+ All Categories
Home > Documents > Virginia Polytechnic Institute and State University in ...

Virginia Polytechnic Institute and State University in ...

Date post: 25-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
291
gi'?] 3.4 PREDICTION OF SEISMIC DESIGN RESPONSE SPECTRA USING GROUND CHARACTERISTICS _ . by Sanjeev R. Malushte Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structures) APPROVED: M. P. Singh, Chairman R. M. Barker, Co-Chairman R. H. Plaut September, 1987 Blacksburg, Virginia i
Transcript

gi'?]3.4

PREDICTION OF SEISMIC DESIGN RESPONSE SPECTRA USING GROUND

CHARACTERISTICS_ . by

Sanjeev R. Malushte

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Civil Engineering (Structures)

APPROVED:

M. P. Singh, Chairman

R. M. Barker, Co-Chairman R. H. Plaut

September, 1987

Blacksburg, Virginia i

ll

QD PREDICTION OF SEISMIC DESIGN RESPONSE SPECTRA USING GROUNDCHARACTERISTICS

ärv by

Sanjeev R. MalushteQ3 M. P. Singh, Chairman

Civil Engineering (Structures)

(ABSTRACT)

The available earthquake records are classified into five groups according to their

site stiffness and epicentral distance as the grouping parameters. For the groups

thus defined, normalized response spectra are obtained for single-degree-of—freedom

and massless oscillators. The effectiveness of the grouping scheme is examined by

studying the variance of response quantities within each group. The implicit

parameters of average frequency and significant duration are obtained for each groupi and their effect on the response spectra is studied. Correlation analyses between

various ground motion characteristics such as peak displacement, velocity,

acceleration and root mean square acceleration are carried out for each group.

Smoothed design spectra for relative and pseudo velocities and relative

acceleration responses of single degree of freedom oscillators and the velocity and

acceleration responses of massless oscillators are proposed for each group.f

Methods to predict relative velocity and relative acceleration spectra directly from the

pseudo velocity spectra are presented. It is shown that the relative spectra can be

reliably estimated from the pseudo spectra. The site dependent design spectra are

defined for a wide range of oscillator periods and damping ratios.

Acknowledgements

First and foremost, I would like to express my deep gratitude to the Almighty for

His love and grace.

My major advisor Prof. M. P. Singh has always been an able and understanding

guide during my graduate studies. His constant support is gratefully acknowledged.

l would also like to thank Prof. R. M. Barker and Prof. R. H. Plaut for agreeing to be

on my committee and for their help.

I would like to take this opportunity to thank all my dear friends and colleagues

for their friendship and goodwill. _

I sincerely thank all the organizations which provided the funding for my higher

education. The partial support received from the National Science Foundation under

grants no. CEE-8214070 and CEE-8412830 with Drs. S. C. Liu and M. P. Gauss as the

Program Directors is gratefully acknowledged.

This list of acknowledgement will be incomplete without the mention of my

gratitude toward my loving parents and the rest of my family, for being a constant

source of inspiration to me.

Acknowledgcmcnts iii

Table of Contents

Introduction ............................................................ 1

Grouping of Ground Motion Records ......................................... 6

2.1 Introduction ......................................................... 6

2.2 Seismic Input ....................................................... 7

2.3 Grouping Based on Physical Characteristics ................................ 9

2.4 Implicit Characteristics of Ground Motion ................................. 11

2.4.1 Signiücant Duration 11

2.4.2 Root Mean Square (r.m.s.) Acceleratlon 14

2.4.3 Average Frequency Characteristics ................................... 15

Computation and Normalization of Response Spectra ........................... 17

3.1 Introduction ....................,................................... 17

3.2 Selection of Frequencies & Damping Ratios ............................... 18

3.3 Computation of Response ............................................. 19

3.3.1 Response of S.D.O.F. Oscillator...................................... 19

3.3.2 Response of Massless Oscillator..................................... 21

Table of Contents iv

3.4 Normalization of Response Spectra ..................................... 223.4.1 Normalization Using Peak Acceleration ................................ 243.4.2 Normalization Using R.M.S. Acceleration .............................. 25

Numerlcal Results ...................................................... 274.1 Introduction ........................................................ 274.2 Regression of Various Ground Motion Characteristics ......................‘. 284.3 Peak Factor, Frequency & Duration Statistics ............................... 294.4 Computed Spectra ................................................... 304.5 Proposed Smoothed Spectra for S.D.O.F. Oscillators ......................... 34

l

4.6 Comparison of the Proposed Spectra with the N·B-K & ATC Spectra ............. 364.7 Prediction of Relative Velocity from Pseudo Velocity ......................... 384.8 Prediction of Relative Acceleration from Other Known Spectra ................. 414.9 Computed & Smoothed Spectra for Massless Oscillators ...................... 42

Concluslons ........................................................... 44

References ........................................................... 47

Table of Contents v

L- - -

Chapter I

Introduction

ground response spectra are commonly used to defineearthquake induced ground motion, A responsespectrum of a ground motion represents its frequency response characterlstics in

terms of the maximum response of a series of oscillators of different frequency and

damping values subjected to that ground motion. It is customary to represent the

t relative displacement response in terms of the pseudo velocity or pseudo

acceleration spectra which are commonly used to characterize the ground motion.

These response quantities are also directly related to the force in the oscillator' spring. Housner (9), Newmark and Hall (21), Newmark, Blume and Kapur (22) have

proposed the pseudo velocity and acceleration spectra as design inputs for important

facilities like nuclear power plants.

Further research in the area of earthquake structural engineering (31) has,

however, shown that for a more complete description of the design input, we also

need to define the relative velocity spectra in addition to the pseudo velocity (or

Introduction I

L_ _ c-

acceleration) spectra. Furthermore, it has also been shown (33) that prescription of

design input in terms of the relative acceleration and relative velocity spectra is even

better than the prescription in terms of pseudo acceleration and relative velocity

spectra (RSV spectra), as there are definite computational advantages in adopting

these as the inputs. Also, in the spectrum analysis of nonlinear hysteretic structuresby the equivalent Iinearization approach (34), it has been shown that we also need thespectra for the response of a massless oscillator. ln this work, therefore, the design

ground response spectra for the pseudo velocity, relative velocity, relative

acceleration and the velocity and acceleration response of a massless oscillator have

been developed.

The need for grouping response spectra on the basis of the earthquake

characteristics and site conditions has been widely acknowledged ever since

Newmark-Hall (21) and Newmark-Blume-Kapur (22) presented smoothed response

spectra for design purposes. A few researchers have also presented spectra

_ corresponding to different seismic and geological conditions (1, 8, 27, 39). However,

there is still a need for a comprehensive study in this regard, especially for the

development of relative velocity and relative acceleration response spectra. The

physical properties to be considered for a grouping strategy should be quite explicit

so that a group can be easily identified from a simple description of the site and the

earthquake to be expected. At the same time, the grouping scheme should be so

devised that the variance of the response quantities within each group is as low asl

possible. This is desirable because it will enable a reasonably accurate prediction

of the response for a given set of physical characteristics ofthe site and the expected

earthquake.

The main interest of this study is, therefore, to define the design responsespectra for the relative velocity and relative acceleration responses for different site

Introduction ( 2

conditions. lt is noted that the spectra for the pseudo velocity or acceleration

responses are rather widely available and used. However, in this study, thesepseudo spectra have also been defined for different site conditions.

The physical properties of the design earthquake are the magnitude (such as.. Richter magnitude), peak displacement, velocity and acceleration, etc. The physical

properties of the site are the stiffness of the ground and the estimated epicentraldistance from the potentially closest seismic source. Also, the orientation of record(viz., horizontal or vertical components) is an important characteristic as the

_ excitation behavior is observed to be direction-dependent. Many seismologists have

attempted to empirically describe the inter-relationships between these and other

such properties using techniques like linear or exponential (logarithmically linear)

regression analysis (6, 9, 28, 35, 36, 38). Researchers have also studied (3, 4, 5, 25,

37) the implicit properties of seismic records such as the significant duration (an

estimate of the strong motion duration), root mean square (r.m.s.) levels of ground

excitation, average frequency, etc. These implicit properties are dependent on the— physical properties of the site and the corresponding earthquake. lt is, therefore,

necessary to study this dependence here.

The earthquake data used in this study were obtained from the collection of real

earthquake records compiled at the Earthquake Engineering Research Laboratory,

California Institute of Technology (11, 12, 13, 14) and were grouped using theTparameters of site stiffness, epicentral distance and the orientation of the ground

motion (viz., horizontal or vertical). Magnitude of earthquakes was not used as a

parameter in this study due to the fact that the earthquakes available for this study

vary within a relatively small range of magnitude (5.3 to 7.7). Based on the

observations of Trifunac and Brady (37), this is not expected to cause a greatvariability in the duration, which is deemed to be an important factor affectlng the

Introduction 3

gi .

magnitudes of response peaks (35). Due to its large variability in the available data,

epicentral distance was, however, considered to be an important parameter for

defining the groups.

The average frequency, significant duration and r.m.s. acceleration have been

calculated for each record used in this study. These are important parameters, since

they are reliable indicators of the damaging potential of a given record. Regression

studies have also been carried out to investigate the correlation between the peakl- displacement, velocity, acceleration and r.m.s. acceleration of records belonging to

each group.

ln this study, the spectra presented are normalized for a peak acceleration of 0.504

G. For the purpose of normalization, Newmark, et al. (22) suggest using the

displacement, velocity and acceleration peaks for different regions in the frequency

, domain. However, ln this study it was found that normalization using peak

acceleration does not produce high levels of variance for the quantities of interest.

Recently, Pauschke (26) has reported a comparison between the results ofnormalization using peak and r.m.s. acceleration. ln this present study, the spectra

have also been obtained for a normalized r.m.s. level of ground acceleration. _Thlswas done to see if the two normalization schemes yield any different results (in a

qualitative sense). Also, a correlatlon study between peak and r.m.s. acceleration

was done for each group.

Chapter 2 discusses the grouping strategy based on explicit parameters, along

with the methods of estimating implicit parameters. lt also gives details about the

seismic input used in this study. Chapter 3 describes the computational algorithms

used to obtain the desired response quantities. Information about the oscillator

frequencies and damping ratlos used to obtain the responsefspectra as well as thenormalization schemes used in this study ls given ln Chapter 3. Chapter 4 discusses

Introduction _ 4

the generated spectra and the proposed design response spectra. lt also gives the

results of the correlation studies between the peak ground acceleration, velocity and

displacement, and between the peak and root mean square acceleration for eachgroup oflground motions. The statistical values of the important implicit parametersfor each group have also been presented. Also, in Chapter 4, the proposed designIspectra are compared with the design spectra given by Newmark, Blume and Kapur(22), and the Applied Technology Council (1). Methods to estimate the relativevelocity and acceleration spectra from the pseudo velocity spectra (PSV spectra) arealso presented in Chapter 4. Conclusions are presented in Chapter 5.

Introduction 5

Chapter ll

Grouping of Ground Motion Records

2.1 Introduction

For the purpose of design, it is desirable to have different sets of response spectra,

each computed to suit a given set of physical conditions or parameters that are easily

identifiable with the local site conditions as well as the seismological characterlstics

of the nearby topography. The obvious parameters of interest in deciding about the

design ground motion are : 1) ground stiffness such as soft, medium stiff or hard, 2)

epicentral distance, and 3) magnitude of earthquake. For these conditions, it is

necessary to define the three components of the design earthquake.

A satisfactory scheme for grouping should be such that the variance of the

response within each group is as small as possible. To check the appropriateness

of the classification adopted in this study, the mean, standard deviation (s.d. or sd)

and the coefficient of variation (c.o.v.) ofthe response spectrum values are computed

Grouping of Ground Motion Records 6

for each group. As noted earlier, the implicit parameters depend on the set of

physical characteristics associated with a given group. The effect of these

parameters on the response spectra corresponding to different groups has also been

studied.

2.2 SeismicInputThe

ground motion of 18 earthquakes which occurred in the western U.S. from 1933

to 1971, recorded at several places, has been considered in this study. This provided

a total of 237 records (166 horizontal and 71 vertical components) recorded at 84 site

locations. The ground motion data was obtained from tapes supplied by the

Earthquake Engineering Research Laboratory (EERL), California Institute of

Technology. All the relevant data about the epicentral locations, recording station

locations, digitization intervals, peak readings and the actual time-histories of ground

displacement, velocity and acceleration, etc. were read from the Vol. ll tape provided

by the EERL (see reference 12). Also, data about response spectra involving

oscillator periods, damping ratios, relative displacement, relative velocity, absolute

acceleration and pseudo velocity were read from Vol. IV tape of the EERL (14). In

addition, some more response spectrum values were calculated as discussed later.

Not all the records stored on Vol. Il were used in this study. The earthquake

~ records considered in this study are :

1. with a larger than 0.02 G peak peak in the acceleration time·history,

Grouping of Ground Motion Records _ 7

LL

2. only the main shocks, and not the after shocks,

3. recorded on ground or basements of buildings so that they were free fromsoil-structure interaction effects as much as possible,

4. from earthquakes of magnitudes larger than 5.0.

This screening process led to a final selection of 237 ground motion records,consisting of 166 horizontal and 71 vertical components, recorded at 84 sites. Theearthquakes corresponding to these records lie in the magnitude range of 5.3 to 7.7.The epicentral distances (from the recording station to the epicenter of theearthquake) vary from 7 km to 185 km for the ensemble of records considered for thisstudy. The acceleration time histories in Vol. ll have been recorded after performingbase-line correction. The periods of digitization for ground acceleration, velocity and

displacement records are .02 sec, .04 sec and .10 sec, respectively.

Table 1 lists the 18 earthquakes that were used in this study. The informationincludes the epicenter locations, dates of occurrence and the magnitudes of theearthquakes. Table 2 tabulates the names of the recording stations with theirlocations and the associated epicentral distances corresponding to the 84 selectedsite locations. Tables 3-11 tabulates the Cal Tech record numbers along with the site

locations, directions of recorded components, peak readings of ground displacement,

velocity and acceleration for the 237 records recorded from the 84 locationsmentioned in Table 2.

lt may be mentioned here that the epicenter and recording station locations aregiven in terms of Iatitudes and Iongitudes, which are essentially the same as the

T spherical coordinates. This location information was used to calculate therectangular coordlnates of these locations assuming a constant radius of earth equal

Grouping of Ground Motion Records 8

to 3960 miles. Finally, the epicentral distances (along the earth’s surface) werecomputed by knowing the straight line distance between these points and the earth’s

radius. A small computer program was written to compute the results based on thisapproach.

2.3 Grouping Based on Physical Characteristics

The parameters considered for classification are ground stiffness at the site (soft,9medium stiff or hard), epicentral distance and magnitude of the earthquake. Ofthese,the magnitude parameter was considered to be the least significant, because most

earthquakes used in this study belong to low to moderate level of magnitude range

(from 5.3 to 7.7) and, as pointed out by Trifunac and Brady (37), for each magnitude

unit, the duration increases by about 2.0 seconds for acceleration records. Thismeans that the maximum difference that can be attributed to the range of magnitudewould be about 5.0 seconds only. In contrast, significant duration is greatly

influenced by soil stiffness and the epicentral distance. Since strong motion duration

is one of the most important factors from the viewpoint of maximum oscillator

response (Trifunac, 35), it was practical to consider only the parameters which can

affect the significant duration more strongly than others.

The available records were grouped mainly into three groups corresponding to

three soil stiffness types. The three soil categories are loosely identified as soft

(alluvial), medium stiff (sand or stiff clay) and hard (rock). This site classification is

rather simplistic, but with the amount of information available, it is considered as thebest choice. In fact, this method of ground classification has been extensively used

Grouping of Ground Motion Records A 9

in the past (Trifunac, Brady, Seed, ldriss, Dorby, et al.), Seed and others (28) have

also outlined the following description of various site conditions similar to the ones

used in this study: ‘

1. Rock Sites · Shale—like or sounder rock characteristics corresponding to

shear wave velocities larger than 2500 ft/sec.

2. Stiff Soil Conditions - 150ft or less thick layers of stiff clay, sand or gravel

overlaying on rock.

3. Deep Cohesionless Soil Conditions - 250ft or more thick cohesionless

soilsoverlayingon the rock.

In this study, soft, medium stiff and hard soil conditions were labelled as 0, 1 and

2, respectively, which is the same notation as the one used by Trifunac and Brady

(38). This data was available for all the 84 locations considered in this study.

The epicentral distance was the other parameter used to classify the groups

further. As observed by Trifunac and Brady, the duration increases by about 1.0 toA

G 1.5 seconds for every 10 km of epicentral distance. As such, this parameter is

considered to be important in the classification scheme. In this study, the available

records were further subdivided into the the records with the epicentral distances

smaller and larger than 60 km. In the categories of medium and hard soils, no further

sub—divisions were considered for large epicentral distance criterion, since thenumber of such records available under these distinctions is very small. In all, the

selected 237 ground motion records were subdivided into nine groups, theorganizations of which are described in Tables 3-11. The comparison of the relative

Grouping of Ground Motion Records ll)

influence of these parameters on the duration of strong motion is discussed inChapter 3. i

2.4 implicit Characteristics of Ground Motion

The three implicit parameters studied in this work are significant duration, averageI

frequency a_nd r.m.s. acceleration. Of these, it may be noted that the significant

duration is a quantity subject to different interpretations. Housner, Seed, Idriss,

Dorby, Trifunac and Brady (4, 5, 10, 37) are among many researchers who have

proposed ideas on this concept. The following paragraphs discuss the methods

proposed to estimate the above parameters.

2.4.1 Significant Duration

It is a well known fact that the earthquake records have three distinct phases in the

time domain : the buiId—up phase, the strong-motion phase and the decay phase.‘

Most of the energy dissipation occurs during the strong-motion phase. The maximum

values of the acceleration, velocity, displacement and the response of an oscillator

subjected to the input almost invariably occur during this time interval. This Ieads to

the concept of a significant duration which may be looked upon as the part of the

record in which most of the energy input occurs. Arias (2) presented the followingformula as a mesure of the energy content in an earthquake record :

Grouping of Ground Motion Records ll

T l

_ TI T 2IA - Elo a (t)dt (2.1)

where IA = Arias’ measure of intensity, T = actual duration of record and a(t) =ground acceleration at time t. Husid (15) proposed the idea of a normalized variable,h(t), to describe the evolution of the shaking level of the record as :

1 r ‘a2(1)d:h(t)=JLL=—!-$2,-—j; Ost$T (2.2)’AlT) jo a (nd:

Obviously, h(0) = 0 and h(7’) = 1.0. The plot of h(t) versus time is called as the Husidplot (13). The power, P, due to the ground motion can be expressed as

' P(t) (2.3)

where A is a small time period during which P(t), the rate of energy input is beingG

calculated. This power, P, can be considered as the average value of a2(t) during the

interval (t,t + A). ‘

Several definitions of significant duration have been proposed based on the

Husid plot. Husid initially defined significant duration as the time required for h(t) to

reach a level of 0.95 (95%). Trifunac and Brady defined it as the time interval in which

h(t) increases from 5% to 95%. This corresponds to the time interval during which

90% of the energy is input. This interpretation of significant duration is used in this

study.

Figs. 1, 2 and 3 show the Husid plots drawn for soft, medium, and hard ground

conditions, respectively, for three sample records considered in this study. Note thaton the X·coordinate is chosen as the normalized time (being the ratio of the elapsed

Grouping of Ground Motion Records I2

time to the total time of the record). This way, it is easier to compare the three plots,as the variability of the actual duration of the record does not enter the comparison.lf we consider ’R’ as the ratio of the significant duration to the actual duration, thenas shown in the plots, it is observed that the value of R is the smallest for hard soilconditions and is larger for soft and medium stiff ground conditions. This is due tothe fact that a stiff (rock) medium transmits the energy waves at a faster rate and thebulk of the total energy ls dissipated in a rather short time interval. However, for softmediums, the waves travel slower and there is much larger scattering of them in such

R relatively less homogeneous media. Thus, for soft soils, the strong motion phase islater followed by a period of moderate shaking during which a considerable amount

of energy is transmitted. Thus, there is a sizeable content of long period motion in

these seismic records (5). The Husid plots corresponding to the ground motion

records from soft soils show a steadily rising curve followed by a drop in the slope

in the curve and again followed by a rising curve before it flattens. On the contrary,

the Husid plot for a rock medium rises steadily with a large slope before it reaches

a plateau in its decay phase. All these features are illustrated in Figs. 1 to 3. Dorby,

Idriss and Ng have reported similar behavior in reference 5.

Based on the definition given earlier, significant durations were computed for the

. 237 records used in this study. The influence of significant duration is obvious - for

the same level of normalization, a record with a large significant duration would

possess more energy than the one with a smaller significant duration. Further, the

one with the larger significant duration is likely to cause larger response. The same

observation is generally true for the duration ratio, R. For a given level of

normalization, the records with large duration ratios have a higher content of longperiods and energy compared to the ones with smaller duration ratios.

