached thermal mass

Criterion for Low Frequency Oscillations

)CRIT(

LFHAINPEP

)L(RP

)W(RP

SSE

)E(W

G1

Q1

cMcMcMc

QT

For Unstable LHP Operation:ESS

0e

Zone 1 Zone 2Zone 3

(E)WT

0

SSIN

)E(W

QT

nduc

tanc

e

13

)CRIT(G/1ture

or C

on

)3(INQ)1(

INQ

for decreasingLFHAG/1

Tem

pera

t for decreasingthermal mass

Criterion for Low Frequency Oscillations

)CRIT(

LFHAINPEP

)L(RP

)W(RP

SSE

)E(W

G1

Q1

cMcMcMc

QT

For Unstable LHP Operation:ESS

0e

Zone 1 Zone 2Zone 3

(E)WT

0

SSIN

)E(W

QT

nduc

tanc

e

13

)CRIT(G/1ture

or C

on

)3(INQ)1(

INQ

for decreasingLFHAG/1

Tem

pera

t for decreasingthermal mass

Criterion for Low Frequency Oscillations

)CRIT(

LFHAINPEP

)L(RP

)W(RP

SSE

)E(W

G1

Q1

cMcMcMc

QT

For Unstable LHP Operation:ESS

0e

Zone 1 Zone 2Zone 3

(E)WT

0

SSIN

)E(W

QT

nduc

tanc

e

13

)CRIT(G/1ture

or C

on

)3(INQ)1(

INQ

for decreasingLFHAG/1

Tem

pera

t for decreasingthermal mass

JPL TES Loop Heat Pipe

(o C)

20

30

40

20

25

30

Wat

ts)

JPL TES/LHP EDU 12/08/1999 TSINK = 10oC

TC8

TC6

Tem

pera

ture

(

0

10

20

10

15

20

Hea

t Inp

ut (W

TC8

TC23 TC24

10

Elapsed Time (hours)0 1 2 3 4 5 6 7 8 9 10

H

0

5TC31TC32

20

With Large Attached Thermal MassTests with Heater Block

Rodriguez, J. and A. Na-Nakornpanom, “Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe,” Paper No. 01ICES-74, International Conference on Environmental Sciences (ICES), 2001.

JPL TES Loop Heat Pipe

Evaporator P i Wi k C i /S ddl 1st Wi k d A h d Th l M

Dimensions and Properties of LHP Components

Primary Wick Casing/Saddle, 1st Wick, and Attached Thermal Mass Material: Sintered Powder Nickel Attached Thermal Mass: 9,080J/K Outer Diameter: 24.21mm (0.950”) Thermal Mass-to-Vapor Inner Diameter: 9.525mm (0.375”) Conductance GE: 8.16 W/K Active Length: 0.1524m (6”) Saddle: 7.62cm x 15.24cm x 1.91cm Al 6061 Max. Pore Radius: 1.2m Vapor Grooves Permeability: 4.0x10-14m2 Number of Channels: 4 Effective Conductivity: 7.8W/m-K Hydraulic Diameter: 0.05” Transport LinesTransport Lines Vapor Line Liquid Line Outer Diameter: 5.54mm Outer Diameter: 5.54mm Wall Thickness: 0.508mm Wall Thickness: 0.508mm Length: 1.0m Length: 1.2264m (incl. bayonet) C d R iCondenser Reservoir Number of Parallel Passes 1 Outer Diameter: 43.94mm Heat Exchanger Tubing Wall Thickness: 2.20mm Inner Diameter: 3.99mm Active Length: 0.08023m Length: 3.81m (200”) Thermal Mass (McP)R: 190J/K

)MAX( Conductance :G )MAX(C 25W/K Conductance GR: 22W/K

LHP Steady State Model

35JPL TES LHP Steady State (w/o Large Thermal Mass)

20

25

30at

ure

(o C) Predictions

JPL TES/LHP Data

5

10

15

on T

empe

ra

‐10

‐5

0

Satu

ratio

‐150 20 40 60 80 100 120 140 160 180 200

Power Input (W)

LHP Saturation Temperature

35JPL TES LHP Steady State (w/o Large Thermal Mass)

20

25

30

ture

(o C) Predictions

JPL TES/LHP Data

5

10

15

n Te

mpe

rat

‐10

‐5

0

Satu

ratio

n

‐15

10

0 20 40 60 80 100 120 140 160 180 200

Power Input (W)

