+ All Categories
Home > Documents > VIDEO PROCESSING IN MOTION MODELLINGuprt.vscht.cz/kubicekm/DSP/PC05_presentation7.pdf · VIDEO...

VIDEO PROCESSING IN MOTION MODELLINGuprt.vscht.cz/kubicekm/DSP/PC05_presentation7.pdf · VIDEO...

Date post: 10-Jul-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
26
VIDEO PROCESSING IN MOTION MODELLING Miroslav KUB ´ I ˇ CEK, Ale ˇ s PROCH ´ AZKA, Ale ˇ s PAVELKA [email protected], [email protected], [email protected] Institute of Chemical Technology Department of Computing and Control Engineering Digital Signal and Image Processing Research Group http://dsp.vscht.cz VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUB ´ I ˇ CEK, Ale ˇ s PROCH ´ AZKA, Ale ˇ s PAVELKA – Process Control 2005 – p.1/10
Transcript
  • VIDEO PROCESSINGIN MOTION MODELLING

    Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA

    [email protected], [email protected], [email protected]

    Institute of Chemical Technology

    Department of Computing and Control Engineering

    Digital Signal and Image Processing Research Group

    http://dsp.vscht.cz

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.1/10

  • Contents

    Introduction

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10

  • Contents

    Introduction

    System Description

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10

  • Contents

    Introduction

    System Description

    Three-Dimensional Object Detection

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10

  • Contents

    Introduction

    System Description

    Three-Dimensional Object Detection

    Motion Visualization

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10

  • Contents

    Introduction

    System Description

    Three-Dimensional Object Detection

    Motion Visualization

    Conclusions

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.2/10

  • Introduction

    Goals of the projectStudy of image acquisition using synchronized twocamera system and A/D convertorsStudy of mathematical methods for bodylocalization in the three dimensional spaceVisualization of the body movement using virtualreality environment

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.3/10

  • Introduction

    Goals of the projectStudy of image acquisition using synchronized twocamera system and A/D convertorsStudy of mathematical methods for bodylocalization in the three dimensional spaceVisualization of the body movement using virtualreality environment

    ApplicationModelling of the body movementAnalysis of the object movementusing several reference points

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.3/10

  • System Description

    Technical details

    Cameras with color CCDsensor and with resolution1024x768, 30 fps

    Synchronization 125 µs

    Connection with computervia IEEE 1394

    Direct connection to theMATLAB system and ImageAcquisition Toolbox

    ��

    Light

    ACamera

    BCamera

    IEEE 1394

    ��

    &MATLAB

    Image Acquisition Tlbx

    Computer

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.4/10

  • Three-Dimensional Object Detection

    Principle of the object localisation

    FRONT VIEW

    C [xC

    (1),0]

    TOP VIEW

    A [xA,y

    A]

    Camera A

    B [xB,y

    B]

    Camera B

    C [xC

    (1),yC

    (1)]

    α1(1) β

    1(1)c

    b1(1) a

    1(1)

    (a) INITIAL POSITIONING

    FRONT VIEW

    C [xC

    (k),zC

    (k)]

    α2(k) β

    2(k)

    b2(k) a

    2(k)

    TOP VIEW

    A [xA,y

    A]

    Camera A

    B [xB,y

    B]

    Camera B

    C [xC

    (k),yC

    (k)]

    α1(k) β

    1(k)c

    b1(k) a

    1(k)

    (b) K−TH POSITION

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.5/10

  • Three-Dimensional Object Detection

    Principle of the object localisation

    FRONT VIEW

    C [xC

    (1),0]

    TOP VIEW

    A [xA,y

    A]

    Camera A

    B [xB,y

    B]

    Camera B

    C [xC

    (1),yC

    (1)]

    α1(1) β

    1(1)c

    b1(1) a

    1(1)

    (a) INITIAL POSITIONING

    FRONT VIEW

    C [xC

    (k),zC

    (k)]

    α2(k) β

    2(k)

    b2(k) a

    2(k)

    TOP VIEW

    A [xA,y

    A]

    Camera A

    B [xB,y

    B]

    Camera B

    C [xC

    (k),yC

    (k)]

    α1(k) β

    1(k)c

    b1(k) a

    1(k)

    (b) K−TH POSITION

    α1(1) = arccos((b1(1)

    2 + c2 − a1(1)2)/(2 b1(1) c))

    β1(1) = arccos((a1(1)

    2 + c2 − b1(1)2)/(2 a1(1) c))

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.5/10

  • Three-Dimensional Object Detection

    Calibration of the camera systemHORIZONTAL AND VERTICAL CAMERA ANGLE EVALUATION

    (a) CALIBRATION GRID

    CAMERA svertical/2

    shorizontal

    /2

    d

    d

    (b) INITIAL LIGHT POSITIONING

    α1min

    α1(1)

    α1max

    α2min

    α2(1)

