+ All Categories
Home > Documents > VII.1 Hille-Yosida Theorem

VII.1 Hille-Yosida Theorem

Date post: 04-Jan-2016
Category:
Upload: wynona
View: 57 times
Download: 0 times
Share this document with a friend
Description:
VII.1 Hille-Yosida Theorem. VII.1 Definition and Elementary Properties of maximal monotone operators. Maximal Monotone. Let H be a real Hilbert space and let. be an unbounded. linear operator . A is called monotone if. A is called maximal monotone if furthermore. i.e. Proposition VII.1. - PowerPoint PPT Presentation
Popular Tags:
35
VII.1 Hille-Yosida Theor em
Transcript
Page 1: VII.1 Hille-Yosida Theorem

VII.1 Hille-Yosida Theorem

Page 2: VII.1 Hille-Yosida Theorem

VII.1 Definition and Elementary Properties of maximal monotone operators

Page 3: VII.1 Hille-Yosida Theorem

Maximal Monotone

HHADA )(:

)(0),( ADvvAv

Let H be a real Hilbert space and let

be an unbounded

linear operator . A is called monotone if

A is called maximal monotone if furthermore

HAIR )( i.e.

fAuutsADuHf ..)(,

Page 4: VII.1 Hille-Yosida Theorem

Proposition VII.1

1)()(

1

HLAI

Let A be maximal monotone. Then

(a) D(A) is dense in H

AI is a bijection from D(A) onto H

(b) A is closed.

is a bounded operator with1)( AI

(c) For every 0

Page 5: VII.1 Hille-Yosida Theorem

.)(

)()()(

0)(

00,0),(

),(),(),(0

..)(,)(

)(0),(,)()(

000

002

00000

000

HindenseisADTherefore

ADADADHHence

ADthen

fsoandvvAvSince

vAvvvAvvvfthen

AvvftsADvHAIRSince

ADvvfthenADfLeta

Page 6: VII.1 Hille-Yosida Theorem

1)(

)(

),(

),(),(),(

)(

0)),((sin,

)),((),(0

0

,)(

:mindet,.

)(,)(

1

1

2

2

1

2

AIHence

ffAIfu

ufufu

ufuAuuuAuu

ufAIbydenotedisuThis

vuvuAcevuthen

vuvuAvuvuAvAuvu

soandAvAuvu

thenfAvvandADvIf

ederuniquelyisuNotefAuu

thatsuchADuisthereHfeveryForb

Page 7: VII.1 Hille-Yosida Theorem

fAu

fuuAIandADu

fuAIu

fuAIAuuAIu

fuAuuthen

HinfAuanduuthen

HHinfuAuu

closedisAshowTo

nnn

nn

nn

nn

)()(

)()(

)()()()(

),(),(

:

1

11

Page 8: VII.1 Hille-Yosida Theorem

ufAIuei

ufuAIei

ufAuuei

HfeachforfAuuSolve

ifHAIRClaim

AIandHLAI

andAIbijectionaisAIhaveWe

monotoneimalisANotebofproofthe

inparagraphfirsttheinresulttheapplyingthen

someforRAIRthatSupposec

HL

)1()(..

)1()(..

)1(..

[2

)(:

1)()()(

)()(

)max()(

,0)()(

0010

000

000

0

)(

10

10

10

10

0

00

Page 9: VII.1 Hille-Yosida Theorem

)(

.11

02,2

,

1

)())(1(

)1()(

0

00

0

10

0

0010

ADuTu

tsHusoandthen

thenifBut

vv

vvAIvTTv

HtoHfromvfAITv

bydefinedTmaptheConsider

Page 10: VII.1 Hille-Yosida Theorem

Yosida Regularization of A

0

A

0J

Let A be maximal monotone, for each

let )(1

)( 1

JIAandAIJ

is called a resolvent of A and

(by Prop.VII.1 ) 1)()(

HLJandHLJ

is called Yosida regularization of A

Page 11: VII.1 Hille-Yosida Theorem

322

2

21

1

1

1)(

AAAJI

AAJI

AAIA

AIJ

Page 12: VII.1 Hille-Yosida Theorem

Proposition VII. 2 p.1

0,)( HvvJAvA

0,)( HvAvJvA

Let A be maximal monotone, Then

(a1)

(c)

(a2)

(b)

HvvvJ

0lim

0),( ADvAvvA

Page 13: VII.1 Hille-Yosida Theorem

Proposition VII. 2 p.2

)(lim0

ADvAvvA

0,0),( HvvvA

(d)