Thermal Mass Temperature

30JPL TES LHP Steady State (w/o Large Thermal Mass)

20

25

ratu

re (o C

)

15

20

ass T

empe

r

5

10

Ther

mal

M

00 20 40 60 80 100 120

T

Power Input (W)

Predicted Instability Map

80

90JPL TES LHP

W)

60

70

80

wer

Inpu

t (W

40

50 Predicted Region of Instability

Pow

10

20

30

Sink Temperature (oC)30 25 20 15 10 5 0 5 10 150

10

20

Sink Temperature (oC)

Predictions vs. Test Data

Test Without Oscillations

JPL TES LHP

80

90W

)

60

70

80

wer

Inpu

t (W

40

50 Predicted Region of Instability

Pow

10

20

30

Sink Temperature (oC)30 25 20 15 10 5 0 5 10 150

10

20

Sink Temperature (oC)

Predictions vs. Test Data

80

90Test Without Oscillations

JPL TES LHPW

)

60

70

80Test With Oscillations

wer

Inpu

t (W

40

50 Predicted Region of Instability

Pow

10

20

30

Sink Temperature (oC)30 25 20 15 10 5 0 5 10 150

10

20

Sink Temperature (oC)

Transient Model

Governing Equations for Large Attached Thermal Mass

)IN()E( )TT)(/c(QQdTQQdT

0 QQ and 0 QQ and QQQ 2SC)2(

C121E (1)

)L(RP

)W(RP

LSATP12SAT

EP

EINW

McMc)TT)(/c(QQ

dtdT

McQQ

dtdT

(2)

Solution of Eq. (1):

)Q(fT )Q(fQ )Q(fQ )Q(fT E4)IN(

LE32E21E1SAT

Integrate Eq. (2) with Runge-Kutta-Fehlberg (RKF45)method to obtain T and Q as functions of time t(E) .method to obtain TW and QE as functions of time t

Predictions vs. Test Data)

20 01/24/2000 TSINK = 10oC

Power Input

Pow

er (W

)

15Evaporator

(Data)

e (o C

) or P

10

empe

ratu

re

5

i

Reservoir(Data)

Evaporator

Te

0 1 2 3 4 5 60

Reservoir(Model)

p(Model)

Elapsed Time (hours)

Predictions vs. Test Datae

(o C)

15

20

15W/20W/30W Power Input TSINK = 10oCEvaporator

(Model)

25

Heat Input

25

30

35

ut (W

)

e (o C

)

20

30

02/14/2000 TSINK = 10oC

Reservoir(Data)

Evaporator(Data)

40

Heat Input

30

40

50

ut (W

)

Tem

pera

ture

5

10

15

15

20

25

Pow

er In

pu

Tem

pera

tur

0

10

20 ( )

10

20

30

Pow

er In

pu

0 5 10 15 20 25 300

Elapsed Time (hours)

Reservoir(Model) 10

0 4 8 12 16 20 2410

Elapsed Time (hours)28

0

360Prediction for TSINK=30oC

35

riod

(min

utes

)

180

240

300 TES/EDU Data for TSINK=30oC

Prediction for TSINK=20oC

TES/EDU Data for TSINK=20oC

Prediction for TSINK=10oC

TES/EDU Data for TSINK=10oC

P di i f T 0 C Am

plitu

de (o C

)20

25

30

Osc

illat

ion

Per

60

120

180 Prediction for TSINK=0oC

TES/EDU Data for TSINK=0oC

Peak

-to-P

eak

A

5

10

15

0 10 20 30 40 50 60 70 800

Power Input (W)

P 5

Power Input (W)0 10 20 30 40 50 60 70 80

0

Conclusion / Summary

• LHP Linear Stability Theory– low-frequency/high-amplitude oscillations are caused by large

thermal mass ratio between evaporator and reservoir– unstable range of power input is between those of two

extrema (Points 1 & 2) of TW vs. QIN curve, i.e. dependent on (E) .

environmental heating of liquid line and reservoir– theory is limited to single-pass condenser LHPs

• Theory Verification• Theory Verification– model predictions agreed very well with JPL TES test data– unfortunately, test data from only one LHP are available

• Path Forward– continue with verification when additional data available– add multiple parallel evaporators/condensers to theory


Recommended