Grouping of Ground Motion Records I3

Il

2.4.2 Root Mean Square (r.m.s.) Acceleration

The following formula is used to compute the r.m.s. acceleration :

- _ 1 T 2a — /-7-:10 a (t)dt (2.4)

A recorded acceleration time-history is defined at dlscrete time steps of 0.02 seconds.·To calculate 5 for such a time history, it is customary to assume that the ground

motion varies linearly during a recorded time-interval, Thus the integrand function

a2(t) is a discontinuous function over a series of digitization intervals. lf the number1of data points is ’N’, then the number of such intervals would be (N-1). Thus, we can

write the following equation for r.m.s. acceleration :

5 = l-N£11t’+'a2(t)dt; t- S t S t- 1 (2.5)T tl I I+

During any I"' interval, one can express the integrand as follows : .

a. —- a.i

62(6) = [6, + -—L‘%J-112; 0 s T s n, (2.6)i .

where h, denotes the (constant) value of digitization time. Knowing this, we arrive

at the following result :

z 2 h' 2 2j,1’+'a (t)dt = ?3L(a, + a,a,+1 + 5,+1) (2.7)

For h, = h, a constant, the total number of digitization points, N, is equal to T/h.Substituting this and Eq. (2.7) into Eq. (2.5), we get

Grouping of Ground Motion Records I4

Equation (2.8) gives the value of the r.m.s. acceleration. These values werecomputed for all the records. The Vol. ll of the Cal Tech tapes also gives the r.m.s.accelerations. The values calculated from equation (2.8) were in close agreementwith the ones recorded on the tape.

ln this study, r.m.s. acceleration is also used as a normalizing parameter. lt is ofinterest to note that for the same level of peak acceleration, the records with larger.m.s. acceleration are Iikely to have more damage potential. A regression studybetween peak and r.m.s. acceleration would identify the groups which could cause .more damage than the others.

2.4.3 Average Frequency Characteristics

The response of an elastic oscillator is greatly affected by the frequencycharacteristics of the seismic input. For example, if a high frequency oscillator is .

_ subjected to a ground motion which is dominated by similar high frequency content,then it is almost certain that a large resonance-like response will result. As may beexpected, this characteristic of a ground motion record depends on the stiffness ofthe medium through which it gets filtered.

A detailed frequency analysis of the time histories would require FourierSpectrum Analysis using techniques like Discrete Fourier Transform (DFT). However,a simple measure of the average frequency of a time history can be obtained from therate of the upward zero-level crossings, vg (20). The quantity, vg should be obtainedby averaging across the ensemble and not along the time axis unless the_ process

Grouping of Ground Motion Records I5

under consideration is an ergodic one. In this study however, the temporal averageof the upcrossing rate is used to estimate the average frequency of a record.

These average frequencies were computed for the significant duration intervalof all the records. The motivation to consider only the span of significant duration isthat the response maxima almost invariably occur during this time interval and assuch, only the frequency constitution of this interval is important from the view pointof oscillator response. The average frequencies of the records analysed here wereobserved to be in the low range for soft sites, in the medium range for medium stiffsites and in the high range for hard sites.

The numerical results obtained for the implicit parameters are presented inChapter 4.

Grouping of Ground Motion Records I6

Chapter Ill

Computation and Normalization of Response

Spectra

3.1 Introduction

The response spectrum curve of a ground motion is the plot of the maximum

response versus frequency of an oscillator of constant damping ratio subjected to the

ground motion. To calculate the maximum response of an oscillator, the time history

analysis using Newmark’s ß- method or exact solutions for linear and bilinearhysteretic systems (16 and 19) can be used. Based on the statistical analysis of the

spectrum curves of several time histories, the smoothed response spectra are

defined for a range of oscillator frequencies and damping ratios for design purposes.

lt may be noted that on Vol. lV of the EERL tapes (14), a set of response spectravalues are available for relative dlsplacement, relative velocity, pseudo acceleration

Computation and Normalization of Response Spectra 17

and absolute acceleration. But it does not contain information about relative

acceleration response. Here, the relative acceleration spectra (RSA spectra) as well

as spectra for a massless oscillator, useful in analysis of hysteretlc structures, are

also obtained for the recorded ground motions considered in this study. The detailsV

of the time history analysis method used in this study are discussed in this chapter.1

3.2 Selection of Frequencies & Damping Ratios

As observed by Newmark, et al. (22), it is important to select closely spaced

frequency values especially in the high frequency regions. Not doing so can

considerably affect the shape of response spectrum. For this study, ninety-twoU

oscillator periods ranging from .03 sec to 10 sec (frequencies from 33 cps to 0.1 cps)

were used. These periods are listed in Table 12. The selected frequencies are close

enough to produce a good spectrum for the whole range. Five values of damping1

ratio were used in this study. Again, these are the same as the ones on Vol. IV ofthe

EERL tapes. The values selected are deemed to be representative of the viscous

damping properties exhibited by most structural systems. The values of selected

damping ratlos are 0, 0.02, 0.05, 0.10 and 0.20, respectively.

Computation and Normalization of Response Spectra 18

3.3 Computation of Response

Many time—history analysis schemes are available to compute the response in the

time domain. They mainly fall under two categories - exact and approximate

solutions. Exact solutions are available for linear and a few types of materially’ nonlinear systems (16, 19). Approximate solution schemes are applicable to both

linear and nonlinear systems. ln the computations performed in this study, the exact

solution algorithms were used to obtain the response.

3.3.1 Response of S,D.O.F. Oscillator

Co_nsider the following differential equation governing the behavior of a single degree

of freedom (s.d.o.f.) oscillator :

mx + cx + kx = F(t) (3.1)1

where m = mass of the oscillator, c = viscous damping coefficient of the system and

k = stiffness of the system. After dividing through by m and denoting wo = natural

frequency of the oscillator and ß„, = the damping ratio (referred to as the critical

T damping coefficient), we can rewrite equation (3.1) as follows :

F tii + Zßowox + coäx = -7% · (3.2)

Computation and Normalization of Response Spectra 19

’I

where wo = «//</m and Bo = c/cc, = c/(2co„,m). The exact solution to equation (3.2)can be expressed using the convolution integral. The following equation describes

the exact response : ‘

_ +x(t) = e cos cod! + sin codt} (3.3)d

— ß w lt—=l Fsin

cod(twherecod = com/1 - ßä and x„ and v„ are the displacement and the velocity at time

t=0 (initial conditions). (

For the case of response due to base excitation, we can rewrite equation (3.2)

as follows :

X + 2ßocoox + cogx = — a(t) (3.4)

where a(t) = ground acceleration at time t.

The exact step-wise time history solution for the response of a linear elastic ·

. oscillator subjected to a time history of ground acceleration was first presented by

Nigam and Jennings (23, 24). Their results can be expressed in a matrix form as

follows :

*/+1 A11 A12 */ B11 B12 Bi= + (3.5)

Vi+1 A21 A22 V/ B21 B22 ai+1

where the entries of the coefficient matrices have been given by Nigam and Jenningsin reference 23. Note that in the above equation, the subscriptsi and i + 1 indicate

Computation and Normalization of Response Spectra 20

I I

the values of the quantities (appearing in the equation) at times 4 and 4+,,

respectively. .

The relative acceleration response can be obtained simply from the equation of

motion. Substituting the known responses x,+, and x,+, in equation (3.4) andrearranging the terms, we can write

.. 2xi+1 = ‘ 2300-‘¤V1+1 “ (’·)oxi+1 “ ai+1 (3-6)

( A computer program was written to implement the above scheme and the

relative acceleration response was computed for all the oscillator periods considered

in this study, since this data was not available in the Vol. IV tape of the EERL.

3.3.2 Response of Massless Oscillator

Consider now the following differential equation :

. 1 _v + -5-v —- a(t) (3.7)

where v is the acceleration and v is the velocity response. This equation has been· referred to as the equation of a massless oscillator, since there is no mass involved

with that equation. The parameter, p has the dimensions of time, and therefore, it is

considered as the period of the massless oscillator. The ground excitation input is

denoted by a(t).

We again assume that the ground acceleration varies Iinearly between any twoconsecutive time steps. Thus, solving the governing differential equation of motion,

Computation and Normalization of Response Spectra 2l

we get the following expression for the velocity response of the massless oscillatorsubjected to a ground acceleration time history :

(3.8)1

— h-/p)p (1 — e '+ P { 1 ‘ —‘—,T·—··}81+1I

where h, is the size of the i"' time step. Knowing v,+,, the velocity of the masslessoscillator at time q+,, we can then write the expression for the acceleration at thattime as :

. "‘+1_ Vi+1 = 81+1 "'# (3-9)

A computer program was also written to obtain the response of the massless

y oscillator in the period range of 0.03 seconds to 10.0 seconds.

3.4 Normalization of Response Spectra

One needs to have some kind of uniform normalizationscheme for comparison ofresponse spectra of different earthquake records, since, each record is unique as faras its explicit and implicit characteristics are concerned. lt is customary to use peak

(acceleration as a normalization parameter as it is the most conspicuous

characteristic of any ground motion record. Most response spectra are presentedusing this normalization scheme (21, 22, etc,). However, this is not the only way to

Computation and Normalization of Response Spectra 22

normalize responses. Pauschke (26) has attemptedto use r.m.s. acceleration as anormalizing parameter. Among other approaches, peak velocity and peakdisplacement have been tried, too. Newmark, et al. (22) report that normalizationsemploying different peak ground responses over different frequency regions of theresponse spectra have also been made. lt is suggested that ·the best results couldperhaps be obtained by normalizing with respect to peak acceleration for developingspectra in the high frequency range, peak velocity for intermediate frequency rangeand peak displacement for low frequency range.

Based on the survey of the available literature and on the preliminary explorationdone in this study, it appears that normalization is not a clear—cut task. As far asusing a peak of the ground motion is concerned, the results are bound to be differentdepending upon which peak is used unless the various peaks of the expected groundmotion are very well correlated. lt was found in this study that the peaks of groundmotion are well correlated only in the case of ground motions recorded in hard soil ~

mediums. This is to be expected, since a hard medium practically behaves like an

elastic oscillator. For other soll stlffness conditions, it is found that there is no strong

correlation between the peaks of ground motion. This implies that the design spectrawill depend on the choice of the normalization peak used in the cases of soft and

medium stiff soil stiffnesses.

As mentioned earlier, r.m.s. value of ground motion ls an attractive choice, but

it is not an explicit but a derived characteristic of ground motion. Here, too, asobserved ln this study, a good correlation between peak and r.m.s. magnitudes of

motion would mean that the results of either approach would be in close agreement.

Since the groups are formed on the basis of similar physical characteristics, the

r.m.s. and the peak values of the ground motion are expected to be well correlated.Herein, both these normalization procedures are used.

Computation and Normalization of Response Spectra 23

3.4.1 Normalization Using Peak Acceleration

The peak acceleration has traditionally been the most commonly used normalizingparameter. lt is common to associate the severity of an earthquake record mainly

with the peak ground acceleration. Generally, it is assumed that a record with highpeak acceleration would cause larger response than the one with a lower peak

”4 acceleration value. However, this may not be true, since it does not take into account

the role of other motion parameters.4In this scheme, first, a certain level of peak acceleration is chosen for the

4 purpose of normalization. Then the response spectrum values of each record are

multiplied by the ratio of normalized peak acceleration to the peak acceleration ofthat

record. The underlying assumption which allows the computation of normalized

response in this manner is that the oscillator behaves Iinearly. Finally, the averages

of all the normalized responses (for any particular response quantity under

consideration) are computed to obtain the mean normalized spectrum of that

response quantity. ~·

The argument that is often made against using the peak acceleration as a

normalizing parameter is that this parameter is rather inadequate to describe to

describe the intensity of a seismic record. For instance, an isolated peak preceded

and followed by lower amplitude ripples in.the ground·motion time-history is not

likely to cause a large response. Also, it does not contain any information about the

duration of the record. The peak acceleration may be a valid normalizing parameter

only if the different records belonging to the ensemble are similar in nature as far as

the other features are concerned. For example, a time-history of horiiontal groundmotion recorded on rock may not be comparable to the one of vertical ground motion

Computation and Normalization of Response Spectra 24

recorded on clay, since their peak, r.m.s., frequency and duration characteristics may

be completely different, which will render the normalization scheme pointless.

In this study, most of the work was done using the peak normalization scheme.

This was considered to be reasonable since the records used in this study have been

grouped into ensembles of time—histories possessing similar physical characteristics.

The normalization level of peak acceleration was chosen as 0.50G. Smoothed design

_ spectra are then obtained for this level. lt may be noted that in case of designing for

any other peak level, the appropriate spectra can be obtained by simply multiplying

the design spectrum by the ratio of design peak level to the normalization peak level.

3.4.2 Normalization Using R.M.S. Acceleration

The r.m.s. acceleration describes the input characteristics somewhat better than peak

acceleration. This is due to the fact that a higher value of r.m.s. acceleration is a

definite indicator of a greater power content. Also, it incorporates information about

the duration characteristics. As mentioned earlier, the same may not be true if weR

luse peak acceleration to characterize the input. Hence, one can be more confident

‘ in assuming that a larger level of r.m.s. acceleration causes a larger response. This

makes r.m.s. acceleration seem like an attractive normalizing parameter. But it is

not a popular choice, since r.m.s. acceleration is not an explicit property of a

time-history like peak acceleration. The r.m.s. values have to be computed whereas

the peaks are conspicuous enough to be simply picked out. Nevertheless, some

researchers have tried to use r.m.s. acceleration to normalize the spectra. Pauschke(26) has compared spectra normalized by the r.m.s. and the peak accelerations. Our

Computation and Normalization of Response Spectra 25

own observations show that the shape of spectra thus obtained is similar to thetraditional spectra obtained using the peaks of ground motion.

For implementation of this normalization strategy, a certain level of r.m.s.acceleration is chosen. Then, just as in the case of peak normalization, the individual

A

responses are normalized to this level of acceleration using the concept of Iinearityof response. Finally, the means are computed to obtain the response spectra.

ln this study, a few spectra obtained with the r.m.s. and the peak accelerationnormalization process are compared. As mentioned in chapter 2, the best spectraare the ones which possess a relatively low variance of response over the range ofthe spectra.- If r.m.s. normalization yields such low variance spectra then it wouldqualify as a better way of speclfying response spectra. Linear regression analysiswas carried out between peaks and corresponding r.m.s. accelerations for the

records of each group to see the correlation of these parameters for that group. It

may be noted that a good correlation (approximately straight line relationship)

between these parameters would indicate that peak acceleration is as good a

normalizing parameter as the r.m.s. acceleration. The results of all these studies are

discussed in the next chapter.

Computation and Normalization of Response Spectra 26

Chapter

IVNumericalResults

4.1 Introduction

In this chapter, the numerical results obtained for various ground motion parameters,

their statistical correlation, and the computed response spectra are presented.

Correlation of the peak acceleration with the r.m.s. acceleration was considered tobe important, since a good correlation between these two signifies that the results

of response normalization are then independent of the choice of either of these

parameters. Also, in a good grouping strategy, it would be expected that these two

be well correlated. Finally, smoothed design spectra for single degree of freedom

(s.d.o.f.) and massless oscillators are presented. Methods to estimate relative

velocity and relative acceleration spectra from pseudo velocity spectra are also

presented. The nu merical results showing the applicability ofthese methods are alsogiven. ·

Numerical Results 27

4.2 Regression of Various Ground Motion Characteristics

It is of interest to examine the correlation between the various peak ground motion

parameters like peak displacement, peak velocity and peak acceleration. Such

correlation studies can be used to ascertain the validity of the concept of a standard

earthquake as originally proposed by Newmark and Hall (21). ln this study, a

pair-wise correlation analysis was carried between peak values of displacement and

velocity, velocity and acceleration, acceleration and displacement. The results are

presented in Table 13. lt is seen that in most cases, displacement and velocity are

well correlated, but the other pairs of peak are not generally so, except in the case

of group 5 belonging to the hard ground category, in which case they are rather well

correlated. Because of the weak correlation pattern between the three peak ground

motion parameters, the idea of defining a standard earthquake is considered to be

inappropriate.

The results of the correlation of the peak with the r.m.s. acceleration are also

given in Table 13. A good correlation between these two parameters is noted. The

correlation is especially very good for group 5. Figs. 4 to 12 show the scattergrams '

and the lines of linear regression of r.m.s. acceleration on the peak acceleration for

various groups considered in this study. On the line of best fit, the value of r.m.s.

acceleration corresponding to a peak value of 0.50 G is also indicated. This particular

r.m.s. value is utilized in response normalization later.

Numerical Results 28

4.3 Peak Factor, Frequency & Duration Statistics

Peak factor is the ratio of the peak to the r.m.s. value of a given random process. Inthis study, the peak factor of ground acceleration was studied. The records with lowpeak factor will have a higher intensity (on Arias’ scale) and r.m.s. value for a givenlevel of peak acceleration. Such records are also likely to be more damaging thanS

T the ones with higher peak factors. The results of the study are presented in TableT 14. The table shows the mean value and the standard deviation of the peak factor for

each group. lt is seen that the mean peak factor is generally lower for the groups4

belonging to the soft ground category. lt is also observed that the peak factor ls

higher for the vertical motions than for the horizontal motions. Also, the peak factor

ls generally lower for the groups with larger epicentral distances. lt can be seen that

the groups for medium and hard ground have lower coefficient of variation compared

to the groups in the soft ground category. This ls probably due to the fact that the

stiffer ground media closely behave like an elastic medium and hence display more

consistent ground motion characteristlcs than the soft media. _The averages of the upcrossing rates, indicating the average frequency of the

motion, are also shown in Table 14 for various groups. As seen from these results,

the upcrossing rate is low for the soft ground conditions. For the medium and hard

ground categories, the rate is observed to be higher for the vertical records, thus

indicating the presence of higher frequencies in the vertical motion. Furthermore, the

groups with smaller epicentral distance have a higher upcrossing rate when

compared with the groups with larger epicentral distance.

Table 14 also gives the results for the duration ratlos for the various groups. Theduration ratio is definedas the ratio of significant duration to the actual duration. lt

Numerical Results h 29

is obvious that the groups with high duration ratlos are more potent than the oneswith low duration ratios, especially for the response of low frequency oscillators,since the maximum response for these oscillators occurs toward the end of thestrong motion phase. From Table 14, it can be seen that groups 1, 2, 3 and 4 in thesoft and medium hard ground categories have higher duration ratlos compared togroup 5 in the hard ground category. Also, for a given ground stiffness, it can be seenthat higher epicentral distance causes an increase in the duration ratio,and also theduration ratio ls slightly larger for the vertical records than for the horizontal recordsbelonging to the same group.

Also listed in Table 14 are the average values of ratlos of the maximum jerk tothe maximum ground acceleration and maximum ground velocity to the maximum

l

ground dlsplacement. These values are needed when one wants to predict therelative velocity spectra from the pseudo velocity spectra. The relevance of these

parameters will be discussed later in this chapter.

4.4 Computed Spectra .

Many response spectrum quantities have been considered in this study. The ones3

of particular interest are the relative velocity, pseudo velocity (or pseudo

acceleration) and relative acceleration responses.

Figs. 13 to 21 show the relative velocity spectra corresponding to the nine cases

of the five groups considered in this study. lt can be seen that the shapes of each

of these spectra are distinct when compared to each other. This is due to the fact thatthese shapes reflect the specific frequency and duration related characteristics of the

Numerical Results 30

i

groups they represent. Figs. 22 to 30 show the plots for the pseudo velocity. Here,

it is observed that the shapes of these spectra are similar to the relative velocity

spectra. However, the major difference is that the pseudo velocity spectra are larger

in magnitude in the high frequency (low period) range. These observations are

consistent with the known characteristics of relative velocity and pseudo velocity

spectra.

Figs. 31 to 39 show the plots for the mean relative acceleration spectra and Figs.40 to 48 show the plots for the mean absolute acceleration spectra. lt is seen that

their shapes are also influenced by frequency and duration characteristics. However,

it may be noted that here, the influence of duration parameter is not as apparent here

as it was in the case of relative and pseudo velocity. The shifting of the frequency

region in which response is maximum can be seen very clearly in these plots as one

goes from one group to the other. lt is also noted that the absolute and relative

acceleration spectra are almost the mirror images of each other.

As mentioned earlier, the spectra for the coefficient of variation (c.o.v.) are

important for determining the appropriateness of the grouping scheme adopted here.

Figs. 49 to 60 show plots of c.o.v. spectra for relative velocity, pseudo velocity,

relative acceleration and absolute acceleration responses, respectively. It can be

seen that for the relative and pseudo velocity and the relative acceleration spectra,J

the coefficient of variation generally increases with increasing oscillator period. Also,

a smaller value of the damping ratio produces a slightly larger c.o.v. spectrum than

the one for a larger value of the damping ratio. Like the response spectra, the c.o.v.

spectra for absolute acceleration shown in Figs. 58 through 60 are also the mirror

images of the corresponding c.o.v. spectra for relative acceleration, which is notsurprising, since their actual spectra exhibit similar characteristlc.

Numerical Results 3l

Figs. 61 to 63 show some sample plots of the ratio of the maximum relative

velocity to the maximum pseudo velocity plotted against period. It is seen that the

two spectra are approximately equal over the intermediate frequency range between

2.5 cps to about 0.3 cps. However, they are different outside of this frequency range.

The difference over the higher frequency range has a special significance for the

design and analysis of most civil engineering structures, since most |ow—rise

structures lie in this frequency range. Taking the relative velocity spectrum equal to

the pseudo velocity spectrum in the response calculation could thus give rise toAinaccurate response values (30, 32). Figs. 64 to 66 show some sample plots of the

ratio of the relative to the pseudo acceleration response spectrum values. ln this

case, however, there is no frequency range over which the two spectra can be

considered equaI._

Figs. 67 to 72 compare the horizontal and vertical spectra within a group and

similar spectra in different groups. ln Figs. 67 and 68, the horizontal and vertical

° response spectra belonging to to the same group are compared. This is done to

highlight the effect of ground motion component on the response of an s.d.o.f.

oscillator. Vertical ground motion records have, in general, a higher frequency

content. As such, they cause larger response in the high frequency domain. Figs.

