+ All Categories
Home > Documents > View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul...

View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul...

Date post: 03-Jan-2016
Category:
Upload: annabel-victoria-griffin
View: 219 times
Download: 0 times
Share this document with a friend
Popular Tags:
33
View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1 MIT CSAIL 1 MERL 2 ACM Symposium in Interactive 3D Graphics 2006 View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations
Transcript
Page 1: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations

Paul Green1 Jan Kautz1 Wojciech Matusik2 Frédo Durand1

MIT CSAIL1 MERL2

ACM Symposium in Interactive 3D Graphics 2006

View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations

View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations

View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations

Page 2: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Geometry & Viewpoint All-Frequency Lighting

Rendered Frame

Reflectance

Interactive 6D Relighting

Page 3: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Goal: 6D Relighting

High-quality view-dependent effects Sharp highlights

Spatially varying BRDFs

Allow rendering w/ large environment maps (e.g. 6x256x256)

Without paying a prohibitive data storage price

Page 4: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Applications

Games Architectural Visualization

Page 5: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Outline

Background / Previous Work PRT Nonlinear Approximation

Our Representation Rendering Fitting Results

Conclusion

Page 6: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Courtesy of Sloan et al. 2003

),( ooL pExit Radiance

Distant Radiance

Incident Radiance

Shadowing

Inter-reflection

Transport function maps distant light to incident light

Can Include BRDF if outgoing direction ωo is fixed

Precomputed Light Transport

Page 7: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

),( oo pL

iL

Courtesy of Sloan et al. 2003

Radiance Lo at point p along direction is weighted sum of distant radiance Li

i,

, )()(),(

LT

p

p

p

o

o ioo LTL

Outgoing Radiance

Transport Vector

Distant Radiance (Environment Map)

o

Light Transport

Page 8: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Example

Transport Function Environment Map

BRDF Weighted Incident Radiance

Exit Radiance (outgoing color)

It’s a Dot Product Between Lighting and Transport Vectors!!

Page 9: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Light Transport

Data Size Problem Many GB’s of data Rendering is slow

6x64x64 cubemap ~24,000 mults/vert

Can reduce size in different basis: Spherical Harmonics Wavelets Zonal Harmonics

Page 10: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

PRT with Spherical Harmonics

Precomputed Radiance Transfer [Sloan et al 02,03]Low Order Spherical HarmonicsSoft Shadows and Low Frequency LightingNot Suitable For Highly

Glossy Materials Not Practical For High

Frequency Lighting

Image from slides by Ng et al.2003

Page 11: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Nonlinear Wavelet PRT

Nonlinear Wavelet Lighting Approximation [Ng et al 03]

Haar Wavelets

Nonlinear Approximation

All Frequency Lighting

Fixed View For ArbitraryBRDFs

Image from slides by Ng et al.2003

Page 12: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Separable PRT

Factor BRDF into product of view-only and light-only functions [Liu et al 04, Wang et al 04]

Nonlinear Wavelet Approximation [Ng et al 03]

Need factorization per BRDFVery specular materials still

require many coefficients

Liu et al 04

Page 13: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Our Goal: 6D Relighting

High quality view-dependent effects

Representation of transport that enables Spatially varying BRDFs Arbitrary highlight scale compact storage High-res environment maps (e.g. 6x256x256)

Sparse view samplingRequires high-quality interpolation Over view directions Over mesh triangles

Page 14: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Outline

Background / Previous Work PRT Nonlinear Approximation

Our Representation Rendering Fitting Results

Conclusion

Page 15: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Factoring Transport

Represent with SH or Wavelets

View-independent (diffuse)

View-dependent

Nonlinear Gaussian Function Approximation?

Per view

Page 16: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Our Nonlinear Representation

),;()(N

, kkik

ki GwTo

p

k k- mean - std. deviation

Sum of N isotropic Gaussians

Page 17: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Previous work: Nonlinear Wavelet

Nonlinear: Approximating basis set depends on input

Truncate small coefficientsEffect of coefficients is still linear

Linear: First 8 Coefficients

SSE = 140.2

Nonlinear: 8 Largest Coefficients

SSE = 25.1

Page 18: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Our solution: Even More Nonlinear

We don’t start from linear basis No Truncation of coefficients Nonlinear parameter estimation Parameters have nonlinear effects

SSE = 5.61

Nonlinear sum of 2 GaussiansNonlinear: 8 Largest Coefficients

SSE = 25.1

Page 19: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Arbitrary freq bandwidth

Accurate approx w/small storage

Good interpolation

Good visual quality

Advantages of sum of Gaussians

original N = 1 N = 2 Haar 70 terms

Page 20: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Examples

p

1o 2o

Page 21: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Rendering

Approximated Transport Lighting

?

Page 22: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Gaussian Pyramid

Larger σ

Pre-convolve environment with Gaussians of varying sizes

Only done Once

Can start with large cubemap e.g. 6x256x256

Page 23: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Rendering

Tri-linear lookup in Gaussian Pyramid

Exit Radiance (outgoing color)

Approximated Transport Lighting

w,,

w

Page 24: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Rendering Novel ViewsPrecomputed Transport Functions for sparse

set of outgoing directions

Naïve solution: (Gouraud Shading) Interpolate Outgoing Radiance

Cross-fading artifacts)()()1())(~(

21 oooooo tLLttL

p

?

1o 2o

)(~ to

0t 1t

t

Page 25: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Better: Interpolate Parameters

Interpolate Gaussian parameters

Mean, Std. Dev, Weights

Analogous to Phong vs Gouraud shading p

?

1o 2o

)(~ to

0t 1t

t

t=0 t=1t=0.5

Page 26: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Per-Pixel Interpolation

Page 27: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Interpolation Drawbacks

Visibility may not interpolate correctly But is usually plausible

Correspondences Makes fitting more difficult

View-independent View-dependent

Page 28: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Data Fitting Precompute Raw Transport Data Solve large scale nonlinear

optimization problem For each vertex

For each view Fit Gaussians to transport data

p

1o 2o

Page 29: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Nonlinear Optimization

Objective has terms for Fitting the Data

Regularization Angular smoothness

and correspondences

Spatial smoothness

and correspondences

originalN = 2

N = 1

min -2

p

1n

2n

k

Page 30: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Error Plots

Page 31: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Results

6x256x256 Environment Maps Single Gaussian 2.8 GHz P4 1GB RAM Nvidia 6800 Ultra Software screen capture

Page 32: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Contributions

New parametric representation of PLT Compact Storage High Quality Interpolation of parameters Sparse View Sampling Efficient Rendering Spatially varying BRDFs

original N = 2 Haar

Page 33: View-Dependent Precomputed Light Transport Using Nonlinear Gaussian Function Approximations Paul Green 1 Jan Kautz 1 Wojciech Matusik 2 Frédo Durand 1.

Questions?


Recommended