    α2max

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.6/10

  • Three-Dimensional Object Detection

    Calibration of the camera systemHORIZONTAL AND VERTICAL CAMERA ANGLE EVALUATION

    (a) CALIBRATION GRID

    CAMERA svertical/2

    shorizontal

    /2

    d

    d

    (b) INITIAL LIGHT POSITIONING

    α1min

    α1(1)

    α1max

    α2min

    α2(1)

    α2max

    αhorizontal = 2 arctan(shorizontal/2/d

    )

    αvertical = 2 arctan(svertical/2/d

    )

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.6/10

  • Motion Visualization

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10

  • Motion Visualization

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10

  • Motion Visualization

    0

    500

    1000

    1500

    0

    500

    1000

    1500

    −5

    0

    5

    10

    15

    20

    25

    30

    CAMERA B

    x−axis

    MOTION MODELLING

    CAMERA A

    910

    8

    11

    29

    7

    30

    28

    12

    6

    27

    26

    513

    254

    14

    y−axis

    24

    153

    23

    2

    16

    22117

    21

    18

    19

    20

    z−ax

    is

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10

  • Motion Visualization

    0

    500

    1000

    1500

    0

    500

    1000

    1500

    −5

    0

    5

    10

    15

    20

    25

    30

    CAMERA B

    x−axis

    MOTION MODELLING

    CAMERA A

    910

    8

    11

    29

    7

    30

    28

    12

    6

    27

    26

    513

    254

    14

    y−axis

    24

    153

    23

    2

    16

    22117

    21

    18

    19

    20

    z−ax

    is

    Bally.translation

    VR Sink

    Scope

    simin

    FromWorkspace

    0

    Display

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10

  • Motion Visualization

    0

    500

    1000

    1500

    0

    500

    1000

    1500

    −5

    0

    5

    10

    15

    20

    25

    30

    CAMERA B

    x−axis

    MOTION MODELLING

    CAMERA A

    910

    8

    11

    29

    7

    30

    28

    12

    6

    27

    26

    513

    254

    14

    y−axis

    24

    153

    23

    2

    16

    22117

    21

    18

    19

    20

    z−ax

    is

    Bally.translation

    VR Sink

    Scope

    simin

    FromWorkspace

    0

    Display

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.7/10

  • Conclusions

    Results

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • Conclusions

    ResultsSuccessfully tested system with one moving object

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • Conclusions

    ResultsSuccessfully tested system with one moving objectCreation of the virtual reality model based on thereal movement

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • Conclusions

    ResultsSuccessfully tested system with one moving objectCreation of the virtual reality model based on thereal movement

    Further Research

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • Conclusions

    ResultsSuccessfully tested system with one moving objectCreation of the virtual reality model based on thereal movement

    Further ResearchDeterministic and statistical analysis of the set ofmoving objects

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • Conclusions

    ResultsSuccessfully tested system with one moving objectCreation of the virtual reality model based on thereal movement

    Further ResearchDeterministic and statistical analysis of the set ofmoving objectsTheir proper recognition and detection followed byvisualization in specific applications

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.8/10

  • References

    1. R. Boulic, P. Fua, L. Herda, M. Silaghi, J.S. Monzani, L. Nedel, andD. Thalmann.An Anatomic Human Body for Motion Capture. In Technologies forthe Information Society: Developments and Opportunities. EMMSEC98, 1998.

    2. J. Lasenby and A. Stevenson. Using Geometric Algebra for Optical MotionCapture. In E.Bayro-Corrochano and G. Sobcyzk, editors, Applied CliffordAlgebras in Computer Science and Engineering. Birkhauser, Boston, U.S.A., 2000.

    3. M. Kubíček. Using Dragonfly IEEE-1394 Digital Camera and Image AcquisitionToolbox. In Sborník konference MATLAB 2004, pages 280–282. VŠCHT Praha,2004.

    4. M. Nixon and A. Aguado. Feature Extraction & Image Processing. NewNesElsevier, 2004.

    5. M. Ringer, T. Drummond, and J. Lasenby. Using Occlusions to Aid PositionEstimation for Visual Motion Capture. In Proc Computer Vision and PatternRecoginition (CVPR). IEEE USA, 2001.

    6. M. Ringer and J. Lasenby. Modelling and Tracking of Articulated Motion fromMultiple Camera Views. In Proc. British Machine Vision Conf (BMVC), pages172–181, 2000.

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.9/10

  • Thank You!http://dsp.vscht.cz

    VIDEO PROCESSING IN MOTION MODELLING – Miroslav KUBÍČEK, Aleš PROCHÁZKA, Aleš PAVELKA – Process Control 2005 – p.10/10

    ContentsIntroductionSystem DescriptionThree-Dimensional Object DetectionThree-Dimensional Object DetectionMotion VisualizationConclusionsReferences


Recommended