69 and 70 show the effect of ground stiffness on the response. As expected, the stiffer

the ground the larger the oscillator response in the high frequency range. Figs. 71

and 72 show the effect of the epicentral distance on the oscillator response. As

expected, the larger epicentral distances increase the response in the low frequency

region. Thus it is seen that the grouping parameters do indeed affect the shape and

the magnitude of the response spectra; this validates the use of these parameters forgrouping purposes.

Numerlcal Results A 32

In Figs. 67 to 72, the normalization of the different response spectra was donewith respect to the peak ground acceleration. In Figs. 73 to 78, we show similarcomparison between spectra now normalized with respect to the r.m.s. value of theground acceleration. lt is noted that the observations made for peak normalizedresponse also apply to this case. °

Figs. 79 to 96 are presented to compare the mean and the c.o.v. response spectraobtained with peak and r.m.s. normalization for some sample groups. The peaknormalized spectra are for a maximum ground acceleration of 0.50 G, whereas, ther.m.s. normalized spectra are for the r.m.s. values calculated from regressionequations given in Table 13, corresponding to the peak level of 0.50 G. It is observedthat the spectra corresponding to the peak normalization are always higher than the

ones corresponding to the r.m.s. normalization approach for all groups. For stiffergroups, the the two spectra are very close to each other. This is due to the very good

correlation between the peak and the r.m.s. ground acceleration for these groups.

This correlation was discussed earlier and is shown in Table 13. Comparison of thec.o.v. spectra shows that the r.m.s. approach gives higher c.o.v. values in the

highfrequencyregion and slightly lower values in the low frequency region. ln fact, forvery high frequencies, the c.o.v. values for the pseudo velocity and absolute

acceleration should approach zero for the peak normalization scheme. For the r.m.s.normalization scheme, the c.o.v. values for these response quantities in the high

frequency range reflects the variability ofthe r.m.s. values of the ground acceleration

(corresponding to the fixed peak value), and not the variability of the response

quantities themselves.

Figs. 97 to 102 compare the spectra of some sample groups with the

corresponding spectra of the ungrouped ensemble of 166 horizontal and 71 verticalrecords. The comparison of the response spectra in Figs. 97, 99, and 101 shows the

Numerical Results 33

l

differences which occur due to the considerations of the differences in the frequencyand duration characteristics of the input. Such separation of characteristics is lost inthe case of the spectra obtained for the complete ensemble. Also, Figs. 98, 100 and102 show that the spectra corresponding to the overall ensemble have much largercoefficients of variation compared to the ones for the groups selected in this study.This greatly justifies the use of physical characteristics for grouping purposes. _

4.5 Proposed Smoothed Spectra for S.D.O.F. Oscillators

One of the primary objectives of this study was to define the design response spectrafor various site characteristics. In this section, we define the mean and

mean·plus-one-standard deviation for the p*äugWoM_ve·lgcity,__ßre_latjvg_a_~_ygjggjv and __[§@_Ü_\’§__§§9_@l€lܧU.9„D..QQ§DÜtlQ§„-

Generally, these design spectra are formed of straight line segments (on a

log-log plot) that envelope the actual response spectra for a selected ensemble of

ground motion time histories. ln construction of these spectra, various zones of

frequency that exhibit different response characteristics are identified by stipulating

the corner frequencies (or the corner periods). Such a procedure was used by

Newmark and Hall (21) and Newmark, Blume and Kapur (22) to define designresponse spectra for the design of nuclear reactor facilities. In their study, however,

they lumped all available important ground motion records, without any grouping or

site characteristics consideration. Since now we have a rather large ensemble of

earthquake motions available to us, we can include the site classification in theconstruction of design response spectra.

Numerical Results _ 34

l

To do this, it was first necessary to identify the corner periods (or corner

frequencies) for each group of ground motions. These corner periods were selectedby trial and error to give the best possible fit between the prescribed and the

calculated ground response spectra. These corner periods for different groups of theground motions are given in Tables

To construct the design spectra for a set of damping ratlos, it is necessary to

know the corner periods. Herein, equations are providedto obtain the design ground response spectrum values for relative velocity, pseudo

velocity and relative acceleration response, for a peak ground acceleration of 0.50 G

at each corner period. For damping ratlos between 0.02 and 0.20, these equations

are of the following form :U

R 4Q = a log(ß) + b; 0.02 S ß S 0.20 (4.1)

The coefficients a and b for different groups, at various periods, are given in Tables

15 to 23. These coefficients were obtalned by regression analysis with some

adjustments to provide the best possible fit between the prescribed and the

calculated ground response spectra. These coefficients are provided both for mean ·

T and (mean + sd) spectrum values.

For the damping ratlos less than 0.02, it ls proposed to use the following linear

relationship :

O = O(0) (4.2)

where Q(x) lndicates the response spectrum value at damping ratio ß = x. The Q

values for ß = 0.0 are provided in the tables. These values are slightly higher thanthe actual computed spectrum values for ß = 0. y

Numerical Results 35

As mentioned earlier, the design values provided in Tables 15 to 23 correspond‘

to a peak ground acceleration of 0.50 G. To obtain the design spectrum for any otherlevel of peak ground acceleration, these coefficients need to be multiplied by the ratio= (prescribed peak acceleration in G·units / 0.50 G). ln other words, the coefficientsneed to be multiplied by twice the prescribed (design) ground acceleration in G-units.

Figs. 103 to 111 show the comparison of the computed spectra with the smoothedspectra obtained using the coefficients proposed in Tables 5-13. lt is seen thatsmoothed spectra compare well with the computed spectra. Figs. 112 to 120 showthe proposed mean relative velocity (RSV) spectra for various groups. Each plot

shows the curves corresponding to five damping ratios that were considered in this

study. Figs. 121 to 129 show the same response quantity smoothed at (mean + sd)

level. In the same way Figs. 130 to 147 show the proposed pseudo velocity spectra

for mean (mean + sd) levels. For ease of comparison, the relative and pseudo

velocity spectra are drawn on the same scale. Figs. 148 to 165 present the smoothed

response spectra for relative acceleration. lt may be noted that the acceleration is

expressed in ’G' units.

4.6 Comparison of the Proposed Spectra with the N·B-Kl

& ATC Spectra

In this section, the proposed design response spectra are compared with the design

spectra proposed by Newmark, Blume and Kapur (N-B—K) and the Applied TechnologyCouncil (ATC) (1). The N-B-K spectra are not prescribed for different site

Numcrical Results 36

. characteristics. The ATC spectra spectra, on the other hand, are defined for the sameground conditions as considered in this study. As the N-B-K and ATC do not definethe relative velocity and relative acceleration spectra, no comparison of these spectracan be made. The proposed pseudo velocity spectra are however compared with theN-B-K and ATC spectra. The spectra compared here correspond to the peak groundacceleration of 0.40 G and a damping ratio of 0.05. Also, as the N-B-K design spectracorrespond to the level of mean plus one standard deviation (mean + sd), they are

· compared with the proposed (mean + sd) design spectra. On the other hand, theA

ATC design spectra correspond to the mean level, hence they are compared with theproposed mean design spectra.

l

Figs. 166 to 169 show the comparison between the proposed and the N-B-Kspectra. In particular, in Fig. 166, PSV spectra corresponding to horizontal recordsof groups 1 & 2-are compared with the N-B-K spectra. In Fig. 167, the samecomparison is shown for spectra corresponding to vertical records. The figures show

_ that the N-B-K spectrum overestimates the response in the regions of medium highand high period (in the range of 0.50 sec to 10.0 sec). Figs. 168 and 169 show similarcomparison between the spectra of groups 3, 4, and 5 with the hl-B-K spectrum. Hereagain, it is observed that the N-B-K spectrum provides much higher values of designresponse in the the high period range. This is mainly because the N-B-K spectrumis more like a blanket spectrum that is expected to satisfy the design requirements

irrespective of the site type and estimated epicentral distance.The ATC design spectra for horizontal and vertical ground motion corresponding

to soft (S3), medium stiff (S2) and hard (S1) site types are compared with theproposed spectra in Figs. 170 to 175. lt should be mentioned here that the ATC

spectra correspond to an effective peak acceleration (EPA) of 0.40 G. The meaningof this term has been explained in reference 1. Generally, the EPA is about equal to,

_ Numerical Rcsults _ 37

and in some cases smaller than, the actual peak value of the ground acceleration.However, the application of the suggested definition of EPA to the response spectraobtained in this study revealed that the EPA was almost the same as the peakacceleration for the groups considered in this study. Hence, it was consideredreasonable to compare the ATC spectra for an EPA value of 0.40 G to the proposedspectra correspondlng to the peak acceleration value of the same magnitude.

ln Fig. 170, the horizontal PSV spectra for groups 1 & 2 are compared with theATC-S3 (soft sites) spectru m. The comparison shows that the ATC spectrum providessmaller design values of response in the high and medium frequency ranges. But inthe low frequency range, the ATC spectrum provides higher values than the proposedspectra. However, in Fig. 171, it is noted that the ATC spectrum underestimates theresponse in all the frequency ranges, including the low frequency range. A close lookat Figs. 170 to 175 indicates that the ATC spectra generally underestimate theresponse in the high and medium frequency ranges. Also, they underestimate theresponse in the low frequency range for spectra corresponding to the vertical groundmotion. _

y 4.7 Prediction of Relative Velocity from Pseudo Velocity

In earthquake designs, the use of pseudo velocity spectra is most prevalent. Usually

this satisfies most of the design needs. However, as mentioned earlier, Singh, et al.(17, 29, 30, 32) have demonstrated the need for utilizing the relative velocity spectra

in the seismic response analysis of structures. Since the relative spectra are usuallyunavailable, researchers have often attempted to substitute the relative velocity

Numcrical Results 38

( l

spectra with the pseudo velocity spectra. However, it is seen in Figs. 61 to 63 that thepseudo velocity is equal to the relative velocity only in the medium frequency range.

Due to a rather wide availability of the pseudo velocity spectra, it is of interest todevelop methods to define the relative velocity spectra in terms of the pseudo

fvelocity spectra. An approximate method to estimate the design relative velocityspectra was initially proposed by Singh (29). Gupta and Jaw (7) reported another

· approach for calculating the relative velocity spectra for individual earthquakes from‘ their pseudo velocity spectra. Herein, the Gupta and Jaw’s technique was tried toobtain the relative velocity spectra for the groups of earthquake records consideredin this study. A direct application of their approach, however, led to an

Toverestimation of the relative velocity response spectra in the low and medium highfrequency ranges, when compared to the calculated spectra. A modification of theGupta and Jaw method was, therefore, considered necessary.

As originally proposed by Gupta and Jaw, the frequency parameters, 60,, and 60,were calculated for each earthquake record using the following expressions : ‘

where the jerk is the time rate of change of the acceleration. The mean and the(mean + sd) values of 60,, and 60, were then calculated for each group considered in

this study. Let 60-,, = the (mean + sd) value of 60,,, and -63, = the (mean - sd) valueof 60,. In terms of these ground motion parameters, the following equations areproposed to estimate relative velocity spectrum in terms of the pseudo velocityspectrum values :

Numcrical Results I 39

RSV;Zo-H (PSV); T1 S T S T2 (4.4a)

RSV 0:3)] (PSV); T2 S P S T3 (4.4b)(Ta “ T2)

RSV;wo(PSV); T3 S T S TL (4.4c) L

RSV E [1 + (1 — log (K%)) (PSV); TL S P 10 sec (4.4d)

where RSV = the relative velocity spectrum value, PSV = the pseudo velocityspectrum value, T = the period of the oscillator, TL = gg-, and 603=T,,

T2, and T3 are the first three corner periods of the earthquake glroup for which the

relative velocity spectrum is being predicted. These corner periods are given in

Tables 15-23 for various groups. '

Figs. 176-178 show the comparison between the actual relative velocity spectra

and the predicted relative velocity spectra using Gupta and Jaw’s technique and the

method proposed herein. lt can be seen that the predicted spectrum curveUcorresponding to Gupta and Jaw’s technique overestimates the relative velocitySresponse in medium high and low frequency range. The proposed method gives a

good estimate of the actual spectrum except sometimes in the range of very low

frequencies. This low frequency range, however, is not of any practical interest in

earthquake structural analysis.

ln Figs. 179-181, we compare the calculated and predicted relative velocityspectra for a few individual earthquake records. The predicted spectra are based on

Eq. 4.4. There are two predicted spectra : 1)spectra calculated with group values ofco,) and EL, indicated as the group-based spectra, and 2)spectra calculated with the

Numerical Results U 40l

60,, and 60,_ values for the individual record, indicated as the self-based spectra. Thesetwo predicted spectra are in reasonable agreement with the calculated spectra,except at the high frequency end of the spectra, where the group-based spectraprovide a more suitable estimate of the calculated spectra.

4.8 Prediction of Relative Acceleration from Other KnownSpectraAs

mentioned earlier, the need for relative acceleration as a design input has alsobeen reported by Singh, et al. (31, 33), but such spectra are rarely available. Singhand Mehta (33) have proposed the following equation to estimate the relative

acceleration response spectrum values :

(RSA)2 = (segm)2 — (PSA)2 + 266§(1 — 2ßä)(RSV)2 (4.6)

In this study, the above equation was used to estimate the mean relative

acceleration spectra knowing the mean pseudo acceleration and relative velocity

spectra. Sample results were obtained for each group considered in this study. Figs.

182 to 184 show some representatlve plots obtained using the above-mentionedapproach. lt is seen that the comparison between the computed and predicted

spectra is exceptionally good, except for a very small band of frequency in the high

frequency region. However, even here the prediction error is not significant.

ln order to test the suitability of this approach for individual earthquake records,the computed and the predicted RSA spectra were compared for three sample

Numerical Results 4l

earthquake records. The results of this comparison are shown in Figs. 185 to 187.lt may be noted that the spectra shown there are normalized for a peak accelerationof 0.50 G. As in the case of group spectra, it is observed here that the proposedprediction method works very well, although it performs slightly better for the spectracorresponding to the groups than for the individual records.

4.9 Computed & Smoothed Spectra for Massless

Oscillators A

As mentioned earlier, a need has recently been felt for the response characteristics

of massless (half-degree-of-freedom) oscillators. One needs to know these response

characteristics in order to be able to predict the response of hysteretic oscillators

using equivalent linearization approach (34). With this goal in mind, herein in this

study, the response of massless oscillators to the earthquake groups considered in_ this study was examined, The results of this work are presented in this section.

Figs. 188 to 196 show the mean and (mean + sd) velocity response of massless

oscillators. The same figures also show the proposed smoothed response spectra.'

It is seen that the spectra are quite well defined in that they are almost linear and

increasing with the oscillator period. The smoothed response spectra have been

proposed by considering four corner periods (three frequency regions). At each

corner period the value of design response is stipulated simply by increasing the

actual response value by a suitable safety margin. Table 24 provides the responsevalues to be used at these corner periods. As seen in Figs. 188 to 196, the proposed

" Numerical Results 42

I

spectra well approximate the actual spectra. Fig. 197 shows the coefficient ofvariation (c.o.v.) spectra for relative velocity response of some sample groups. It isseen that the c.o.v. values increase monotonically with increasing oscillator period.

Figs. 198 to 206 show the spectra for acceleration response of a masslessoscillator. lt is seen that the acceleration values reach an asymptote at large periodvalues. At low periods (high frequencies), the acceleration values increase in aparabolic-like manner. The same figures show the proposed smoothed responsespectra. For the low period range, the following parabolic equation is proposed to

° estimate the response in that range :

Q = A[log(p)]2 + B log(p) + C (4.7)

where ’Q’ is the estimated acceleration value at oscillator period ’p’. The constantsA, B and C for thelbest fit are given in1Table 25)

ln Figs. 198 to 206, it can be seen that the proposed spectra are in good

_ agreement with the actual spectra, with a slight underestimation (< 5%) in the lowperiod range. Fig. 207 shows c.o.v. spectra of the acceleration response for a few

sample groups. lt is observed that the magnitude of the c.o.v. spectra foracceleration is much smaller than for the velocity response. Also, it is seen that the

c.o.v. spectra for acceleration decrease monotonically with increasing period until

oscillator periods of about 1.0 to 2.0 seconds. However, for periods higher than that,

there is a slight increase in the c.o.v. values. _

Numerical Results I 43

1

Chapter V

Conclusions

This study examines the need and appropriateness of grouping the earthquake

ground motions according to geological characteristics of the site to obtain the site

dependent spectra. The parameters considered are the site stiffness and epicentral

distance. The study shows that the spectra corresponding to different site conditions

are indeed distinct in their shapes. As expected, the response spectra of a group

identified according to specified site characteristics do exhibit significantly lower

response variance than the variance of the total ensemble considered without any

grouping. It has also been shown that the different criteria considered in this study

do indeed affect the shapes of response spectra in a way that is predictable.4

In the past, the concept of a standard earthquake has been used in defining

design motion. The results of correlation studies between different ground motionA parameters, however, show that it is not reasonable to propose a standard

earthquake, since the peak values of the ground displacement, velocityandaccelerationare not well correlated except in the case of the hard ground category.

Conclusions 44

The correlation study between the peak and the r.m.s. acceleration of the ground

motion within each group showed that the two are generally well correlated. This

implies that the response spectrum prediction based on either the peak or r.m.s.

acceleration parameters would be in reasonably good agreement. To verify this, the

spectra obtained with the peak and r.m.s. normalizaton schemes have been

compared. lt was observed that the two give results that are, indeed in good

, agreement. The spectra obtained by using the r.m.s. normalization slightly smallerlmagnitude than the ones obtained by the peak normalization.

ln practice, the N-B-K (22) and the ATC (1) spectra, which provide smoothed

response spectra only for the pseudo velocity response, are commonly used. Lately,

however, the need for defining the input in terms of the relative velocity and

acceleration spectra has also been identified. Thus, in this work, relative velocity and

relative acceleration spectra along with the pseudo acceleration spectra have been

proposed for various groups of earthquake ground motions. Also, a method has been

presented to predict the relative velocity spectra directly from the pseudo velocity

spectra of each group. The results show that the proposed method of prediction

works very well except (sometimes) in the very low period region, which is usually

not of design interest.U

Prediction of relative acceleration spectra is also considered important in the

light of the mode acceleration approach proposed by Singh (31, 33) for the analysis

of high frequency structures. It is hard to predict relative acceleration spectra directly

from the pseudo velocity spectra. However, if the relative velocity spectra are also

known, then relative acceleration spectra can be accurately predicted using the

approach proposed by Singh and Mehta (33). The numerical results show that thismethod works very well for all the groups considered in this study. Since, the relative

Conclusions _ 45

l

velocity spectra can be predicted from the pseudo velocity spectra, one can alsodevelop the relative acceleration spectra directly from the pseudo velocity spectra.

The proposed pseudo velocity or acceleration spectra have also been comparedwith thecommonly used N-B·K (22) and ATC (1) spectra. This comparison shows thatthe N-B-K spectra overestimate the response for medium and high periods.Comparison between the ATC and the corresponding proposed smoothed spectrarevealed that the ATC spectra generally underestimate the the response in themedium and high frequency ranges. For spectra corresponding to the verticalmotion, it is concluded that the proposed ATC spectra for this case, provide lowestimates of the response in all the frequency ranges, including the low frequencyrange. lt is also noted that the effect of the epicentral distance parameter seen in the

l

proposed spectra is absent in the spectra proposed by ATC.3

In addition to the pseudo velocity spectra and the relative velocity andacceleration spectra for single degree of freedom oscillators, the spectra for theresponse of a_ massless oscillator, with one half degree of freedom, have also been

defined for different groups of earthquake ground motions. These spectra are utilized

as input in the response analysis of nonlinear hysteretic structures using theequivalent Iinearization method (34). lt is observed that the response spectra

l

corresponding to the relative velocity and the relative acceleration of the masslessoscillator are generally very smooth and well behaved. Here, smoothed design

spectra have also been proposed for these response quantities. Like the otherresponse spectra, the c.o.v. values for the response of massless oscillators are also

relatively low, thus indlcatlng the effectiveness of the grouping strategy. ,

Conclusions 46

I I

References

1. Applied Technology Council, ’Tentative Provisions for the Development ofSeismic Regulations for Buildings', ATC Publication ATC 3-06, Published by the

_ U. S. Government Printing Office, Washington, D. C., June 1978.2. Arias, A., 'A Measure of Earthquake lntensity, in Seismic Design for Nuclear

Power Plants', Ed. R. J. Hansen, Massachusetts Institute of Technology Press,Cambridge, MA, 1970.

3. Arnold, P., Vanmarcke, E. H. and Gazetas, G., ’Frequency Content of GroundMotlons During the 1971 San Fernando Earthquake', Research Report PublicationNo. R76-3, Department of Civil Engineering, Massachusetts Institute ofTechnol0QY„ Cambridge, MA, 1976.

4. Bolt, B. A., 'Duration of Strong Ground Motion’, 6—D, Paper No. 292, Proceedingsof the 5th World Conference on Earthquake Engineering, Rome, Italy, 1973.

5. Dorby, R., ldriss, I. M., Chang, C.-Y. and Ng, E., ’Influence of Magnitude, SiteConditions and Distance on Significant Duration of Earthquakes', Proceedings ofthe 6th World conference on Earthquake Engineering, New Delhi, India, 1977.

6. Dorby, R., ldriss, I. M. and Ng, E., ’Duration Characteristics of HorizontalComponents of Strong-Motion Earthquake Records’, Earthquake EngineeringResearch Laboratory°, California Institute of Technology, 1978.

7. Gupta, A. K. and Jaw, J. W., ’Response Spectrum Method for NonclassicallyDamped Systems', Civil Engineering Research Report, Department of CivilEngineering, North Carolina State University at Raleigh, NC, April 1985.