(e)

(f)

)1

(

0,1

A

HvvvA

Page 14: VII.1 Hille-Yosida Theorem

)(

)()(1

)()(

)(

)(

0,

0,)()1(

1

vJAvA

vJAvJI

vJAvJI

vvJAI

vAIvJ

VvFor

VvvJAvAshowToa

Page 15: VII.1 Hille-Yosida Theorem

)()(1

)()(1

)()()(1

)(1

0),(

0),()()2(

1

11

AvJAvJ

vAvvAI

vAIvAIAIvJIvA

ADvanyFor

ADvforAvJvAthatshowToa

Page 16: VII.1 Hille-Yosida Theorem

AvAvJ

abyAvJvA

ADvFor

ADvAvvAshowTob

)2()(

0),(

0),()(

Page 17: VII.1 Hille-Yosida Theorem

HvvvJHence

vJv

vJvthen

vJv

vvvJvvv

vJvJvJvvvvJv

denseisAD

vvtsHDvisthere

GivenHvnowLet

asAvvAvJv

ADvthatfirstAssume

HvvvJthatshowToc

bby

0

0

0

11

1111

1111

11

)(

0

lim

0lim

2suplim

2

))((

..)(

0.

00

)(

lim)(

Page 18: VII.1 Hille-Yosida Theorem

vvA

vvAvvAvA

vAvvA

eofprooftheFrom

HvvvAthatshowTof

vA

vJvJAvAvA

vJvAvJvvAvvA

HvvvAthatshowToe

AvAvJvA

ADvAvvAthatshowTod

cbyaby

1

1),(

1

),(

)(

0,1

)(

0

)),((),(

),(),(),(

0,0),()(

)(limlim

0),(lim)(

2

2

2

)(

0

)2(

0

0

Page 19: VII.1 Hille-Yosida Theorem

VII.2 Solution of problem of evolution

0)0(

0

uu

Audt

du

Page 20: VII.1 Hille-Yosida Theorem

Theorem VII.3 Cauchy, Lipschitz. Picard

0)0( uu

Fudt

du

Let E be a Banach space and F be a mapping

From E to E such that

EvuvuLFvFu ,

such that

then for all

));,0([1 ECu

there is a unique Eu 0

Page 21: VII.1 Hille-Yosida Theorem

));,0([.

