+ All Categories
Home > Science > Versteegh Goldschmidt 2014

Versteegh Goldschmidt 2014

Date post: 11-Jul-2015
Category:
Upload: emma-versteegh
View: 1,874 times
Download: 1 times
Share this document with a friend
Popular Tags:
18
Emma Versteegh, Cindy Van Dover, Max Coleman NASA Jet Propulsion Laboratory, California Ins9tute of Technology Copyright 2014 California Ins9tute of Technology. U.S. Government sponsorship acknowledged.
Transcript
Page 1: Versteegh Goldschmidt 2014

Emma  Versteegh,  Cindy  Van  Dover,    Max  Coleman  NASA  Jet  Propulsion  Laboratory,  California  Ins9tute  of  Technology  

Copyright  2014  California  Ins9tute  of  Technology.  U.S.  Government  sponsorship  acknowledged.  

Page 2: Versteegh Goldschmidt 2014
Page 3: Versteegh Goldschmidt 2014

Life  without  sunlight  

NASA/JPL/Ted  Stryk  

NASA/JPL  

Photosynthesis:  6  CO2  +  12  H2O  +  sunlight  →  C6H12O6  +  6  H2O  +  6  O2  Chemosynthesis:  6  CO2  +  6  H2O  +  3  O2  +  3  H2S  →  C6H12O6  +  3  H2SO4  

 Would  work  on  Europa  too  Quan9fy  biomass  expected?  →  look  on  Earth  How  much  new  biomass/9me?  →  food  web  

Page 4: Versteegh Goldschmidt 2014

•  Piccard  vent  field,  world’s  deepest:  4985m,  basal9c  

•  Von  Damm  vent  field:  2309m,  ultramafic  

Mid-­‐Cayman  Rise  (MCR)  

Jack  Cook,  WHOI  NOAA  Okeanos  Explorer  

Page 5: Versteegh Goldschmidt 2014

Von  Damm  Vent  Field  

Page 6: Versteegh Goldschmidt 2014

A  shrimp  world  

Page 7: Versteegh Goldschmidt 2014

Rimicaris  hybisae  

•  Abundant  at  MCR  •  Spa9al  variability  in  popula9on  structure:  dense  ~  sparse  

•  Bac9vorous  (un9l  now)  •  Unexplained  varia9ons  in  δ13C  values    

•  δ13C  not  a  good  food  web  tracer?  

Page 8: Versteegh Goldschmidt 2014

Previous  work  

Bennee  et  al.  (under  review)  

~10‰    

Page 9: Versteegh Goldschmidt 2014

What  is  the  structure  of  the  food  web  around  MCR  vent  fields?  Who  eats  whom  (or  what)?  

Ques9ons  1.  What  causes  the  wide  range  

of  δ13C  values?  2.  Are  δ13C  values  related  to  

dense  and  sparse  assemblages?  

3.  Do  dense  and  sparse  have  different  diets?  

4.  Do  dense  and  sparse  differ  in  δ15N  and  δ34S  values?  

5.  How  do  δ15N  and  δ34S  relate  to  diet?    

Hypotheses    

1.  Dense  and  sparse  Rimicaris  have  different  diets  

2.  They  are  metabolically  different  

 You  are  what  you  eat:  

•  +1  (δ13C  ‰  vs.  VPDB)  •  +3  (δ15N  ‰  vs.  AIR)  •  +?  (δ34S  ‰  vs.  VCDT)  

Page 10: Versteegh Goldschmidt 2014

Methods  E/V  Nau9lus  Expedi9on  August  26,  2013    •  Von  Damm  vent  field  •  Remotely  operated  vehicle  

Hercules  •  Dense  and  sparse,  separated  by  

~1m  •  R.  hybisae  dissected,  frozen  on  

board  

In  lab:  •  Freeze  dried  &  homogenized  •  Stable  isotope  analyses:  Costech  

ECS  4010  &  MAT  253  IRMS  www.nau9luslive.org  

Page 11: Versteegh Goldschmidt 2014

Shrimp  tail  δ13C,  δ15N  &  δ34S  values  

® Rimicaris hybisae tail (sparse)¯ R. hybisae tail (dense)� Lebbeus virentova wholep R. hybisae gut (crustacea)p R. hybisae gut (bacteria & crustacea)r R. hybisae gut (bacteria)£ R. hybisae gill covers (dense)

~3‰    

<<3‰    ~6‰    

~7‰    

~15‰    

Page 12: Versteegh Goldschmidt 2014

Gut  contents  

•  Dense:  –  bacteria  

•  Sparse:  –  crustacea  (5  out  of  13)  –  bacteria  and  crustacea  (3  out  of  13)  

–  bacteria  only  (5  out  of  13)  

® R. hybisae (crustacea)® R. hybisae (bacteria & crustacea)¯ R. hybisae (bacteria)

Page 13: Versteegh Goldschmidt 2014

Tails  &  gut  contents  

® R. hybisae (crustacea)® R. hybisae (bacteria & crustacea)¯ R. hybisae (bacteria)

Page 14: Versteegh Goldschmidt 2014

Results  

•  Sparse  /  crustacea-­‐ea9ng  shrimp:  – Lower  δ13C  values  (-­‐2.4  ‰)  – Elevated  δ15N  values  (+0.3  ‰)  – Lower  δ34S  values  (-­‐2.2  ‰)  

•  Lebbeus  virentova  δ13C  and  δ15N  overlap  with  R.  hybisae,  differ  from  sparse  in  δ34S  only  

•  Exoskeleton  of  R.  hybisae  same  δ15N  and  δ34S  as  guts,  but  different  δ13C  

Page 15: Versteegh Goldschmidt 2014

Results  

•  Tail  δ13C  and  δ34S  reflect  gut  content,  no  enrichment    

•  Tail  δ15N  enriched  by  +3.4‰  vs.  gut  •  Bacteria  in  gut:  higher  tail  δ13C  and  δ34S  •  Crustacea  in  gut:  lower  tail  δ34S  

Page 16: Versteegh Goldschmidt 2014

Conclusions  

•  Dense  and  sparse  R.  hybisae  use  different  food  sources.  

•  Dense  Rimicaris  eat  /  absorb  episymbio9c  bacteria  only.  

•  Sparse  shrimp  eat  bacteria,  crustacea,  and  possibly  gastropods.  

•  They  might  have  different  episymbio9c  bacterial  communi9es.  

•  Diet  switch  possibly  related  to  mol9ng  cycle.  

Page 17: Versteegh Goldschmidt 2014

Implica9ons  /  future  work  

•  DNA  analysis  on  dense  /  sparse  R.  hybisae  •  Gut  contents  vs.  stage  in  mol9ng  cycle  

•  Analogous  dense  and  sparse  assemblages  in  Rimicaris  exoculata  and  Rimicaris  kairei  –  do  they  differ  in  diet?  

Page 18: Versteegh Goldschmidt 2014

Thank  you!    Ques9ons?  

 Acknowledgements  •  NASA  ASTEP  Oases  for  life  •  E/V  Nau9lus  &  

 ROV  Hercules  team    •  Kenneth  Williford  &  

 Michael  Tuite  (JPL)  •  JPL  ISOLAB  team:  

 Bethany  Theiling,    Kathrin    Streit,    Emma  Gar  

 


Recommended