8. Hall, W. J., Nau, J. M. and Zahrah, T. H., ’Scaling of Response Spectra and EnergyDissipation in SDOF Systems', Proceedings of the 8th World Conference onEarthquake Engineering, Vol. IV, pp. 7-14, San Francisco, CA, July 1984.

9. Housner, G. W., ’ lntensity of Ground Motion During Strong Earthquakes’Earthquake Engineering Research Laboratory, California Institute of Technology,Pasadena, CA, 1952.

10. Housner, G. W., ’Measures of Severity of Earthquake Ground Shaking',Proceedings of the United States National Conference on EarthquakeEngineering, Ann Arbor, MI, 1975.

References 47

11. Hudson, D. E., Brady, A. G. and Trifunac, M. D., ’Strong-Motion EarthquakeAccelerograms, Dlgitized and Plotted Data - Vol. I', Earthquake EngineeringResearch Laboratory, California Institute of Technology, Pasadena, CA, 1969.

12. Hudson, D. E., Brady, A. G., Trifunac, M. D. and Vijayaraghavan, A.,’Strong-Motion Earthquake Accelerograms, Corrected Accelerograms andIntegrated Ground Velocity and Displacement Curves · Vol. II' EarthquakeEngineering Research Laboratory, California Institute of Techno|0QY„ Pasadena,CA, 1971.

13. Hudson, D. E., Trifunac, M. D. and Brady, A. G., ’Strong-Motion EarthquakeAccelerograms, Response Spectra - Vol. Ill', Earthquake Engineering ResearchLaboratory, California Institute of Technology, Pasadena, CA, 1972.

14. Hudson, D. E., Trifunac, M. D., Udwadia, F. E., Brady, A. G. and Vijayaraghavan,A., 'Strong-Motion Earthquake Accelerograms, Fourier Spectra - Vol. IV',

, Earthquake Engineering Research Laboratory, California Institute of Technology,Pasadena, CA, 1972.

15. Husid, R., 'Gravity Effects on the Earthquake Response of Yielding Structures',Earthquake Engineering Research Laboratory, California Institute of Technology,Pasadena, CA, 1967.

16. Malushte, S. R., 'Seismic Design Response of Simple Nonlinear HystereticStructures', M. S. Thesis, Department of Engineering Science & Mechanics,Virginia Tech, Blacksburg, VA, Sept. 1984.

17. McCown, B. E. and Singh, M. P., 'Seismic Design Response of NonclassicallyDamped Structures: A Mode Acceleration Approach', Technical Report Submittedto the National Science Foundation Under Grant No. CEE-8214070, June 1984.

718. Mohraz, B., 'A study of Earthquake Response Spectra for Different Geological

Conditions', Bulletin of the Seismologlcal Society of America, Vol. 66, pp. 915-935,1976. .

19. Nau, J. M., ’Computation of Inelastic Response Spectra', Journal of theEngineering Mechanics Division, ASCE, Vol. 109, No. 1, Feb. 1983.

20. Newland, D. E., ’An Introduction to Random Vibrations and Spectral Analysis',Longman Group Ltd., London, Chapter 8 of Fourth Impression, 1981.

21. Newmark, N. M. and Hall, W. J., 'Procedures and Criteria for Earthquake-ResistantDesign', Building Practices for Disaster Mitigation, Building Science Series 46,NBS, PP• 209-237, 1973. .

22. Newmark, N. M., Blume, J. A. and Kapur, K. K., 'Seismic Design Spectra forNuclear Power Plants', Journal of the Power Division, ASCE, Vol. 99, Nov. 1973.

23. Nigam, N. C. and Jennings, P. C., 'Digital Calculation of Response Spectra fromStrong·Motion Earthquake Records', Earthquake Engineering ResearchLaboratory, California Institute of Technology, Pasadena, CA, June 1968.

24. Nigam, N. C. and Jennings, P. C., 'Calculation of Response Spectra fromStrong·Motion Earthquake Records’, Bulletin of the Seismologlcal Society ofAmerica, Vol. 59, No. 2, April 1969.

References _ 48

25. Ohi, K. and Tanaka, H., ’Frequency-Domain Analysis of Energy Input Made byEarthquakes', Proceedings of the 8th World Conference on EarthquakeEngineering, Vol. IV, pp. 67-74, San Francisco, CA, July 1984.

26. Pauschke, J. M. and Krishnamurty, S., ’Peak Vs. Root Mean Square (RMS)Acceleration as a Response Parameter', Proceedings of the 8th WorldConference on Earthquake Engineering, Vol. IV, pp. 45-52, San Francisco, CA, July1984.

27. Seed, H. B., Ugas, C. and Lysmer, J., ’Site Dependent Spectra forEarthquake-Resistant Design', Report No. EERC 74-12, College of Engineering,University of California, Berkeley, CA, 1974.

28. Seed, H. B., Murarka, R., Lysmer, J. and ldriss, I. M., 'Relationships of MaximumAcceleration, Maximum Velocity, Distance from Source and Local Site Conditionsfor Moderately Strong Earthquakes', Report No. EERC 75-17, College ofEngineering, University of California, Berkeley, CA, 1975.

29. Singh, M. P., 'Seismic Design Input for Secondary Systems', Journal of the' Structural Division, ASCE, Vol. 106, No. ST2, Proc. Paper 15207, February 1980,pp. 505-517.

30. Singh, M. P., ’Seismic Response Combination of High Frequency Modes',» Proceedings of the 7th European Conference on Earthquake Engineering, Athens,Greece, Sept. 1982.

31. Singh, M. P., 'Extended Applications of Relative Acceleration and Velocity asSeismic Design Inputs', Proceedings of the 8th World Conference on EarthquakeEngineering, Vol. IV, pp. 29-36, San Francisco, CA, July 1984.

32. Singh, M. P. and Chu, S. L., ’Stochastic Considerations in Seismic Analysis ofStructures’, Earthquake Engineering and Structural Dynamics, Vol. 4, pp. 295-307,1976.

33. Singh, M. P. and Mehta, K. B., ’Seismic Design Response by an Alternative SRSSRule', Earthquake Engineering and Structural Dynamics, Vol. II, pp. 771-783, 1983.

34. Singh, M. P., Maldonado, G. O., Heller, R. A. and Faravelli, L., 'Modal Analysis ofNonlinear Hysteretic Structures for Seismic Motions’, Proceedings of IUTAMSymposium on Nonlinear Stochastic Dynamic Engineering Systems, Innsbruck,June 21-26, 1987.

35. Trifunac,_M. D., ’Ground Motion - Dependence of Peaks on Earthquake Magnitude,Epicentral Distance and Recording Site Conditions', Earthquake EngineeringResearch Laboratory, California Institute of Techno|0QV„ 1975.

36. Trifunac, M. D. and Brady, A. G., ’Onthe Correlation of Seismic Intensity Scales

with the Peaks of Recorded Strong Ground Motion', Bulletin of the Seismological ‘Society of America, Vol. 65, No. 1, pp. 139-162, Feb. 1975.

37. Trifunac, M. D. and Brady, A. G., ’Astudy on the Duration of Strong Earthquake

Ground Motion', Bulletin of the Seismological Society of America, Vol. 65, No. 3,pp. 581-626, June 1975.

References 49

R38. Trifunac, M. D. and Brady, A. G., ’Correlations of Peak Accelerations, Velocity and

Displacement with Earthquake Magnitude, Distance and Site Conditions’,International Journal of Earthquake Engineering and Structural Dynamics, 1975.

39. Zhou, X., Wang, G. and Su, J., ’Seismic Design Response Spectra ConsideringIntensity, Epicentral Distance and Site Condition', Proceedings of the 8th WorldConference on Earthquake Engineering, Vol. IV, pp. 15-22, San Francisco, CA, July1984.

References 50

TABLE 1A

‘List of the Earthquakes Selected for the Study

Time Long. (N) Lat. IN)No. Earthquake Area Time Zone Mo. Day Year 0 ' " 0 ' " Mag.

01 Imperial Valley, Cal 2037 PST May 18, 1940 115 27 00 32 44 00 6.702 Northwest California 2011 PST Oct 07, 1951 124 48 00 40 17 00 5.803 Kern County, Cal 0453 PDT Jul 21, 1952 119 02 00 35 00 00 7.704 San Mose, Cal 1801 PST Sep 04, 1955 121 47 00 37 22 00 5.805 E1 Alamo, Baja, Cal 0633 PST Feb 09, 1956 115 55 00 31 45 00 6.806 San Francisco, Cal 1144 PST Mr 22, 1957 122 29 00 37 40 00 5.307 Hollister,_Cal 2323 PST Apr 08, 1961 121 18 00 36 40 00 5.708 Borrego Mountain, Cal 1830 PST Apr 08, 1968 116 08 00 33 09 00 6.409 Southern California 0110 PST Oct 02, 1933 118 08 00 33 47 00 5.410 Lower California 0552 PST Dec 30, 1934 115 30 00 32 12 00 6.511 First Northwest Cal 2210 PST Sep 11, 1938 124 48 00 40 18 00 5.512 Second Northwest Cal 0145 PST Feb 09, 1941 125 24 00 40 54 00 6.413 Hestern Hashington 1156 PST Apr 13, 1949 122 42 00 47 06 00 7.114 Northern California 0441 PDT Sep 22, 1952 124 25 00 40 12 00 5.5 ·15 Nheeler Ridge, Cal 1534 PST Jan 12, 1954 119 01 00 35 00 00 5.916 Puget Sound, Hash 0729 PST Apr 29, 1965 122 18 00 47 24 00 6.517 Parkfield, Cal 2026 PST Jun 26, 1966 120 54 00 35 54 00 5.618 San Fernando, Cal 0600 PST Fb O9, 1971 118 23 42 34 24 00 6.4

Sl

TABLE 2

Selected Recording Locations and Relevant Data

Long. (N) Lat. (N) Site Year of EpicentralNo. Recording Station 0 ' " 0 ' " Type Record Distance

(in km)

001 El Centro Site Imperial 115 32 55 32 47 43 Soft May 1940 11.56Valley Irrigation Dist.

002 Ferndale City Hall 124 15 00 40 34 00 Medium Oct 1951 56.47003 Cal Tech Athnaeum, 118 07 17 34 08 20 Soft Jul 1952 127.62

Pasadena, California004 Taft Lincoln School Tunnel 119 27 00 35 09 00 Soft Jul 1952 41.61005 Santa Barbara Court House 119 42 05 34 25 28 Soft Jul 1952 88.86006 Hollywood Storage Basment 118 20 00 34 D5 00 Soft Jul 1952 120.96007 Hollywood Storage P.E. Lot 118 20 00 34 05 00 Soft Jul 1952 120.96008 San Hose Bank of America 121 53 00 37 20 00 Soft Sep 1955 9.63

Basement-009 El Centro Site Imperial 115 32 55 32 47 43 Soft Feb 1956 121.82

Valley Irrigation Dist.010 San Francisco Southern 122 24 00 37 48 00 Soft Mr 1957 16.61

Pacific Building Basment011 San Francisco Alexander 122 24 00 37 47 00 Medium Mar 1957 14.97

Building Basment012 San Francisco Goldn Gate 122 28 42 37 46 12 Medium Mr 1957 11.55

Park013 San Francisco State 122 25 00 37 47 00 Medium Mar 1957 14.30

Building Basement014 Oakland City Hall Basment 122 16 00 37 48 00 Medium Mar 1957 24.25015 Hollister City Hall 121 24 00 36 51 00 Soft Apr 1961 22.35016 El Centro Site Imperial 115 32 55 32 47 43 Soft Apr 1968 67.62

Valley Irrigation Dist.017 Hollywood Storage Basement 118 20 00 34 05 00 Soft Oct 1933 38.29018 El Cntro Site Imperial 115 32 55 32 47 43 Soft Dec 1934 66.65

Valley Irrigation Dist.019 Ferndale City Hall 124 15 00 40 34 00 Medium Sp 1938 55.44020 Ferndale City Hall 124 15 00 40 34 00 Medium Fb 1941 104.22021 Seattle, Hash. Dist. Engr. 122 20 31 47 33 34 Soft Apr 1949 58.04

Office at Army Base022 Olympia, Hash. Highway_ 122 54 00 47 02 00 Soft Apr 1949 16.94

Test Laboratory023 Ferndale City Hall 124 15 00 40 34 00 Medium Sep 1952 14.22024 Taft Lincoln School Tunnel 119 27 00 35 09 00 Soft Jan 1954 43.01025 Olympia, Nash. Highway 122 54 00 47 02 00 Soft Apr 1965 61.23

Test Laboratory026 Cholame—Shandon California 120 17 13 35 43 35 Soft Jun 1966 58.82

· Array No. 02027 Cholame—Shandon California 120 19 42 35 42 00 Soft Jun 1966 56.40

Array No. 05028 Cholame-Shandon California 120 54 00 35 40 18 Soft Jun 1966 25.51

Array No. 08029 Cholame-Shandcn California 120 24 12 35 38 12 Soft Jun 1966 53.77

Array No. 12030 Pecoi — Dam, California 118 23 48 34 20 06 Hard Fb 1971 7.26031 250 E First Street 118 14 26 34 03 01 Soft Feb 1971 41.64

Basment, Los Angeles, Cal

S2

TABLE 2 (contd.)

Long. (H) Lat. (N) Site Year of EpicentralE No. Recording Station 0 ' " 0 ' " Type Record Distance(in km)

032 445 Figueroa Street, Sub- 118 15 24 34 03 12 Soft Feb 1971 40.82Basment, Los Angeles, Cal

033 Castaic Old Ridge Route, 118 39 24 34 33 18 Medium Fb 1971 29.55California

034 Hollywood Storage Basement 118 20 00 34 05 00 Soft Feb 1971 35.85035 Hollywood Storage P.E. Lot 118 20 00 34 05 00 Soft Feb 1971 35.85036 1901 Ave of The Stars Sub- 118 24 58 34 03 14 Soft Feb 1971 38.70

Basemnt, Los Angeles, Cal037 3710 Hilshire Boulevard, 118 18 24 34 03 42 Medium Feb 1971 38.69

Basemnt, Los Angeles, Cal038 7080 Hollywood Boulevard, 118 20 37 34 06 05 Soft Fb 1971 33.71

Basement, Los Angeles, Cal039 Nheeler Ridge, California 118 59 05 35 01 05 Soft Fb 1971 87.65040 4680 Nilshire Boulevard, 118 19 51 34 03 41 Medium Feb 1971 38.31

Basemnt, Los Angeles, Cal041 Hater and Power Building 118 15 00 34 03 00 Medium Feb 1971 41.38

Basmnt, Los Angeles, Cal042 Santa Felicia Dam - Outlet 118 45 02 34 27 41 Medium Fb 1971 33.32

Herks, California043 3407 Sixth Street Basemnt 118 17 43 34 03 45 Soft Fb 1971 38.84

Les Angeles, Cal ·044 Engineering Building Santa 117 52 00 33 45 00 Soft Feb 1971 87.61Ana, Orange County, Cal

045 808 South Olive St, Street 118 15 03 34 02 07 Soft Feb 1971 42.91Level, Los Angeles, Cal

046 2011 Zonal Avnue, 118 12 16 34 03 36 Medium Fb 1971 41.92Basemnt, Los Angeles, Cal

047 120 N Robertson Blvd, Sub- 118 22 58 34 04 32 Soft Feb 1971 36.26Basmnt, Los Angeles, Cal

048 646 South Olive Avenue, 118 15 14 34 02 50 Soft Feb 1971 41.55Basement, Los Angeles, Cal

049 Edison Company, Colton, 117 18 45 34 03 34 Soft Feb 1971 107.11California —050 Pumping Plant, Pearblossom 117 55 18 34 30 30 Soft Feb 1971 45.39

California051 OSO Pumping Plant, German, 118 43 03 34 48 05 Medium Fb 1971 45.39

California052 UCLA Reacter Laboratory, 118 27 00 34 04 00 Soft Feb 1971 53.67

Les Angeles, Cal053 Cal Tech Seismelegical Lab 118 10 15 34 08 55 Hard Feb 1971 34.97

Pasadena, California054 Cal Tech Athenaeum, 118 07 17 34 08 20 Soft Fb 1971 38.68

Pasadna, California055 Cal Tech Millikan Library, 118 07 30 34 08 12 Soft Fb 1971 38.65

Pasadna, California 7056 Jet Propulsion Lab, Base- 118 10 25 34 12 01 Medium Fb 1971 30.35

ment, Pasadena, California057 611 N Sixth Floor Basmnt 118 15 16 34 02 57 Soft Feb 1971 41.33

Los Angeles, Cal058 Palmdale Fire Station, 118 06 45 34 34 40 Soft Fe 1971 32.85

Store Room, Palmdale, Cal059 15250 Vntura Boulevard, 118 27 50 34 09 14 Soft Feb 1971 28.18

Basment, Los Angeles, Cal060 8639 Lincoln Ave, Basemnt 118 25 07 33 57 36 Soft Feb 1971 49.19

Los Angeles, Cal

7 S3

TABLE 2 (contd.)

Long. (N) Lat. IN) Site Year of EpicntralNo. Recording Station 0 '

“ 0 ' " Type Record Distance. (in km)

061 900 South Fremont Ave, 118 08 56 34 05 06 Soft Feb 1971 41.97 .Basement, Alhambra, Cal -062 2600 Nutwood Ave, Basment 117 52 53 33 52 39 Soft Fb 1971 75.34Fullerton, Cal

063 435 N. Dakhurst Ave, Base- 118 23 26 34 04 40 Soft Fb 1971 35.99mnt, Beverly Hills, Cal064 1800 Cntury Pk East, Bsmt 118 24 52 34 03 46 Soft Feb 1971 37.70

(P-3), Los Angeles, Cal065 15910 Ventura Boulevard, 118 28 48 34 09 36 Soft Fb 1971 27.77Basment, Los Angeles, Cal066 Lake Hughes, Array Station 118 26 24 34 40 30 Hard Feb 1971 30.98

No. 01, California067 Lake Hughes, Array Station 118 28 48 34 38 30 Hard Feb 1971 27.94

No. 04, California068 Lake Hughes, Array Station 118 33 42 34 36 30 Hard Fb 1971 27.79

No. 09, California069 Lake Hughes, Array Station 118 33 36 34 34 18 Medium Feb 1971 24.37

No. 12, California070 15107 Vanown Street, 118 07 42 34 11 42 Soft Fb 1971 33.73

Basement, Los Angeles, Cal071 616 South Normandie Ave, 118 17 56 34 03 45 Medium Feb 1971 38.77Basement, Los Angeles, 6,1072 3838 Lankershim Boulevard, 118 21 39 34 08 15 Medium Fb 1971 29.51Basment, Los Angeles, Cal073 1150 South Hill St., Sub- 118 15 34 34 02 40 Soft Feb 1971 41.69Basment, Los Angeles, Cal074 Thachapi Pumping Plant, 118 49 36 34 56 30 Medium Fb 1971 72.26

CNR Site, Grapevine, Cal075 4000 Nest Chapman Ave, 117 53 33 33 46 51 Soft Fb 1971 83.42

Basement, Orange, Cal076 6074 Park Drive, Ground 117 37 58 34 21 40 Medium Fb 1971 70.55

Level, Nrighthood, Cal077 Carbon Canyon Dam, Cal 117 50 26 33 54 52 Medium Fb 1971 74.73078 Phittier Narrows Dam, Cal 118 03 10 34 01 12 Soft Feb 1971 53.02079 San Antonio Dam, Upland, 117 40 47 34 09 26 Soft Feb 1971 71.51

California080 2516 Via Tejon-Cal, Ground 118 23 13 33 48 02 Medium Feb 1971 66.96

Level, Palos Verdes Estate081 2500 Nilshire Boulevard, 118 16 47 34 03 35 Medium Fb 1971 39.51

Basmnt, Los Angeles, Cal082 San Juan Capistrano, Cal 117 40 14 33 29 22 Soft Feb 1971 121.95083 Long Beach State College, 118 06 45 33 46 35 Soft Fb 1971 74.45

Gr Level, Long Beach, Cal084 Anza Post Office, Storage 116 40 25 33 33 20 Soft Fb 1971 185.39

Roos , Anza, California

54

I

TABLE 3Dafa for {he Horizonfal Records of Group No. 1

Group Characferistics : Soft Sifes• Epicnfral Disfance < 60 km

Cal Tech Corresponding Componenf Max. Disp. Max. Vel. Max. Acc.No. Id No. Sfafion No. Direciion linches) tft/sec) (G·Uni{s)

in Table #2

01 A001(001) 01 500E 4.278 1.0974 0.34802 A001(002) 01 $90N 7.788 1.2113 0.21403 A004(010) 04 N21E 2.636 0.5157 0.15604 A004(011) 04 $69E 3.603 0.5812 0.17905 A0l0(028) 08 N31N 1.104 0.3558 0.10206 A010(029) 08 N59E 0.659 0.1456 0.10807 A013(037) 10 N45E 0.433 0.0949 0.04708 A013(038) 10 N45N 0.550 0.1626 0.04609 A018l052) 15 S01H 1.117 0.2548 0.06510 A018l053l 15 N89H 1.512 0.5622 0.17911 B023(067) 17 NOOE 0.299 0.0642 0.03312 B023l068) 17 N90E 0.173 0.0724 0.027 —13 B028(082) 21 SOZH 0.948 0.2698 0.06814 B028(083) 21 N88N 1.052 0.2605 0.06715 B029l085) 22 N04N 3.378 0.7021 0.16516 B029(086) 22 N86E 4.085 0.5607 0.28017 B031(091) 24 N21E 0.656 0.1945 0.06518 B031(092) 24 $69E 0.418 0.1208 0.06819 B032(094) 25 $04E 1.076 0.2643 0.13720 B032(095) 25 $86N 1.514 0.4282 0.19821 B033|097) 26 N65E 10.415 2.5619 0.48922 B034(100) 27 N05N 2.089 0.7602 0.35523 B034|101) 27 N85E 2.801 0.8346 0.43424 B035(103) 28 N50E 1.742 0.3557 0.23725 B035(104) 28 N40H 1.548 0.3858 0.27526 B036(106) 29 N50E 1.611 0.2303 0.05327 B036l107) 29 N40H 2.239 0.2633 0.06428 C051(151) 31 N36E 3.631 0.5626 0.10029 C051(152) 31 N54H 4.585 0.7188 0.125 ’30 C054(160) 32 N52N 4.658 0.5701 0.15031 C054l161l 32 $38N 4.634 0.5679 0.11932 0057(169) 34 $00H 3.398 0.5566 0.10633 0057l170) 34 N90E 5.172 0.6379 0.15134 D058(172) 35 $00N 3.170 0.5415 0.17135 0058l173) 35 N90E 5.797 0.6935 0.21136 0059(175) 36 N46H 2.955 0.3165 0.13637 0059(176) 36 $44H 4.816 0.5493 0.15038 0068(202) 38 NOOE 3.201 0.4127 0.08339 D068(203) 38 N90E 2.822 0.4378 0.10040 E083l247) 43 $00N 3.562 0.6035 0.161

55

—————————————————————————*———————————————————————————————————————————_______——“_______—“___————————————T

Date for the Horizontal Records of Group No. 1 Icontd.)