],0[)()(

,)(

)(,)(

)()(

)()(sup

.)1(

)(sup

:1

)(sup));,0([

)mindet(0

))(()()0(

0

0

0

00

0

ECuThenT

giveneachforTtforuniformlytutu

becausecontinuousistutthatObverve

EintutoconvergeswhichEinCauchyistu

tgiveneveryFor

uuetutu

tutueuu

XinsequenceCauchyabeuLet

tueu

normwithspaceBanachisXClaim

tueECuXLet

laterederbetokkGiven

dssuFutuuu

Fudt

du

n

n

mnkt

mn

mnkt

tmn

n

kt

tX

kt

t

t

Page 22: VII.1 Hille-Yosida Theorem

XnXnXnXnnX

Xn

nkt

mnkt

mnkt

tmn

kt

t

uuuuuuuu

nnifuu

nnttutue

havewemtakingBy

nmnttutue

nmniftutueuu

tuethatshowTo

000001

1

,01)()(

,

,,01)()(

,1)()(sup

)(sup)2(

0

0

0

00

0

Page 23: VII.1 Hille-Yosida Theorem

0

0

0

0

0

0

,0)()(

,0

,,0)()()()(

,

,0

)()(

)()()()()()(

)()(sup

00)3(

nnifuuHence

nntiftutue

havewemtakingBy

nmntiftutuetutuethen

nmnifuu

thatsuchNnisthereGiven

tutueuu

tutuetutuetutue

tutueuu

nasuuthatshowTo

Xn

nkt

mkt

nkt

Xmn

mkt

Xmn

mkt

mnkt

nkt

nkt

tn

n

Page 24: VII.1 Hille-Yosida Theorem

XuHence

tue

tuk

LuFLu

keu

euk

LetuFLuutue

euk

LtuFLuu

dsesueLtuFLtuu

tuFdsuLdssuLu

tuFdsusuLu

dsuFdsuFsuFu

dssuFutu

ECu

XtobelongstdssuFutu

functiontheXuallForClaim

kt

t

X

ktX

ktkt

ktX

t ksks

tt

t

tt

t

t

))((sup

0)(1

)1()())((

)1()(

)()(

)()(

)()(

)()())((

))(())((

));,0([

.),0[,))(())((

,:2

0

000

000

000

0000

00 000

00 00

0 00 00

00

00

Page 25: VII.1 Hille-Yosida Theorem

XX

X

ktX

ktX

kt

t kskskt

tkt

tktkt

t

XX

vuk

LvuHence

vuk

L

evuk

L

evuek

L

dsesvsueLe

dssvsuLe

dssvFsuFetvtue

dssvFsuFtvtu

Xvuvuk

LvuClaim

)1(

)1(

)()(

)()(

))(())(()()(

))(())(()()(

,:3

0

0

0

0

Page 26: VII.1 Hille-Yosida Theorem

tallfortthenL

tfortthen

sssLt

sssLt

tssLttthenL

tIf

dssLdssusuL

dssuFsuFtutu

dssuFutudssuFutu

tututLet

solutionsareuanduthatSuppose

Uniqueness

dssuFutuuu

upo

fixeduniqueahasincipleBanachnContractio

byandcontrationaisthenLkTaking

nnnn

tt

t

tt

t

0)(

100)(

0)(

0)(

0)()(,1

0

)()(ˆ))(

))(ˆ())(()(ˆ)(

))(ˆ()(ˆ,))(()(

)(ˆ)()(

:

))(()()(

,int

,Pr

,2

1

1222

11

00

0

0000

00

Page 27: VII.1 Hille-Yosida Theorem

Lemma VII.1

));,0([1 HCw

)(twx

If is a function satisfing

0 wAdt

dw

, then the functions

are decreasing on

and )()( twAt

dt

dwt

),0[

Page 28: VII.1 Hille-Yosida Theorem

.sin)(,

0

)()(

)()()()(

sin)(sin)(

0)(,max

))(),(()(),((2)(

2

2

2

gdecreaistdt

dwtproofpreviousfromthen

dt

dwA

dt

dw

dt

d

t

twttwA

t

twAttwA

t

tdtdw

ttdtdw

gdecreaistwsoandgdecreaistw

twdt

dmonotoneimalisASince

twtwAtwtwdt

dtw

dt

d

Page 29: VII.1 Hille-Yosida Theorem

Theorem VII.4 (Hille-Yosida) p.1

),0[0)0(

)6(

0

onAu

uudt

du

Let A be a maximal monotone operator in

a Hilbert space H then for all Hu 0there is a unique

))();,0([));,0([1 ADCHCu s.t.

Page 30: VII.1 Hille-Yosida Theorem

Theorem VII.4(Hille-Yosida)

0)()( AutAutdt

du

where D(A) is equipped with graph norm

i.e. for 22

,),( AuuuorAuuuADuGG

Furthermore, 0)( utu and

Page 31: VII.1 Hille-Yosida Theorem

))(,)((2)(

))(,)((2)()(

)())(,)((2

))(),(())(,)((

))()(),(())(),()((

))(),(())(),(())(),(())(),((

))(),(())(),(()()(

:

))(,)((2)(:

ˆ)6(ˆ

:1

2

22

22

2

ttdt

dt

dt

d

ttt

tdt

d

t

ttt

twherettttdt

d

ttdt

dttttt

dt

d

ttttttttt

tttttttttttt

ttttttttt

proof

ttdt

dt

dt

dClaim

uuletandofsolutionsbeuanduLet

UniquenessStep

Page 32: VII.1 Hille-Yosida Theorem

),0[)(ˆ)(..

),0[0)(

0ˆ)0(ˆ)0()0(

.sin)(

,0))(),(())(,)((2)(

,max

2

200

22

2

2

ttutuei

ttthen

uuuuBut

toffunctiongdecreaaistthen

ttAttdt

dt

dt

d

monotoneimalisASince

Page 33: VII.1 Hille-Yosida Theorem

00

0

)0()()(

),0[sin)(,1.

.

mindet

),0[)0(

0

:2

AuuAuAtuAtdt

duthen

ongdecreistdt

dutVIILemmaBy

TheoremPicardLipschitzCauchy

byederuniquelyisu

onuu

uAdt

du

problemtheofsolutionthebeuLet

Step

Page 34: VII.1 Hille-Yosida Theorem

Lemma VI.1 (Riesz-Lemma)

boundeddomainCCu ,:, 12 B\

Let

For any

),( xv

fixed , apply Green’s second

identity to u and in the domain

and then let 0 we have

dsn

xu

n

uxudxxu

xx

),(),(),(

Page 35: VII.1 Hille-Yosida Theorem

Recommended