Group Characteristics : Soft Sites. Epicentral Distance < 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction (inches) tft/sec) lG—Units)in Table 82

‘ 41 E083(248l 43 N90E 4.083 0.5445 0.165. 42 F089(265l 45 $53E 5.721 0.6830 0.134

43 F089(266) 45 $37N 4.586 0.6803 0.14244 F095(283) 47 S88E 4.177 0.5527 0.09845 F095(284] 47 SOZN 4.779 0.5857 0.08646 F098(292] 48 $53E 5.189 0.7144 0.24147 F098(293] 48 $37H 5.301 0.6056- 0.19648 F103(307] 50 NOOE 0.995 0.1454 0.093

p 49 F103l308] 50 N90N 0.943 0.1785 0.12350 F105(313) 52 $00H 1.594 0.2732 0.08551 F105(314) 52 N90E 1.948 0.2781 0.07952 G107l319) 54 NOOE 1.164 0.2613 0.09553 G107(320] 54 N90E 2.900 0.4679 0.109 °54 G108(322] 55 NOOE 1.071 0.3230 0.20255 G108l323] 55 N90E 2.716 0.5396 0.18556 G112(334] 57 N38E 4.321 0.5577 0.10457 G112l335) 57 N52N 3.640 0.5148 0.08058 G114I340] 58 $60E 1.511 0.4650 0.11359 G114(341) 58 $30H 1.088 0.3067 0.13960 H115l343] 59 N11E 5.298 0.9268 0.22561 H115l344) 59 N79N 4.065 0.7696 0.14962 H118(352] 60 $45E 3.478 0.3888 0.03463 H118(353] 60 $45N 3.079 0.2974 0.03364 H121(361] 61 $90N 3.418 0.5659 0.12265 H121(362l 61 $00N 1.733 0.3479 0.11466 I128(379] 63 NOOE 2.857 0.4346 0.06267 I128(380) 63 $90N 3.188 0.4923 0.093 l68 I134(397] 64 N54E 4.480 0.5472 0.10069 I134l398) 64 Ä $365 2.451 0.3516 0.08470 I137(406] 65 $81E 2.797 0.5280 0.14371 I137(407l 65 $09N 3.328 0.7304 0.13172 J145(427) 70 $00N 6.926 1.0381 0.11673 J145(428] 70 $90H 6.019 0.9441 0.10574 H176l487) 73 N37E 5.425 0.6859 0.08575 H176(488) 73 $53E 5.398 0.5842 0.11876 M186l517) 78 $375 1.945 0.2873 0.09877 M186(518] 78 $53N 1.976 0.3194 0.099

. 56

TABLE 4 _Data for the Vertical Records of Group No. 1

Group Characteristics : Soft Sites; Epicentral Distance < 60 ku

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction (inches) (ft/sec) (G-Units)

in Table 32

01 A001(003) 01 VERT 2.188 0.3555 0.21002 A004(012) 04 VERT 1.982 0.2190 0.10503 A010(030] 08 VERT 0.469 0.0402 0.04504 A013l039) 10 VERT 0.346 0.0482 0.02705 A018(054] 15 VERT 0.851 0.1539 0.05006 B028(084) 21 VERT 0.906 0.0784 0.02207 B029I087) 22 VERT 1.587 0.2306 0.09208 B031(093] 23 VERT 1.142 0.0772 0.03609 B032(096] 24 VERT 0.661 0.0984 0.06110 B033(099) 25 VERT 1.707 . 0.4635 0.206 -11 B034l102) 26 VERT 1.355 0.2389 0.11912 B035(105) 27 VERT 0.817 0.1482 0.07913 B036l108) 29 VERT 1.016 0.1633 0.04514 C051l153) 31 VERT 2.288 0.2568 0.04915 C054(162) 32 VERT 2.011 0.3497 0.05316 D057(171) 34 VERT 1.501 0.1972 0.05117 D058(174) 35 VERT 1.183 0.1681 0.08918 D059|177] 36 VERT 0.968 0.1577 0.06819 D068l204) 38 VERT 1.642 0.1836 0.05820 E083l249) 43 VERT 1.752 0.2885 0.05721 F089(267) 45 VERT 2.370 0.3275 0.07722 F095(285) 47 VERT 1.540 0.2033 0.02723 F098l294) 48 VERT 2.083 0.3162 0.07124 F103(309) 50 VERT 0.666 0.0770 0.048 „25 F105(315] 52 VERT 1.141 0.1473 0.06826 G107(321) 54 VERT 1.048 0.2179 0.095

, 27 G108l324] 55 VERT 0.931 0.2942 0.09328 G112(336) 57 VERT 2.065 0.3281 0.05429 G114(342) 58 VERT 0.948 0.2545 0.08830 H115(345] 59 VERT 1.699 0.3078 0.09631 H118l354) 60 VERT 1.546 0.2260 0.042

p 32 H121(363) 61 VERT 1.344 0.2675 0.08133 I128l381] 63 VERT 0.906 0.1899 0.037 q34 I134l399] 64 VERT 0.981 0.1894 0.06435 I137(408) 65 VERT 1.045 0.2619 0.10236 J145(429) 70 VERT 2.755 0.5945 0.10837 M176(489] 73 VERT 1.703 0.2917 0.04238 H186(519] 78 VERT 0.925 0.1194 0.060

57

I

I

· TABLE 5

Data for the Horizontal Records of Groq: No. 2

Groqa Characteristics : Soft Sites, Epicentral Distance > 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction (inches) (ft/sec) (G-Units)

in Table #2 ‘

01 A003(007) 03 $00E 1.059 0.2045 0.04702 A003(008) 03 $90E 1.133 0.2976 0.05303 A005(013) 05 N42E 1.829 0.3861 0.09004 A005(014) 05 S48E 2.267 0.6325 0.13105 A006(016) 06 $00H 2.013 0.2009 0.05506 A006(017) 06 N90E 2.318 0.3077 0.04407 A007I019) 07 $00N 1.789 0.2157 0.05908 A007l020) 07 N90E 2.537 0.2924 0.04209 A011(031) 09 $00H 0.964 0.1302 0.033 °10 A011(032l 09 $90N 1.612 0.2284 0.05111 A019(055) 16 $00H 4.820 0.8469 0.13012 A019I056) 16 $90W 4.326 0.4819 0.05713 B024(070] 18 $00H 1.653 0.6842 0.16014 B024l071) 18 $90N 1.442 0.3795 0.18315 D071(211l 39 $00H 0.556 0.0614 0.02716 D071(212) 39 N90E 0.821 0.0820 0.02617 F087(259l 44 $04E 1.405 0.1643 0.02718 F087(260) 44 $86H 2.238 0.2620 0.02919 F101l301) 48 $00H 0.426 0.0858 0.03820 F101(302) 48 N90E 0.505 0.0724 0.03121 H124l370) 62 $90N 0.840 0.1451 0.03622 H124l371) 62 $00H 1.069 0.1904 0.03523 M180I499) 75 $00N 1.397 0.1875 0.02424 M180l500) 75 $90N 2.579 0.2775 0.03025 M187(520) 79 ° N15E 0.279 0.1010 0.05726 M187(521) 79 N75H 0.308 0.1205 0.07727 N195(544l 82 N33E 0.940 0.1167 0.04228 N195l545) 82 N57H 0.964 0.1522 0.03229 N196(547) 83 N76H 3.138 0.3115 0.03630 N196(548) 83 $14H 2.652 0.3036 0.032

. 31 N197(550) 84 N45E 0.465 0.0719 0.026

58

TABLE 6” Data for the Vertical Records of Group No. 2

Group Characteristics : Soft Sites; Epicentral Distance > 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction linches) (ft/sec) lG—Units)' in Table #2

01 A003(009) 03 VERT 1.194 0.1487 0.03002 A005(0l5) 05 VERT 0.847 0.1643 0.04403 A006(018) 06 VERT 0.855 0.1371 0.02304 A007l021l 07 VERT 1.341 0.0996 0.02105 A019(057) 16 VERT 1.523 0.1131 0.03006 B024(072) 18 VERT 2.212 0.2879 0.069 -07 F101(303) 48 VERT 0.533 0.0499 0.02008 M187(522) ” 79 VERT 0.311 0.0512 0.02909 N195(546) 82 VERT 0.622 0.1124 0.02110 N196(549) 83 VERT 1.481 0.1601 0.026

i E S9

TABLE 7GRDUND MOTION DATA FOR THE RECORDS USED IN THE STUDY

Data for the Horizontal Records of Group No. 3 '

Group Characteristics : Medium Stiff Sites; Epicentral Distance < 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction (inches) (ft/sec) (G-Units)

in Table #2

01 A002(004) 02 $44H 0.938 0.1577 0.10402 A002l005) 02 N46H 1.078 0.2424 0.11203 A014(040) 11 N09H 0.514 0.0944 0.04304 A014(041) 11 N81E 0.393 0.0697 0.46505 A015(043) 12 N10E 0.887 0.1613 0.08306 A015(044) 12 S80E 0.325 0.1512 0.105 -07 A016(046) 13 S09E 0.448 0.1657 0.08508 A016(047) 13 $81N 0.360 0.1325 0.05609 A017l049) 14 N26E 0.591 0.0641 0.04010 A017(050) 14 $64E 0.443 0.0391 0.02411 B026(076) 19 N45E 1.532 0.2166 0.14412 B026(077) 19 $45E 0.653 0.2225 0.08913 B030(088) 23 N44E 0.805 0.2280 0.05414 B030(089l 23 S46E 0.732 0.1557 0.07615 C056l166) 33 N21E 1.664 0.5630 0.31516 C056(167) 33 N69H 3.735 0.9126 0.27117 D065l193) 37 SOOH 4.067 0.5929 0.15018 D065(194) 37 S90H 5.068 0.7244 0.15919 D072(214) 40 N75H 5.788 0.6843 0.08420 D072(215) 40 N15E 4.643 0.7065 0.11721 D078(232) 41 N50N 5.400 0.7674 0.12922 D078(233) 41 $40H 3.498 0.5291 0.17223 D081(241) 42 $08E 2.763 0.3241 0.21724 D081(242) 42 S82N 1.809 0.2048 0.20225 F092(274) 46 S62E 4.060 0.4531 0.06526 F092(275) 46 $28N 2.486 0.3804 0.08127 F104(310) 51 NOOE 0.812 0.2790 0.08728 F104(311) 51 N90H 0.927 0.2007 0.10529 G110(328) 56 S82E 1.951 0.4570 0.21230 G110(329) 56 $08N 1.139 0.3017 0.14231 J144(424) 69 N21E 0.698 0.4839 0.35332 J144(425) 69 N69N 3.487 0.4188 0.28333 J148l436l 71 NOOE 2.880 0.5302 0.11034 J148(437) 71 S90H 4.386 0.5734 0.11435 L166(457) 72 NOOE 1.913 0.4071 0.16736 L166l458) 72 $90N 2.143 0.4919 0.15037 N192(535) 81 N29E 3.041 0.4870 0.09938 N192l536) 81 N61N 3.097 0.6419 0.101

60

TABLE 8Data for the Vertical Records of Group No. 3

Group Characteristics : Medium Stiff Sites, Epicentral Distance < 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction linches) (ft/sec} (G-Units)in Table 82

01 A002(006) 02 VERT 0.637 0.0724 0.02702 A014(042l 11 VERT 0.173 0.0439 0.031— 03 A015l045) 12 VERT 0.268 0.0398 0.03804 A016(048) 13 VERT 0.253 0.0766 0.04405 B026(078) 19 VERT 0.239 0.0471 0.03206 B030(090) 23 VERT 0.600 0.0993 0.030 _07 C056l168) 33 VERT 1.380 0.2116 0.15608 D065(195) 37 VERT 1.919 0.2984 0.07509 D072(216) 40 VERT 1.244 0.2261 0.06610 D078I234) 41 VERT 2.548 0.3367 0.06911 D081(243) 42 VERT 1.114 0.1510 0.06512 F092(276) 46 VERT 1.494 0.2328 0.05013 F104(312) 51 VERT 0.484 0.1259 0.03614 61101330) 56 VERT 1.032 0.1940 0.12915 J144(426) 69 VERT 1.286 0.1358 0.10716 J148(438) 71 VERT 1.342 0.2184 0.05317 L166(459) 72 VERT 0.947 0.1640 0.07118 N192(537) 81 VERT 1.307 0.2513 0.043

‘ 61

«

TABLE 9

Data for the Horizontal Records of Group No. 4

Group Charecteristics : Medium Stiff Sites, Epicentral Distance > 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction (inches) (ft/sec) (G—Units)in Table #2

01 B027(079) 20 N45E 0.784 0.1153 0.06202 B027(080) 20 $45E 0.847 0.1128 0.03903 M179(496) 74 SOOH 0.292 0.0376 0.02104 H179(497) 74 N90E 0.360 0.0931 0.04805 M183( 508] 76 N65H 0 .482 0 . 1257 0 . 04306 H183(509) 76 N25E 0.343 0.0851 0.057 -07 M185(514) 77 $50E 0.673 0.1137 0.06908 M185( 515) 77 $40N 0 . 814 0 . 1461 0 . 06909 N191l 532) 80 N65E 1 . 020 0 . 1361 0 . 02510 N191( 533) 80 $25E 1 . 324 0 . 1634 0 . 041

62

TABLE 10

Data for the Horizontal Records of Group No. 5

Group Characteristics : Hard Sites, Epicentral Distance < 60 km

Cal Tech Corresponding Conponent Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction linches) (ft/sec) (G-Units)

in Table 82

01 C041(121) 30 S16E 14.828 3.7150 1.17002 C041(122) 30 S74N 4.259 1.8944 1.07503 G106(316) 53 SDDN 0.651 0.1968 0.08904 G106I317) 53 S90H 1.955 0.3810 0.19205 J141(415) 66 N21E 1.350 0.5890 0.14806 J14l(416) 66 $69E 1.166 0.4733 0.111 _07 J142(418) 67 $69E 0.489 0.1885 0.17108 J142(419) 67 S21H 0.686 0.2827 0.14609 J143l421) 68 N21E 0.780 0.1573 0.12210 J143l422) 68 N69H 0.950 0.1477 0.112

63

I

TABLE 11Data for the Vertical Records of Group No. 5

Group Characteristics : Hard Sites, Epicentral Distance < 60 km

Cal Tech Corresponding Component Max. Disp. Max. Vel. Max. Acc.No. Id No. Station No. Direction linches) (ft/sec) IG-Units)in Table #2

01 C041(123) 30 VERT 7.605 1.9129 0.70902 G1D6(318l 53 VERT 0.911 0.1923 0.085 -03 J141(417) 66 VERT 1.122 0.3826 0.09504 J142(420l ' 67 VERT 0.632 0.2345 0.15405 J143(423) 68 VERT 0.872 0.1000 0.073

64

TABLE 12

Lisi: of {he Ninefy Two Periods Used for {he Response Speofra

0.030 0.032 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.0460.050 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.0950.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.180

‘ 0.200 0.220 0.235 0.250 0.265 0.280 0.300 0.320 0.340 0.3600.380 0.400 0.420 0.440 0.460 0.480 0.500 0.550 0.600 0.6500.700 0.750 0.800 0.850 0.900 0.950 1.000 1.100 1.200 1.3001.400 1.500 1.600 1.700 1.800 1.900 2.000 2.200 2.400 2.600U2.800 3.000 3.200 3.400 3.600 3.800 4.000 4.200 4.400 4.6004.800 5.000 5.500 6.000 6.500 7.000 7.500 8.000 8.500 9.0009.500 10.000

_ 65

TABLE 13Correlation Coefficints Betwen Various Ground MotionParametersGroup

Correlation CoefficintR.M.$.and Peak Peak Velocity and Peak Acceleration Peak DisplacementNo. Acceleration Peak Displacement and Peak Velocity and Peak Acceleration

1H 0.8642 0.8495 0.6961 0.4241

1V 0.9081 0.8040 0.5854 0.3461

2H 0.9045 0.7610 0.7377 0.2632 .

2V 0.7964 0.8042 0.8446 0.6327

3H 0.7667 0.8629 0.4828 0.2216

3V 0.7265 0.9464 0.4291 0.4567

4H 0.8234 0.8305 0.2947 -0.0236

SH 0.9983 0.9716 0.9377 0.8489

5V 0.9984 0.9932 0.9888 0.9873

· 66

T

~ TABLE 14Sfafisfios of {he Implicif Paramefers for {ho Groups Considered

Sfafisfical Group No.Paramefer Quanfify 1H 1V ZH ZV 3H 3V 4H SH SV

Accelerafion Mean 7.89 7.64 5.93 5.99 8.99 7.99 6.19 9.75 9.98Peak Facfor C.0.V. 0.28 0.26 0.26 0.23 0.33 0.34 0.24 0.15 0.21

Durafion Mean 0.37 0.43 0.55 0.58 0.37 0.44 0.59 0.25 0.26Rafio C.0.V. 0.41 0.36 0.30 0.27 0.54 0.51 0.29 0.38 0.41

Upcrossing Mean 4.02 4.67 3.21 4.13 4.39 5.19 4.47 5.87 7.51 ·Rafe C.0.V. 0.30 0.32 0.38 0.35 0.30 0.37 0.46 0.30 0.16

fn Mean 4.85 6.44 3.99 5.36 4.65 6.15 5.33 5.55 6.64C.0.V. 0.32 0.37 0.45 0.35 0.25 0.30 0.24 0.33 0.18

fl Mean 0.36 0.31 0.34 0.25 0.42 0.34 0.34 0.61 0.49C.0.V. 0.36 0.32 0.50 0.32 0.54 0.29 0.29 0.33 0.34

67

T I

TABLE 15

Design Coefficiants for Horizoniel Reoords of Group I1

Group Cheracferisiics : Soft Sifes; Epicenfral Disfanoe < 60 kms

Corner Response G at G = A LOG (BETA) + B ß 0. < BETA < .20Period Quanfiiy BETA=0 A B( sec 1 Mean Mean+$0 Mean Mean+S0 Mean Moan+$0

RSV (ih/S] 0.594 1.065 -0.0570 -0.1085 0.2179 0.2845u 0.034 PSV (in/S) 1.418 1.819 -0.0380 -0.0797 1.2453 1.2486RSA (ih G) 0.253 0.481 -0.0340 -0.0578 0.0493 0.0816

RSV (ih/S] 23.896 39.792 -5.9149 -9.2210 -0.4109 -1.40430.130 PSV lin/S) 25.024 40.684 -5.6663 -9.0670 1.6495 -0.2281

RSA lin G) 2.964 4.966 -0.7543 -1.1761 -0.0992 -0.2230

RSV (in/s) 62.193 87.433 -18.1176 -24.6018 -1.8531 -4.05950.300 PSV (in/8) 63.334 88.792 -17.9443 -23.8481 -0.4987 -1.8935

RSA (in G) 3.390 4.759 -0.9667 -1.2918 -0.0303 -0.1235

E RSV lin/8) 91.716 163.512 -29.5479 -48.6727 -0.1259 -6.00050.900 PSV (in/S] 93.433 165.305 -31.1019 -50.4491 -1.8604 -7.4587

RSA (in G) 1.738 3.004 -0.4285 -0.7456 0.3811 0.2266

RSV (in/8] 87.503 198.274 -29.8648 -76.5064 16.3699 3.99365.000 PSV (in/S) 87.036 196.437 -31.6669 -75.6998 9.8100 -0.1069

RSA (in G] 0.602 0.898 -0.0350 -0.1652 0.5403 0.4698

RSV (in/8) 40.729 61.424 -5.3751 -7.7539 29.9254 45.489310.000 PSV lin/S) 36.504 69.851 -6.3935 -12.3912 23.0872 43.9207

RSA (ih GJ 0.535 0.559 -0.0018 -0.0053 0.5318 0.5485

68

I

TABLE 16Design Coefficients for Verfical Records of Group 81

Group Characferistics : Soff Sifes5 Epicenfral Disfance < 60 kms

~Corner Response Q at Q = A LOG (BETA) + B 5 0. < BETA < .20Period Quanfity BETA=0 A B(sec) Mean Mean+SD Mean Me•n+SD Mean Mean+SD

RSV (in/s) 1.357 2.548 -0.2410 -0.4578 0.2097 0.22680.034 PSV (in/s) 2.047 3.130 -0.1506 -0.3202 1.2010 1.1704RSA lin G) 0.625 1.202 -0.1096 -0.2068 0.0704 0.0859

RSV (in/s) 32.421 49.129 -8.0816 -11.4770 -1.7647 -3.00130.120 PSV (in/s) 33.326 49.815 -7.7076 -11.2894 -0.4718 -2.0152RSA (in G) 4.378 6.658 -1.0969 -1.5392 -0.2382 -0.3665

RSV (in/s) 59.003 87.000 -17.6828 -25.6055 -2.5185 -5.22650.300 PSV lin/s) 60.653 88.903 -17.4877 -25.0190 -1.2042 -3.3629RSA (in G) 3.228 4.720 -0.9250 -1.3619 0.0133 -0.1541

RSV (in/sl 77.757 116.126 -28.1272 -43.2293 -0.6849 -4.74481.200 PSV (in/sl 82.187 120.013 -28.1217 -40.1963 3.1023 2.6105

RSA (in G) 1.147 1.633 -0.2452 -0.4428 0.4589 0.3776

RSV (in/s) 84.664 146.331 -31.9411 -60.6825 12.7758 10.50194.000 PSV (in/s) 97.747 164.832 -34.4690 -59.9110 19.6174 30.0012RSA (in G) 0.651 0.798 -0.0572 -0.1142 0.5385 0.5386

RSV (in/s) 67.050 114.156 -14.2239 -23.3574 37.4632 64.725610.000 PSV (in/sl 100.746 193.315 -19.1127 -36.2759 62.0743 121.4871RSA (in G) 0.561 0.618 -0.0111 -0.0205 0.5404 0.5785

69

~ I

TABLE 17Design Coefficienis for Horizonial Records of Group #2

Group Characferistics : Soft Sifes, Epicentral Distance > 60 kms

Corner Response Q at Q = A LOG lBETA) + B 5 0. < BETA < .20Period Quanfify BETA=0 A B(sec) Mean Mean+$0 Mean Mean+S0 Mean Mean¥S0

RSV lin/s) 0.509 0.855 -0.0481 -0.0978 0.1620 0.22400.034 PSV lin/s) 1.324 1.549 -0.0124 -0.0528 1.2786 1.3151RSA (in G) 0.223 0.386 -0.0267 -0.0516 0.0402 0.0676

1 RSV Tin/s) 22.168 35.346 -4.7808 -7.6440 -0.4278 -1.12070.130 PSV lin/s) 23.497 36.410 -4.2604 -7.1404 2.4063 0.7483RSA (in G) 2.738 4.393 -0.6140 -0.9685 -0.1128 -0.1884

RSV (in/s) 74.930 113.994 -23.5690 -35.5652 -4.3344 -9.15140.300 PSV lin/s) 76.710 115.503 -22.8173 -34.7882 -2.1803 -7.2244RSA (in G) 4.072 6.213 -1.2786 -1.9261 -0.2133 -0.4656

RSV (in/s) 137.532 220.551 -43.4221 -69.6110 -4.1671 -11.51941.000 PSV (in/s) 139.982 224.274 -44.5098 -68.1372 -5.9204 -10.4919RSA lin G) 2.319 3.623 -0.6243 -1.0008 0.2508 0.1104

RSV (in/s) 105.631 201.766 -39.3097 -82.6090 18.3044 18.53296.000 PSV (in/s) 101.730 193.317 -39.9881 _-81.4643 10.1770 8.2766RSA lin G) 0.605 0.749 -0.0395 -0.1154 0.5328 0.4920

\ RSV (in/s) 53.927 84.933 -9.7055 -16.2402 32.6319 47.909810.000 PSV (in/s) 50.999 87.252 -11.7293 -19.5391 24.6559 41.1819

RSA lin G) 0.534 0.553 -0.0012 -0.0046 0.5309 0.5421

_ 70

I

TABLE 18 ‘A

Design Coefficienis for Verfical Records of Group I2

Group Characferisfics : Soft Sifes, Epicnfral Disfance > 60 kms

Corner Response 0 at 0 = A LOG (BETA) + B ) 0. < BETA < .20Period Quanfify BETA=O A B(sec) Mean Mean+S0 Mean Mean+$0 Mean Mean+S0

RSV (in/s) 1.186 2.167 -0.1314 -0.2229 0.2171 0.30270.034 PSV (in/s) 1.833 2.709 -0.0718 -0.1342 1.2384 1.2390

RSA (in G) 0.537 1.001 -0.0787 -0.1488 0.0460 0.0352

RSV (in/s) 20.995 37.147 -3.2872 -5.1335 -0.2338 -0.90070.090 PSV (in/s) 22.178 37.872 -3.0361 -5.0375 1.3623 0.0259

RSA (in G) 3.771 6.692 -0.5937 -0.8994 -0.0741 -0.1510

RSV (in/s) 88.150 145.295 -19.2966 -28.4476 -3.4783 -8.0642‘ 0.280 PSV (in/s) 89.511 146.887 -18.7834 -27.4076 -1.5675 -5.4504RSA (in G) 5.151 8.447 -1.1091 -1.5729 -0.1536 -0.3528

RSV (in/s) 103.568 161.567 -34.2001 -57.7282 -3.2942 -11.15951.100 PSV (in/s) 106.488 164.130 -33.8922 -57.7902 -2.4909 -11.6309RSA (in G) 1.599 2.410 -0.4309 -0.7432 0.3225 0.1384

RSV (in/s) 88.063 187.956 -35.8290 -89.8697 8.5855 -10.03425.000 PSV (in/s) 95.590 197.791 -34.9390 -86.5945 13.8606 -3.3702‘ RSA (in G) 0.633 0.849 -0.0648 —0.1850_ 0.5011 0.4025

RSV (in/s) 56.233 74.426 -12.6475 -16.4344 27.6893 34.000610.000 PSV (in/s) 78.393 109.664 -15.9428 -21.4586 44.6821 62.5931RSA (in G) 0.544 0.571 -0.0080 -0.0148 0.5261 0.5395

7l

TABLE 19Design Coefficints for Horizontal Records of Group #3

Group Characteristics : Medium Stiff Sites, Epicntral Distance < 60 kms

Corner Response Q at Q = A LOG (BETA) + B 5 0. < BETA < .20Period Quantity BETA=0 A B(sec) Mean Mean+SD Mean Mean+SD Mean Mean+SD

RSV (in/s) 0.528 0.818 -0.0690 -0.1158 0.2102 0.26180.034 PSV (in/s) 1.360 1.562 -0.0314 -0.0545 1.2474 1.2644RSA (in G) 0.224 0.368 -0.0345 -0.0502 0.0580 0.0957

RSV (in/s) 18.317 28.469 -4.8380 -7.5756 -0.1332 -0.91700.120 PSV (in/s) 19.215 29.190 -4.2122 -7.0046 2.4834 0.8921

RSA (in G) 2.467 3.849 -0.6773 -1.0592 -0.0760 -0.1778

. RSV (in/s) 48.914 70.923 -16.1792 -23.3206 -1.7251 -3.90060.250 PSV (in/s) 50.013 72.024 -15.7786 -23.1700 -0.5315 -2.8932

RSA (in G) 3.192 4.607 -1.0401 -1.4798 -0.0600 -0.1819

RSV (in/s) 58.773 99.175 -20.1084 -35.7246 7.2139 6.93111.200 PSV lin/s) 59.206 100.600 -22.7226 -39.5629 1.5607 -0.0623

RSA (in G) 0.967 1.450 -0.2083 -0.4478 0.5046 0.4170

RSV (in/s) 47.569 96.259 -14.3532 -35.1633 17.2216 20.55775.000 PSV (in/s) 48.967- 100.328 -15.5001 -34.0280 14.3227 23.3594

RSA (in G) 0.550 0.611 -0.0107 -0.0402 0.5529 0.5505

RSV lin/s) 34.965 58.194 -5.0369 -10.5212 25.0409 37.829410.000 PSV (in/s) 37.441 72.643 -7.0327 -13.4653 23.3524 46.6554I RSA (in G) 0.536 0.563 -0.0028 -0.0097 0.5306 0.5447

72

I

TABLE 20Design Coefficienfs for Verfical Records of Group 83

Group Characferisfics : Medium Siiff Sifes; Epicenfral Disfance < 60 kmsI

Corner Response Q at Q = A LOG (BETA) + B s 0. < BETA < .20Period Quantify BETA=0 A B(seo) Mean Mean+$O Mean Mean+SD Mean Mean+SD

_ RSV (in/s) 1.047 1.580 -0.1772 -0.3034 0.2411 0.29140.034 PSV (in/s) 1.746 2.225 -0.0745 -0.1497 1.2457 1.2167RSA (in G) 0.467 0.719 -0.0829 -0.1289 0.0822 0.1252

RSV (in/s) 15.934 26.927 -3.6628 -5.9938 -0.4144 -1.12730.085 PSV (in/s) 17.007 27.922 -3.5593 -6.0951 1.1680 -0.3268RSA (in G) 3.011 5.114 -0.7102 -1.1379 -0.1292 -0.2315

RSV (in/s) 55.552 83.690 -19.0372 -29.0874 -2.3571 -5.79120.300 PSV lin/s) 57.198 85.066 -19.4749 -28.8827 -1.6896 -4.4932

RSA (in G) 3.050 4.571 -0.9742 -1.5169 -0.0034 -0.2135

l RSV (in/s) 62.772 106.939 -24.0523 -43.9038 1.6107 -4.99731.200 PSV (in/s) 65.362 108.185 -25.2844 -42.5798 1.9126 -0.7710RSA (in G) 1.033 1.559 -0.2568 -0.4994 0.4177 0.2803

RSV lin/s) 61.774 104.033 -20.0228 -38.3446 19.8778 24.23444.400 PSV (in/s) 75.089 119.757 -21.9020 -32.9813 27.6903 48.6655RSA (in G) 0.595 0.679 -0.0360 -0.0563 0.5464 0.5887

RSV (in/s) 60.783 102.895 -11.3008 -20.2243 38.0438 63.426810.000 PSV lin/s) 99.185 187.711 -18.9474 -35.4429 61.4413 119.1636RSA (in G) 0.553 0.615 -0.0034 -0.0085 0.5464 0.5991

73

u

TABLE 21

Design Coefficients for Horizontal Records of Group 84

Group Characteristics : Medium Stiff Sites, Epicentral Distance > 60 kms

Corner Response Q at Q = A LOG (BETA) + B 5 0. < BETA < .20Period Quantity BETA=0 A B(sec) Mean Mean+SD Mean Mean+SD Mean Mean+$D

RSV (in/s) 0.679 1.008 -0.0961 -0.1884 0.2016 0.22770.034 PSV (in/s) 1.427 1.691 -0.0370 -0.0760 1.2292 1.2217

RSA (in G) 0.302 0.460 -0.0435 -0.0726 0.0553 0.0867

RSV (in/s) 16.920 28.649 -3.3968 -5.7284 0.0142 -0.55360.100 PSV (in/s) 18.149 29.346 -3.2290 -5.7183 2.0023 0.6094

RSA (in G) 2.698 4.631 -0.5613 -0.9120 -0.0541 -0.1001

RSV (in/s) 70.366 103.337 -23.2740 -29.8807 -3.5885 -5.87570.300 PSV (in/s) 71.840 104.871 -23.4083 -30.9097 -3.0624 -6.3183

RSA (in G) 3.850 5.644 -1.2424 -1.6684 -0.1155 -0.2658

RSV (in/s) 49.730 91.085 -15.9769 -29.8731 7.1499 3.87441.300 PSV (in/s) 51.282 91.633 -17.0432 -30.0920 4.6090 2.4908

RSA (in G) 0.843 1.282 -0.1171 -0.2522 0.5517 0.5349

RSV (in/s) 73.302 152.662 -27.1116 -62.8188 10.2970 -0.43045.500 PSV (in/s) 86.894 164.880 -31.2213 -58.5596 14.7735 19.3171

RSA (in G) 0.623 0.740 -0.0269 -0.0394 0.5681 0.5984

RSV (in/s) 46.303 77.616 -7.7614 -13.1605 31.9202 53.088910.000 PSV (in/s) 63.764 130.618 -11.9219 -24.9844 40.5648 82.5710

RSA (in G) 0.557 0.615 -0.0028 -0.0107 0.5514 0.5946

74

{

TABLE 22

Design Coeffioienfs for Horizoniel Records of Group 85

Group Chsreoferistics 2 Hard Sites, Epiontrel Disfsnoe < 60 kms

Corner Response Q at Q = A LOG (BETA) + B $ 0. < BETA < .20Period Qunfify BETA=0 A B(seo) Mean Mean+SD Henn Me•n+S0 Mean Mesn+$0

RSV (in/s) 0.920 1.607 -0.1153 -0.2260 0.2028 0.22270.034 PSV (in/s) 1.628 2.220 -0.0513 -0.1507 1.2254 1.1535RSA lin G) 0.413 0.747 -0.0513 -0.0978 0.0522 0.0627

{ RSV lin/s) 27.393 38.143 -7.8907 -10.6160 -1.0242 -1.59510.140 PSV (in/s) 27.982 38.755 E -7.6019 -10.2971 0.5262 -0.3697RSA (in G) 3.171 4.422 -0.9122 -1.2189 -0.1362 -0.1934

RSV (in/sl 44.962 57.648 -15.2520 -16.5151 -1.9153 -0.47410.300 PSV (in/s) 46.071 59.291 -14.9713 -16.5595 -0.8546 0.3110 “RSA lin G) 2.435 3.140 -0.7718 -0.7901 0.0379 0.2344

RSV (in/s) 53.480 91.341 -19.5958 -35.6275 7.8711 8.14071.100 PSV (in/s) 53.167 90.437 -19.9896 -35.3055 5.4703 6.9926RSA lin G) 1.051 1.529 -0.2164 -0.3804 0.5557 0.6190

RSV lin/s) 22.923 33.276 -2.6706 -3.2678 16.5457 24.84233.600 PSV (in/s) 20.225 31.955 -5.6126 _-8.2390 7.2687 10.3967RSA lin G) 0.534 0.558 -0.0017 -0.0074 0.5576 0.5683

RSV lin/s) 22.615 33.174 -2.9808 -6.1621 17.0252 21.352110.000 PSV (in/s) 22.083 42.454 -3.9769 -7.9082 14.1577 27.1037RSA (in G) 0.537 0.556 -0.0054 -0.0117 0.5275 0.5345

. 75

TABLE 23 ·l Desigm Coefficients for Vertical Records of Groq: 85

Group Characteristics : Hard Sites, Epicntral Distance < 60 kms

Corner Response Q at Q = A LOG (BETA) + B ß 0. < BETA < .20Period Quntity BETA=O A B(sec) Mean Mean+SD Mean Mean+SD Mean Mean+SD

RSV lin/s) 1.961 3.411 -0.2620 -0.4792 0.1893 0.08350.034 PSV (in/s) 2.446 3.724 -0.2250 -0.3764 1.1080 1.0871RSA (in G) 0.931 1.627 -0.1345 -0.2100 0.0275 0.0195

RSV (in/s) 23.077 35.198 -6.3951 -9.1023 -1.2225 -2.39070.100 PSV (in/s) 23.626 35.831 -6.3139 -9.0498 -0.5750 -1.8337RSA (in G) 3.715 5.684 -1.0777 -1.5373 -0.2464 -0.4450

RSV (in/s) 48.327 69.347 -14.6498 -20.7290 -3.1617 -5.47990.200 PSV (in/s) 48.549 69.750 -14.1453 -20.6291 -2.0580 -5.0193RSA lin G) 3.953 5.667 -1.1165 -1.6381 -0.1147 -0.3576

RSV (in/s) 40.618 62.011 -12.5772 -16.6238 1.9288 1.95820.400 PSV lin/s) 40.923 62.245 -12.4482 -15.8509 1.5155 1.2828RSA (in G) 1.741 2.572 -0.4706 -0.7254 0.3567 0.2853

RSV (in/s) 33.626 48.500 -10.0140 -16.5724 12.7695 14.20803.400 PSV (in/s) 34.588 54.473 -9.4752 -15.0852 13.5057 19.9821RSA lin G) 0.572 0.598 -0.0232 -0.0300 0.5554 0.5720

RSV lin/s) 37.262 61.794 -5.9248 -10.5972 23.2983 35.562910.000 PSV lin/s) 55.288 106.825 -9.6315 -18.2404 33.6055 65.6083RSA lin G) 0.548 0.572 -0.0104 -0.0164 0.5288 0.5415

76

ABLE 2C)Design Coefficients for Velocity ( in/sec) of Massless Oscillators ‘

Group Corner PeriodsNo. Period=0 . 034 Period=0 . 200 Period=2 . 200 Period=10 . 00Mean Mean+$D Mean Mean+SD Mean Mean+SD Mean Mean+SD

1H 6.136 15.172 19.969 39.357 63.417 90.548 190.999

1V 4.974 5.759 17.268 24.132 82.914 149.270 298.015 590.792

2H , _ __ 6.363 ____22_._§_70

_'2V5.354 6.155 16.938 21.828 66.830 93.737 212.010 317.477

3H 5.222 5.926 13.257 17.344 35.463 61.655 98.982 203.358

3V 4.995 5.705 16.237 21.475 78.000 138.237 288.995 566.945

4H 5.139 5.623 14.121 17.600 52.214 94.972 159.090 318.899

sn 5.031 5.849 12.117 16.418 24.553 36.606 64.798 127.381

t5V 4.899 5.491 12.256 17.733 44.420 75.469 154.500 302.761

77

{ZTABLE 2;}Desigs Coefficients for Aocelerationmlin/s·¤·s) of Massless 0sci11a*|:ors

Group Response Q = A LOG(P)·¤LOG(P) + 8 LOGIPJ + C Q at Q atNo. Leve1 .034 sec < P < .40 sec P0= 2.20 P0=10.00

A B C

1H Mean -0.1087 -0.0339 2.2852 198.5737 199.07721H Mean+$D -0.0848 -0.0382 2.3072 204.6759 207.7709

’ 1V Mean -0.0807 -0.0232 2.2974 203.1943 210.46721V Mean+SD -0.0441 -0.0031 2.3293 218.7753 232.6273

ZH Mean -0.1500 -0.0618 2.2873 198.2447 198.4413ZH Mean+$0 -0.1159 -0.0704 2.3122 203.2801 203.8885

ZV Mean -0.1051 -0.0298 2.2791 196.3293 198.9741ZV Mean+$0 -0.0715 -0.0332 2.3002 200.8920 206.6147

3H Mean -0.1089 -0.0341 2.2877 199.7181 201.66143H Mean+$D -0.0815 -0.0255 2.3056 206.6183 212.4402

C3V Mean -0.0705 0.0014 2.2896 204.1648 210.50193V Mean+S0 -0.0469 0.0228 2.3247 223.7034 233.9118

4H Mean -0.1110 -0.0370 2.2997 204.8976 206.0727» 4H Mean+SD -0.0743 -0.0007 2.3275 222.7729 227.0406

5H Mean -0.0963 -0.0403 2.2855 195.6475 196.18795H Mean+$D -0.0718 -0.0553 2.3043 197.5297 200.3902

5V Mean -0.0559 0.0064 2.2758 197.1013 198.60185V Me•n+$D -0.0519 0.0019 2.2954 204.6129 213.2189

„ 78

1.00W-nngüül

IlYIHLÄw@&""“’0.6o ÄWIIIIHIIIII ÄWIMIIHIIIIIÄEIIIIHIIIII§o.so ÄEQE'Q 0.*-10

mu-.-ul-ll.mulllulllllwplllulllllMMHIIHIIIII

0.0 0.1 0.2 0.3 0.*1 0.5 0.5 0.7 0.8 0.9 1.0(NORMRLIZEDI ELFIPSED TIME. t/T

FIG. 1 HUSID PLOT FOR 1951•HOLI5TER CITY HRLL. N89H RECORD {SOFT SITE}

79

1.00 .

---E-----

Y

IDURFITION RFITIO ¤ 0.26

0.80'MIIIIIIIIII

WNINIIIIIIIREHIIIIIIIIIQo.soEQ3äw

IImu-. IIIIIIMHIIIIIIIIImßlllllllllMMMHIIIIIII

0.0 0.1 0.2 0.3 0.*4 0.5 0.6 0.7 0.8 0.9 1.0INORHRLIZEDI ELRPSED TIME. t/T

FIG. 2 HUSID PLOT FOR 1971-CRSTRIC OLD RIDGE-N21E RECORD [MED. HRRD SITE)

80

ußälll.-IlT!HlIIILÄ@¤£"""‘0.80

IEHMIIIIIIII§o.soEE2I 0.*40

mßßllllllll-MMIIIIIIll

0.0 0.1 0.2 0.3 0.*4 0.5 0.8 0.7 0.8 0.9 1.0INORMRLIZEDI ELRPSED TIME. t/T

FID. 3 HUSID PLOT FOR 1971-CRL TECH SEISMIC LRB—S9DH RECORD IHHRD SITE}

81

0.060MIIIIIIIIIIIIßßLEVEEIIIIIIII0.050 w-.0„-———-——i.-————?.—-————————.-MIIIIIIIIIHII.mIIIIIIIIHIIII"

?6 IIIIHIIIIIII90.066 Ä _6 IIIIIIIIIIIIE 0.030 0 Äd-I '1

Ü IIIHYWIIIIII3 0.025 0 Agf) LI

Ü Iläßllllllll$0.020 ··1HUBJ I.Ü Il?$IIIIIIII0.015 _,

0.010““T ¤ 0.0903 X + 0.001

VÜII0.006 AE CORFIELRTION COEFFICIENT 0.86LI0.000

0.0 0.1 0.2 0.3 0.*1 0.5 0.6PERK FICCELERRTION IG—UN1TS1

FIG. 11 REGRESSION OF R.H.S. & PERK RCCELERRTION FOR RECORDS OF GROUP all-I

82

0.060MMßllllllll0.055WIIIIIIIIIHIIMIIIIIIIIHIII.mIIIIIIIlIIIIP1 IIIIIIIIIIII90.035 VEP

‘ IIIIIHIIIIII0.030§ r-1lu” do 025 AQ) •

th

F IIIY'IIII II{0.020 A” IIJI IIII II0.015 ÄIFÜIIIIIIIII0.010 U fi]..b~ ··1

_ 0.005 ',;gÜjJ CORRELRTION COEFFICIENT · 0.9080.000 ·

0.0 0.1 0.2 0.3 0.*1 0.5 0.6PERK RCCELERRTION (G-UNITSI

FIG. 5 REGRESSION OF R.H.S. & PERK RCCELERRTION FOR RECORDS OF GROUP ••1V

83

0.060 VMIIIIIIIIIIIIHm EIIIIIIII0.000WIIIIIIIIQIII.mIIIIIIIlIIII

I"ZD2 [email protected] Aä IIIIIYIIIIIIE 0.030 AHJ3.-I

c IIIIYIIIIIII30.025 A0 -F IIIYIII IIII¥0.020”IIYÜIII III0.015HVFIIIII III0.010gi

Y • 0.0966 X + 0.0070.005 V (W CUFIHELFITIUN CUEFFICIENT 0.9050.000

0.0 0.1 0.2 0.3 0.ßl 0.5 0.6PEFIK RCCELEBFITIUN (G-UNITSI

FIG. 6 HEGRESSIUN UF R.M.S. & PERK HCCELERFITIUN FUH RECURDS UF GRUUP •2H

8|I

0.060.mIIIIIIIIIIIIWIIIIIIIIIIIHEß MllIIIlj|0.0*45 1-———§—m

.mIIIIIIIIIHII·: V3éD.035 'Ä3 IIIIIIYIIIIIE 0.030 ÄLU.-IHJ‘ Äc IIIIIYIIIIII8 0.025 ,¢2 IIIIIIIIII I5 0.020” IIIHIIIIII I0.015MIIIIIIIIIIII

Y ¤ 0.0871 X + 0.0050.003 vi;] CORRELRTION COEFFICIENT 0.7960.000

0.0 0.1 0.2 0.3 0.*1 0.5 0.6PERK RCCELERRTION l0-UN1TSl

F10. 7 REGRESSION OF R.M.S. & PERK RCCELERRTION FOR RECORDS OF 0ROUP ••2V

85

I

0.060.mIIIIIIIIIII!mllllllllllll6..1.. ———__————y

7; LI2: .

2‘ IIIIIHIIIIIIE 0.020 _IHJ-|UJ— IIIIIHHIIIII30.025 1C1 IIIÜHIIII II*E0.020 6: 41:

'Illll III II0.015 __ ;_l 11 „MIHQHI IIIIIIV (3) “1 - 0.0868 x + 0.00 1

Y {L CUHHELFITION COEFFICIENT 0.7670.000

0.0 0.1 0.2 0.3 0.I-l 0.5 0.6PEHK HCCELEHRTIUN (G—UNlT5)

FIG. 8 REGFIESSIUN UF R.H.S. & PERK FICCELERHTIUN FUR HECGRUS 0F GRUUP ••3H

86

0.060NIIIIIIIIIIIINIIIIIIIIIIIINEMMIIIIIIIINNIIIIIIIIIHIII-

?* IIIIIIIIHIIIQÜ•Ü35 Ää IIIIIIIIIIIIE 0.030 A-|HJ= Ä“ IIIIIYIIIIIIä0.025 V1 IIIIHIIIIIII'E 0.020” IIIHIIIIIIII0.015NIEAIIIIIIIIIEIII 1«¤831~m~0.005 CORRELRTIUN COEFFICIENT 0.7260.000

0.0 0.1 0.2 0.3 0.*1 0.5 0.6PERK RCCELERRTIUN (G-UNITSI

F10. 9 REGRESSIUN 0F R.M.S. & PERK RCCELERRTIGN FUR RECURDS 0F GROUP «3V

87

MIIIIIIIIIIIHEßL¤~EElIIIIIj|0.075 -—-——_]

.mIIIIIIIIlIIII'-

D* IIIIIIIHIIIIé .ä IIIIIIHIIIIIE 0.0us .HJ-|LU.1LJ

I IIIIIHIIIIIIQ A

Cé IIIIHI IIIII‘Eo.na0I IIIHII IIIIIMIIHIIIIIIIII[j|| .. „.,;‘“CORRELRTION COEFFICIENT F 0.823

0.0000.0 0.1 0.2 0.3 OJ-! 0.5 0.6

PERK RCCELERRTION (G-UNITSIFIG. 10 REGRESSION OF R.M.S. & PERK RCCELERRTION FOR REGOR05 OF GROUP «l1H

I88

II I

0.120MIIIIIIIIIIIQIIIIIIIIIIFI0.100 AIIIIIIIIIYII0.000IIIIIIIIYIII

EIMIIIIIIIYQIII1 ÄgO.G7O Y

E‘ IIIIIIHIIIIIE 0.060 „IIH= QM QIHIIIIII30.060¢1 IIIIHIIIIIII’i0.0u0I IIIVI IIIIII0.000.MIIAII IIIIIII.-- . ...0.010_ CORELRTION COEFFICIENT =· 0.998

0.0000.0 0.2 DJ-} D.6 0.8 1.0 1.2

PERK RCCELERRTION (G-UNITSIF10. 11 REGRESSION OF R.M.S. & PERK RCCELERRTION FOR RECORDS OF GROUP •5H

89

1

0.120IIIIIIIIIIYI0.110 ÄIIIIIIIIIYII0.100 AIIIIIIIIYIIIIMIIIIIIIYÄIII$0.080I-6 IIIIIIIIIIIIQ 0.070 ÄE‘ IIIIIIIIIIIIE 0.080 ÄIHJ

-166.6.6 ————11 mßLE‘E¤‘lIIIIIIG1 II IVIIIII‘E0.0u0 »“ II H IIIII0.030 rlMIIÄIIIIIIIII[j.- Y .Y.YYYS0.010 “

ELRTION COEFFICIENT - 0.9980.000

0.0 0.2 0.*-1 0.8 0.8 1.0 1.2PERK RCCELERRTION IG-UNITSI

FIG. 12 REGRESSION OF R.H.S. & PERK RCCELERRTION FOR RECORDS OF GROUP «5V

90

ß = 0 . 001 Om: 2 ß · 0 • 02‘|IIIIIIIlIIIHIEi1—IlKlßII0 0 0 . 000.0 . 0 0

IIII O*7 IIIIIII——l||wz-l||$—ll|-_IHUM-III-IIIIIIZZIIIIIIIIIIS IIHWIIIIIIIIII——!/;||——ll|——l||

0 . 0 0 IIIIIIIIIIII 0 _ ÜPE R 1 OD IS E C1

F IG. 13 MERN RELRT 1 VE VELOCITY SPECTRR FOR HOR 1 ZONTRL RECORDS OF GROUP « 1

A

Illllllllllll‘°""‘° "°·°2 ¤ä¤$1¤u$|m-u0 .0 . 00 !E!XX!H!lV1W&@ß = 0 . 1O§

>“ 1 D . D I FA

’A.>,; [1—|lIUl4[§—IIÄÄ—Il——lIw10¤l||——lI|—-lyüß-III--III

IIIIMIIIIIIIIIIf • y—¤y/A||——l||——l||

0. , 0 IIIIIIIIIÜ_ 0F 1 G. 1*-1 MERN RELRT 1"VE VELOC I TY SPECTRR FOR VERT I CRL RECORDS OF GROUP an 1

B -0 . 00 'WIIIIIIIIIIIHILiiKl.eI1Jnd§'!I„.„ . , „2¤llllmßWIIIIIII,>; §1—IIlI&{[$—ll-;—II1XII]lIIlIKIII11IIl——IIIW—III——IIIIIIHW IIIIIIII

E //gfIII IIIIIIII--11/z|—_|||——¤u

„V „ IIIIIIIIIIü 0P E R 1 OO (S E C 1

F 1 G. 15 MERN RELRT 1 VE VELOCITY SPECTRR FOR HORI ZONTRL RECORDS OF GROUP «2

°° 'llllllllllll‘°""2”‘°·°2 gäutxruiiivvurvvävn0 . I A A A A0.0.00 aqugqpzzznuguupmm"“ ‘ ‘ °qsläggäägf_..0 0.02.III! N 7’IIlIIIIQ ’°°° $1-ußägfluti-u

4 IIIWIIIIIIIIII0 . 00 IIMIIIIIIIIIIIXXW/II11_II§X—IIIKQHIIKXIIIIKIII

0. ,0PER I O D I S E C 1

F IG. I6 HERN RELRT I VE VELOC I TT SPECTRFI FOR VERT I CHL RECORDS OF GROUP «2

ß -0 . 00 ‘lIlIIIIIlIII‘°""2 ”‘°·°2 §ä¤1$¤¤|11-uß -0 . 0

, Ü „ IIIIMÜIIIIIIII; ‘ ——¤¤nrmm¤u——¤u——lIIwL—lll——ll|

lIW%1IIIIIlII11——myu——¤u——¤u

„ _ 1 „ IIIIIIIIIIII 0 _ 0P E R 1 OD IS E C1

FIG. 17 MERN RELRT l VE VELOC 1 TT SPECTRR FOR HORI ZONTRL RECORDS OF GROUP a3

95

°° "|IlIlIIIIIII‘°’""" "°·°2 £äEi1_II1Ä_Il0 .0 . 001_ # ·¤

0 0 „ 0 IIIII,>; 11—IIIIl4K§—II--—Il——¤rnma—¤||——:||

IIIMAIIIIIIIIII* IIWIIIIIIIIIIIm "°° XII/élll-—II--—II—_gu||_—lu——l||

0 . 0 0 IIIIIIIIII 0 _ ÜF I G. 18 HERN RELRT I VE VELOC I TY SPECTRR FOR VERT I CRL RECORDS OF GROUP ••3

E96

"||IIIIIlllII11 . 0 1 qlgbglmmlqrlltpall‘“I

lhlbßafmählnl1 1 1 IIIIVMCJII,1 ——¤¤rumm¤u——¤u

IIIMÜIIIIIIIIIII 1 . DD 1

IWIIIIIIIIIIIII1 . 1 1 IIIIIIIIIIIIIIID . D1 0 . 1 1 . 0 10 . 0

P E R 1 O D (SE C lF I G. 19 MERN RELRT I VE VELOCITT SPECTRR FOR HOR I ZONTRL RECORDS OF GROUP nl!

97

°° ‘|IlIlIIlIIII‘°""2"'°·°2 Eäuzrnutz-u0 .0 . 00 !¤gq—l||——¤||0 .0 00° ¤WiWVßIF?*X!·I|

E’°°° ==E%%.ll||——¤IIVIIIIIIIIIIIWÄÜ0 00 IIMIIIIIIIII—lnq0u||——l||——l||

0 . 0 0 IIIIIIIIIII 0 _ 0P E R I OD ( S E Cl

F I G. 20 MERN RELRT I VE VELOCI TT SPECTRR FOR HORI ZONTRL RECORDS OF GROUP «5

98

‘ °° EIIIIIIIIIIII„ . 0 . „2 !¤!¤g‘—l||——l||

10I ‘1 .».

4*IIII ° W VV" IIII2 °° ° xznrßgygénglgznu2 ——IIumz—ll|——l||

_—I|!I{A'ß—III——III

,u||——l||——l||

0.10 0.01 0.1 PERIÜD’[SEC] 1.0 10.0

F I G. 21 MERN RELFIT I VE VELUC ITT SPECTHH FUF1 VEHT I CFIL HECURUS UF GFIUUP •5

99

ä

°° ‘|IllIIIIIII|‘°""” "'°·°2 £‘i¤11-unuuzruuQllküllegäßä!«· llgäßäglgäniä

9 4IIII * 7|IIIIIII——luya—l||——ll|_-Iggß-III-—III

ä ßQ IIIAIIIIIIIIIIIIWIIIIIIIIIIIIXXIIIIKIIIXKIII

„ , , „ IIIIIIIIIIII 0 _ ÜP E R I O D I S E C 1

F IG. 22 HERN PSEUDO VELOCI TY SPECTRR FOR HORIZONTFIL RECORDS OF GROUP al

·I00

°° NIIIIIIIIIII0 0. 0 . 00 !E!§1l!1!§SißA$;Z,,_„ _ 0 0,2«· Hlwlsääällll

0 0 . 0 www "IIllII„ -Ä—VlIß•f!1—II11—IIKIIIZZIIIIIKIII——W%H—III——IIIL

"°°$1-urx-urznu——¤||——l||——|||

0 0 0 0 IIIIIIIIIIII 0 _ 0P E R 1 O D l S E C 1

F 1 G. 23 MERN PSEUDO VELOC 1 TY SPECTRR FOR VERT I CRL RECORDS OF GROUP •• 1

l Ol

A

‘lIIIlI!'IIlIIaäuttvüüuääuwdüuu. , L ‘ß • D .05A. A . A A Qllälßgäéggää2*Q

VA A A llllmällllllll„ ——¤¤nn„wg¤u——¤u

IIMAIIIIIIIIII* IIDIIIIIIIIIIII

XKIIIIXIIIKXIII

A _ A A IIIIIIIIFII Ü _ ÜPE R 1 O D IS E C 1

F 1 G. 2*4 HERN PSEUDO VELOC 1 TT SPECTRR FOR HORI ZONTRL RECORDS OF GROUP •2

1 02

ß -0 . 0 0 'WIIIIIIIIIII¤¤····¤ ß-0.62 .¥ 0^ —·— ^uunuuupunmmmnzmmu0 . 0 . 00 !¤!I!„!AEll!l¥(Ei䥧0 0. 0 . 0 0«· — 2 «·0 0 . 0 IIIMMÜIIIIIII„ ——¤u¤m0¤—¤u——¤uKXIIWMIIIIKIIII--I”K-III-III

XXIIIXKIIIKXIII

0 . 0 0 IIIIIIIIIIIÜ _ 0P R 1 O D ( S E C I

F IG. 25 HERN PSEUDO VELOC 1 TT SPECTRFI FOR VERT 1 CRL RECORDS OF GROUP s2

I 03

l|IIIIIIIIII|’°""2 ”’°·°*‘ ¤ä¤$1¤„ .„ . .5 guq-glläälll·¤« ‘

_7_ 0 0 0 · 20 ;Q!§$Mä.'Lé=Eä„ „ 0 IIIIMZHIIIIIIQ ° §§—IYIHMi—lI-1—ll-_¤uyu—¤||—_¤u

__l9%H_III__lIIIIIMII IIIIIII0 OIIII IIIIIIIL

‘°°° !!:u$1¤u$$¤u-_|u_—¤u——|u

„ „ , „ IIIIIIIIIIII 0 _ 0P E R 1 O D (S E C 1

F 1 G. 26 MERN PSEUDO VELOC 1 TT SPECTRR FOR HOR I ZONTRL RECORDS OF GROUP «3

'1 Oll

E Q

"|IIIIIIIIIII‘°"""‘ ”‘°·°2 aäEil—II--_I!0 .0 0000.0 . 0 00 .0 . 00 lgäggägédI ' " .AIIIIII! IIIIIII

E1 0° 0 1-—FÄAlII--—Il——l'|gm—l||——I||_—Iy§Z—III——IIIIIMIIIIIIIIIII

* IIIIIIIIIIIIIII

0 . 0 0 IIIIIIIIIIIÜ_ 0PE R OD (S E C) ·

F I G . 27 HERN PSEUDO VELOC I T T SPECTRR FOR VERT I CRL RECORDS OF GROUP s3

1 05

°° NIIIIIIIIIII‘°""" ”‘°·°2 uäuuupuuzuu0 0 0 . 00 qusuxmmumsqmgg0 _ 0 _ 0 0

0 0 . 0 llllnmAlll-„ Ä-—I'lVh£!l—Il--—II——|uyu—:u——|u——IV%H_III——IIIIIMIIIIIIIIIII” IIHIIIIIIIIIIIIL

’°°° xzuutuuuuuuu——¤u_—¤u——¤u

0 0 0 0 IIIIlIII=II| 0 _ 0P E R I OU (S E C l

F I G . 28 HERN PSEUDO VELOC I T T SPECTRR FOR HORI ZONT RL RECORDS OF GROUP ••'·l

1 06

Dß-0. DD 'WIIIIIIIIIIIaätxuuzxnuqu;-nu-nur

-*··%„ -K_HIU)I4Z—Il-1-IInnnupyunnunnuu-Ilägß-III-lllIIMIIIIIIIIII

* IIHIIIIIIIIIIII

0. ,„ IIIIIIIIIIIIFIG. 29 HERN PSEUDO VELOCITT SPFEECRTIRÜRD FOSRECÄORIZONTRL RECORDS OF GROUP ••5

1 ONN2 ß -0 • 02°° ‘||IIIIIIIIIIHIEi1—IIK1—II1 . „ . 11 !_¤gq—¤u——|u

1 . 1 . 1 1 !%!%!lü\!Ä%g§!,!;l 'T"“|“’E

L l1 1 1 1 Illhnhuääunllll„ 1Ä—[lI!iI4i—II§l—IIE ==FiÜ%=l“--'llIIWÜIIIIIIIIIIÄ:IIZÜÜIIIIIIIIIII——¤u——¤u——|||1

1 1 1 IIIIIIIIIII0 _ 0P E R 1 O D IS E C 1

F 1 G. 30 HERN PSEUDO VELOC 1 TT SPECTRFI FOR VERT I CRL RECORDS OF GROUP «5

1 08

l!IIIIIIlIIII-0 . 02

ß-0.10Iméllulk

--IIUL¢;2"•.%}\§é!_L|IIH„?ÄIIIIIl|u

„4Eälllälnlll

l «·¤ SIIIIIIIIIIIIZIEI TE §!§—, ·„qywnk

g1 . DD ——III1§§l‘QQ!ll—lII--|lVMM=IIIIII°‘ ’° -nur-nur--uu„_ 08 -III-III-III

FIG. 32 MERN REL. RCCELERRTION SPECTRR FOR VERTICFIL RECORDS OF GROUP ul

Q

lll ll IIÄÄÄÄÜÄ

nunmmggmnagmgnuuIlllußlllmiu

°° ‘° -nyiu-nur--uu„. 06 lüllllllllll

Iluß - 0 . 0 2

20ÄL_LlJ£A_——IIIWlE¤l§.\\\[IlI

Ilglwgfllllhlinu

°” 10 —IIII——III——llIM M -III-III-III

.. QQIIIIIIIIIIIB -0 .02Q

ß -0. 20 _ I

n-agäägääääu-nuIIIWÄ-Illllm

°° ‘° l¤%||lll||ll|||.. .. IIIIIIIIIIII 0 _0

lll IIIIIIII0.0.00nu. Üh.

u u „ .nnunhußuumiärnuuu0; F }

‘ \|IIIlMI

°‘¤-nu-nur--nu0. .. IIIIIIIII

FIG. 36 HERN REL. RCCELERRTION SPECTRR FOR VERTICRL RECORDS OF GROUP ••3

SIIIIIIIIIIII

IllIVI;4E!@!!„!!!Ilwßüll°°’° —]ÄIl——lII—_IlI„„ Ü6 IIIIIIIIIII

6” — ·»¤ QQIIIIIIIIIIIß -0 . 02

——I|lHE§§H'&Q!xI—IllIII||M§QIIIIIHWI-Illlluu

°° ’° —1aII——III——lII„„„ IIIIIIIIIIII

1

B0 00 ¤¤ älllallllllllß -0 . 02

nngäägääkäunnu

SIE ZEEß-0 . 05

IIß2ä’i§L‘!IlIlIIIIÜIIIII§§!§‘.‘.§“II

|lll ll0„ ullälßnlll

IIÄIEZÜE

ÄÄÄÄ Ä; II·v¤

ulgüäsäguuagunu

Ü8 IIIIIIIIIIII

an 00 00 QQIIIIIIIIIIIß -0 . 02

ß -0 . 05

ZIZZLE IIE 0 ‘ I

0

SL ¤¤ lIIIlIIIIIIIZÄEÄÜÄ

Ilgßin

liM M

lllllllllll IM ÄÄÄXÜÄ

unmsmummunnuuIÜIIIIINQNQIIII

°‘ ‘° _—III——llI—=ä%§IIIIIIIIIIII

U.00

ZIEIEE——!|gg§ä'§_;4\1l*m__lII

.1 *x° ——lII——lII_l\\HIIIIIIIIIIIIIINQII1.11IIIIIII\‘§IPERIOD

(SEC}FIG. *·47 MERN RBS. RGCELERRTION SPECTRR FOR HORIZONTRL RECORDS OF GROUP •5

125

ß -0 . 05

ß -0.10 L1

I¤¤1#äéMä¤11•I1||||IIgy,Z!ä‘iN\\?K\1@IIIII

° ——llI——lII—ܧ§§.. .. Illllllllü

1.20

1_ggß"Ü•ÜS’

Ä20.80

\ZEI

2E 0.80 L ÄV I;lu

W1 _° /‘'ml ‘

0.20 H

0.01 0.1 ‘1.0 10.0PERIOD {SEC)

FIG. *49 COEFFICIENT OF VFIRIRTION OF ‘HORIZONTFIL‘ RSV FOR GROUP nl

127

1.20

0.

800.20

0.01 0.1 1.0 10.0PEBI00 [SEC)

F10. 50 CUEFFICIENT 0F VRHIHTIGN OF ‘HORIZONTFIL‘ BSV FUF1 GRUUP •3

n128

1.20

Lgg "ß*Ü•Ü5

. 11ä

‘Q'!äonsoE

1 Y1 IL · 1 g'§¤.u0 11 M1 7/x\

W W V W^“

1 } 1lukls0.200.000.01 0.1 1.0 10.0

PERIÜD (SEC)FIG. 51 CÜEFFICIENT ÜF VRRIFITIÜN ÜF ‘VERT1CRL‘ RSV FÜR GRÜUP •5

129

1.20

Lgg "*""'ß'Ü•Ü5 t

ä°0.80 AH,1Q2.E 1M> 0.60 .*2-, / YE

E0.20I

0.01 0.1 1.0 10.0PERI00 [SEC)

FIG. 52 CUEFFICIENT 0F VF1RIF|T10N 0F ‘HORIZONT9L‘ PSV FOR GBUUP sl

130

1.20

1.00

11IeE x

INIIW0.20 1, 1

0.000.010.1 1.0 10.0

PEBIUD {SEC)FIG. S3 CGEFFICIENT 0F VHRIHTIGN 0F ‘HORIZONTF1L‘ PSV FOR GRUUP •3

131

A

1- 1

%0.B0A A

{

1 10.20

A

1 ‘I 1

0.DÜ 0.01 0.1 PEBIGD (SEC] 1.0 10.0FIG. 511 COEFFICIENT OF VRRIRTION OF ‘VERT1CF1L‘ PSV FOR GROUP •5

I

1.20

1_ß0 -I-ß=0•0S

§0.80 t

I1 I

I I0.20

10.000.010.1 1.0 10.0

PERIUD [SEC)

FIG. 55 CUEFFICIENT OF VHBIHTIUN 0F ‘VERTICHL‘ RSFI FUR GRUUP •2

133

1.20

}_gg """"'ß=Ü•Ü5

ä 1E ° 1 {E u, { 1 1 1:0.50U 11/1r 1 1E \ { 1 1

1 1t { 1 1$0.00 1 1U 11

1

0.20 1.. A {A 1*1 ““1'“’“'wu

0.000.01 0.1 1.0 10.0

PEF1100 (SEC)

F10. 00 c0FFF101s01 0F VRBIRTIUN 0F ‘HOB1ZONTRL‘ 000 FOR GROUP .0

13\1

1.20

1.00 *'*"ß=0.05

§0.B0

1 II I I I I IE [ I I

E I I II ___‘V'I· I I I III I. II I

i1 I

0,00 L1-0.01 0.1 1.0 10.0

PERIO0 (SEC}

FIG. 57 COEFFICIENT OF VFIRIFITION OF ‘HORlZONTRL‘ RSR FOR GROUP •5

135

1.20

l_gg ———ß-0.06

§0.80_ Ni lé

lll

lA V1 1* ‘

0.00

0.01 0.1 1.0 10.0PERIO0 (SEC)

FIG. S8 COEFFICIENT OF VRRIRTION OF ‘VERT1CFiL‘ RSR FOR GROUP •2

136

1.20

ä 0.80

l§0.60gl},/A/Äh'

rw 1*} V v

ä0.00F

0.01 0.1 1.0 10.0PEFHU0 (SEC)

FIB. 59 CUEFFICIENT UF VFIRIRTIUN UF ‘HUR1ZUNTF4L‘ FISH FUF1 GRUUP •'·1

137

1.20

1_gg *""ß*Ü•Ü5

°° Ä20.80IS Iz .2 11 1g0.60g VE \

tt I 1 A§0.u„0 1 1 x_ H1:

I /11 “I 'AJ ß;. A .0. 20 '1 .2*11ßrvv0.00

0.01 0.1 1.0 10.0PER100 (SEC]

FIG. S0 CUEFFICIENT 0F VRBIRTIGN 0F 'HOR1ZONTF1L‘ FISH FUB GBUUP a5

138

I

1.20Ih

0.

(DE$0.60 IlZ2E¢ „>

0.*400.01 0.1 1.0 10.0PERIO0 (SEC]

FIG. 51 VRRIRTION OF (RSV/PSV) FOR HORIZONTRL RECORDS OF GROUP sl

139

I

1.20

¤ 1

; V2; I*5 0.60 Ä Ä[ I .E 0.*400.01

0.1 1.0 10.0PERIOD (SEC)

FIG. B2 VRRIRTION OF (RSV/PSV! FOR HORIZONTRL RECORDS OF GROUP a3

1*40

1.20

* 11.00 '-—°ß°0•05 '_•"JY1 'J ‘ —1 =0.l0 I ‘ 1lx! /‘

¥

~Jr 10.80 . 1'Ä 1'Ä1; V 1*E a.

$0.80 J

EE .E0.110 J

0.01 0.1 1.0 10.0PER100 (SEC]

F10. 63 VF1B1HT10N 0F [RSV/PSV] FOF1 VERTICHL HECURDS 0F 080UP •5

1111

1

5.00

IIIIIIIIIIMu.00 Ä ÄIIIIIIIIIIIÄÄS0 IIIIIIIIIINI3.50 Ä1

IIIIIIIIIIIIW/IIE 3.00 ÄS IIIIIIIIIIIIÄÄIIL; 2.50IIIIIIIIIIIJÄIIS IIIIIIIIIIWIIIA

nlI-IIIIIWÜIIII1.00 gp

-—.IIWIIIIIIIIII

0.50Ilällllllllllll0.00' 0.01 0.1 1.0 S 10.0PEHIU0 {SEC]

FIG. 6*1 VFIHIHTIUN UF (RSR/PSF11 FUF1 VEHTICHL RECUB05 UF GRUUP •2

U12

5.00

IIIIIIII IIIIIIIIIII MMI11.00 0 10 V {IIIIIIIIIIII

IIIIIIIIIIIWIIEa.00 I . I I‘

¢

ä IIIIIIIIIIWWIIä IIIIIIIIIIWIIIIIIIIIIIIIIWIIII. AIIIIIIIIWIIIIII_ /4%.lII|'/IIIIIIIIIY.;]IIZIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERI00 (SEC]F10. 85 VRRIRTIUN 0F (RSR/PSR) FOR HURIZUNTRL RECOROS 0F GROUP •11

1113

15.0

13.5—‘

IIII IIIIUII12.0 _10 IIIIIIIIIWI10.5 Ä. IIIIIIIIIIIIMIIfh

GthEä IIIIIIIIIIIMIIsg 7.5U9 .ZD. IIIIIIIIIIWIIIIE 5.00G> IIIIIIIIIIIWIII1-1.50IIIIIIIIIIUIIII

.. IIIIIIIIMIIII1lllllr-=··«=··

ßiill0.00 L.0.01 0.1 1.0 10.0

PERl00 (SEC}F10. 55 VFIRIRTIBN 0F (HSR/PSF11 FUF1 H0ßIZONTF1L HECURDS 0F 0ß0UP aB

11111

—·uonxzourm Ihä. rlTTIIFIIÜIIII‘“’ , L I— IIIINIIIIIIIII§‘° ° ÄÄIIIILVIÄHIIÄÄIII;_· $KIII!llKIIIKKIIIP- IIIIIMIIIIIIIII: V YIIIIAIIIIIIHI¢I

. 1 ÄIlmllllllllll°° ——mu|— | — uuKI!llIKKIlIKKIIIIIWIIIIIIIIIIIIIIIIIIIIIIIIIII

0. 0 IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 67 COMPRRISON OF PERK NORHRLJZED RSV SPECTRR CORRESPONDING TO

THE HORIZONTRL RND VERTICRL GROUND MOTION RECORDS OF GROUP «2

HIS

*4.00

[email protected]

——III§l—IlK—lIlIIIIVHIIIIRIIIä Ä gi

U.!E ÄJ

’ IIIYIÜIIIIIIÜIILLILJL!EF V””

'

>

EJ2 1¢thI

o" 10 ——IÄII—_III——lII

IIIIIIIIIIIIIII0.01 ‘ 0.1 1.0 10.0

PEB100 (SEC!F10. 68 CUHPFIRISUN 0F PEFIK NUHMFILIZED HSR SPECTBFI COHRESPON01N0 T0

THE HURIZUNTFIL HN0 VEBTICFTL 0HOUN0 MOT10N RECGRDS 0F 0ROUP «2

IE6

N

1°”2 ,,„_„,5 IIIIIIIIIIII—“ II-—-II--ul-.;..6..p .3 II·."IEuf

-—-—GFIOUP •S

IIIIIIIIIIIIIIIE IIIIIIIIIIIIIIII; -—-II!]--llu-III"0 IIIIIIIIIIIIIII/M:0;

IIIMIQIIIIIIIIIEmo IIIIII IIIIIIIII—-IMII-SIIIÄIIII

0 ,0 IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PEBIOD (SEC)

F10. 69 COMPRRISON OF PEHK NORMRLIZED ‘HORIZONTRL‘ HSV SPECTRFI OF GHOUPS•1„ 3 8. 5. TO STUDT THE EFFECT OF GBOUND STIFFNESS (SOFT / MEDIUM / HFIHDI

U17

¤I.00ß=0.05

····GROUP •l

GROUP •3...„„„...Q1.00 ——IlI!l_m!——IlI| 7 V ‘E W “" IIä Illllllllikll

LU“ /-I

EU-|1LJ

LJI

>

I

” Ä•-JluI

U')IE

Ä°“ 10 —1ÜII——III——IlI

. .. IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 70 COMPRRISON OF PERK NORMRLIZED ‘HORIZONTRL‘ RSR SPECTRR OF GROUPSnl. 3 & S. TO STUDY THE EFFECT OF GROUND STIFFNESS (SOFT / MEDIUM / HRRDI

HIB

10¤¤2 ,.„_05“*°“°"” *3 II--III-IIIIlk --6n¤uP •¤1rgändnß—·· ~"All!IIIIIMIIIQIIIII

DE IIIIIIIIIIIIIII>DJ>{Z

S Il ITIIIeaE· llaüllll III> 1. 00

2IIMIIIIIIIIIIIIIIIIIIIIIIIIIII

.. ,. IIIIIIIIÜIIIIII0.01 0.1 1.0 10.0

PEH100 (SEC}F10. 71 CGHPRHISUN 0F PEHK NUHMHLIZED ‘HOHl20NTHL‘ RSV SPECTHH 0F GROUPS«3 HN0 U T0 STUDY THE EFFECT OF THE EPICENTHHL DISTRNCE ISHHLL V/S LRRGEI

U19

*1.00

GROUP •3

1.00

IIIIIIIIBTIIIIä I§„LU•-I

’ IIIIHIIIIIIF "F III!IHLJ(J

.

>::¢JluE

(DI

—IalI——lII——lII

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC)

FIG. 72 COMPRRISON OF PERK NORHRLIZED ‘HOR1ZONTRL‘ RSR SPECTRR OF GROUPS•3 RN0 U TO STUDY THE EFFECT OF THE EPICENTRRL DISTRNCE (SMRLL V/S LRRGEI

150

10¤¤2

IIIIIIIIIIIIß =0 . 05—— II-;-II--ul‘ II--III--IIInunrzomm.Ih-gymn-YIIIIINÄ ¤ IIIIIIKKIIIZKIIIKKIII

I- IIIIIMIIIIIIIII‘= VE „I

“‘” llmll! I5,1. 00 Ä‘= IIIVII IIIIIII

nnüälnnluunulIIWIIIIIIIHIIV.. .. IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 73 COHPRRISON OF R.M.S. NORMRLIZED RSV SPECTRR CORRESPONDING TOTHE HORIZONTRL RND VERTICRL GROUND MOTION RECORDS OF GROUP «2

ISI

*1.00

VERTICRL ‘

..I"E _—lIIM—III——IIlD IIIII VÄMIIIIIIz L-D \P ‘

CCLu

” IIIIMIIÜKÜI-* 1 _UJ

UC

~·· Ü!>

C•J—·= Ä” Ä IIQ:

1· 1(.0m Ä ÄO- In —]III——III——III

„. „„ IIIII-IITIEIIII0.01 0.1 1.0 10.0PERIOD [SEC)

F10. 7*4 COMPRRISON OF R.H.S. NORHRLIZED RSR SPECTRR CORRESPONDIND TOTHE HORIZONTRL RND VERTICRL GROUND MOTION RECORDS OF GROUP u2

I152

I

10¤¤2

IIIIIIIIIIIIß =-0 . 05

fw? IIKKIIIKKIII" ‘ II-III--III-—61=1¤01».;-1·——0Fi0UP•5/IlII|I'”IIIII--VE 10. 0 ÄA IIIQ IIIIIIFAIIIIIIIII

I-Illll-III-IIIu.1 1 1Q 1 Ä 1 1 1 1I IIIIIIIIIQQIQII5, 1. 00 Ä Ä“= IIIIVIIIIII 1 ll

IIIIIIIIIIIIIIIA

1 1Ü IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIGD (SEC}F10. 75 CUMPRRISUN 0F R.M.S. NUBMHLIZED ‘HORIZONTRL° HSV SPECTBR DF GHUUPSnl. 3 & 5. T0 STUDY THE EFFECT DF GRUUND STIFFNESS ISDFT / MEDIUM / HRRD1

_ 153

*1.00ß=0.05

····GBUUP•l

ÜBÜUP •3

ÄÄ·°’·——IIIW“‘II——IIIIIIIIM IQTIIIIIz2 'V WCIIIEÄ¢

HJ>

CI-1HJ

” HI

·U')E

0.10IIIIIIIIIIIIIIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIU0 {SEC)FIG. 76 CUMPFIRISUN UF FI.M.S. NUHMHLIZED ‘HUFiIZUNTF1L‘ HSR SPECTHF1 UF GBUUPSnl. 3 8. 5. TU STUDT THE EFFECT UF GBUUND STIFFNESS (SUFT / MEDIUM / HHRDI

15*1

LT

,,.„_„S u——¤u——¤u—— IIKKIIIKKIII_°"°"’ “ II--III--III-6n¤uu= •u

IIIIIIAIIIIIIII_;_ 11-IIIMIIIIII-ll; KKIIIQIKIIIKKIIII-2 I-IIIH-III--IIIJ2= IIIITIIIIIIIIIIEJ2I F

·= llll lKKITIIIKIIIKKIIIIIMIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PER100 (SEC)

F10. 77 CUHPHRISON 0F H.H.S. NUHHFILIZED ‘HOB1ZONTRL‘ BSV SPECTRH 0F GHUUPS••3 FIN0 ll T0 STUDY THE EFFECT UF THE EPICENTHFIL DISTHNCE ISHFILL V/S LRRGEJ

155

——GF10UP ••3

‘u u6 .1 6 1 —IIIIIIßIIE"IIIIIg *1·: \|IlCE .GI‘l·‘ I 1—-uUJ<.> ' I

1•&» {1- I I I _Lu

· I: I2; 1 ·-* Ilu¢Z .

U'!I

O' 10 —ÜAll——III——IlI

. .. IIIIIEIIIIIIIII0.01 0.1 1.0 10.0PEF1100 (SEC)

F10. 78 CUMPRRISUN UF 6.6.6. 6666661266 ‘HORIZONTHL‘ 666 SPECTRH 0F 666666••3 FIN0 I1 T0 STUDY THE EFFECT 0F THE EPICENTHRL DISTFINCE (SMFILL V/S LRFIGEI

156

mm? IIÄKIIIÄÄIIIII-—l||--mul§·Eg§¤§4lh:— IIIIIMMIIIIIIII——¤¤ui1:a¤¤||——¤ugg _-ll|Vm—l||——l||__II¥Wl_III_IIII

IIIWII IIIÄ‘K Illl Ä IIIlm.! ‘

KKIÄIIKKIIIKKIII__%II--III-_IIIIMIIIIIIIIIIII„ . 1 U IIIIIIIIIÜ _ Ü

F IG. 79 COHPRR 1 SON OF THE PERK & RMS NORHRL I ZED RSV SPECTRR FOR GROUP « 1NOTE : THE RMS NORHRL I ZED SPECTRR RRE INDICRTED BT THE TH I CKER CURVES

1.20

$0.80ILDZD

2I2...0 I A _„Ä2 I V ‘I"ZUJa

I /§0.LI0 J _4

H'.I I0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. B0 COEFFICIENT OF VRRIRTION OF PERK & RMS NORMRLIZED RSV FOR GROUP nlNOTE : THE RMS NORMRLIZEO SPEGTRUM IS INOICRTED BY THE THICKER GURVE

U158

’°””‘°’ u——¤u——nuIIKKIIIKKIIIL_ T .4%;ß-0. 10 ‘

!\‘EÜLIÜ#ÄÜIL ‘k .\ 7,.. _r__//„>-„_.___/A

6IIIIIWEIIIIIIII’° ° ——¤uyZ%—¤u——¤u; KKIIIWIKIIIKKIIII-0 I-IIMI-III-III_|

.I IIIWIIMIIII°F ,‘ IIIVIIIIIIIIIII

,. ,, IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC)

F10. 81 COMPFIRISON OF THE PERK & RMS NORMRLIZED RSV SPECTRR FOR GROUP uk!NOTE : THE RMS NORMRLIZED SPECTRR RRE INDICRTED BT THE THICKER CURVES

I159

1.20

$0.80LLD

Q:3 1I

§0.60 6 1 /1u.J I II /·== /Zgg 6 1C.)6: · /0 M30.*-10 ‘

6

[ 60.000.01 0.1 1.0 10.0060100 16661016. 00 CGEFFICIENT 00 000101100 00 0600 1 006 0000061260 060 000 60000 .00016 6 THE 006 0000061260 60661000 IS 100160160 BT THE 1016060 60006

160

II--III-ZIII”——‘°‘°2 II--III--IIIK. ,"I!'”Tß'\III|

blIIII"7"” IigggiG MQ lll II; -Ä-IIHÄIIHSIIII-·E IIIIWIIIIIIIII-|‘;'

IIIWIII IIE ..1

’ .

”°1 IIMIQI I·‘2‘ °° !—|nu — u— uÄ-!/III!:III—-IIII-gal--III--III„. „ IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD [SEC)FIG. 83 COMPRRISON OF THE PERK & RMS NORMRLIZED RSV SPEGTRR FOR GROUP «5NOTE : THE RMS NORMRLIZED SPECTRR RRE INDICFITED BT THE THIGKER CURVES

E161

I

1.20

$0.80I1.D

D:CE IE 0.60 *1; //Ä Ä|·•ZIH

A§0.u0 I 4 I_1W'?N [ 'V I

0.20

'

A

AJ0.010.1 1.0 10.0PERIOD (SEC}

FIG. 8*4 COEFFICIENT OF VRRIRTTON OF PERK & RMS NORMRLIZED RSV FOR GROUP «5NOTE : THE RMS NORMRLIZE0 SPECTRUM IS INDICRTED BY THE THICKER CURVE

l62

I

0 N‘!l!'E’!‘%=WV"° ——¤u%A!u——¤u“”

LAE -—IIW/I-.II—--II>- IIIIAHIIIIIIIII.J 7

D

I IIIW IIIHII’ ÄI IIVI Ill'!-! !E I°°° DDIIIDDI I 1 I

nnlllnnlllunlll0. „ IIIÜIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 85 COMPRRISON OF THE PERK & RMS NORMRLIZED PSV SPECTRR FOR GROUP nlNOTE : THE RMS NORMRLIZEO SPECTRR RRE INDICRTED BY THE THICKER CURVES

163

I

:;*0.60° {Z° „:CI

CI> 0.60LLDI'ZHJ

:::.*90.*40 .UI IIIyllnl

0.01 0.1 1.0 10.0PERIOD (SEC}

FIG. 86 COEFFICIENT OF VRRIRTION OF PERK & RMS NORMRLIZED PSV FOR GROUP •1NOTE : THE RMS NORHRLIZED SPECTRUH IS INDICRTED BT THE THICKER CURVE

16||

‘°””2k‘¤

N '

IIIII1IIIIIIIIIIQ 10.0 /4 ÄS IIIIIVIIIIIIIIIII= KKIIWIKIIIKXIII>· -III?]-III-III

/S IIITIIIIIIIIIII> II?IIlI!I|I!||I. Agw'] 00 IIIIIII III I

. .. IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 87 COMPRRISON OF THE PERK & RMS NORMRLIZED PSV SPECTRR FOR GROUP M1

NOTE : THE RMS NORMRLIZEO SPECTRR RRE INDICRTED BY THE THICKER CURVES

U165

1.20

$0.80LLI.

D

= ID .FCI> 0.60 . IAI,u. ‘ ID II I I•-*E I i

‘E II6 I I¤Ü.I·IÜ I“’

III

0.20‘

·I _I ‘ Idl I I

I III T. I

I I0.01 0.1 1.0 10.0

PERIOD [SEC}F10. 88 GOEFFICIENT OF VRRIRTION OF PERK L RMS NORMRLIZEO PSV FOR GROUP ••I-I

NOTE : THE RMS NORHRLIZED SPECTRUH IS INOICRTED BY THE THICKER CURVE

IBS

Z

ß 0 02 II--IIIIIIII—— ll--III--IIIG 1II!'!’ä¤\IIII\ IIIIIIN!""‘IIW¤7·— . ,.1 IÄI II—¤u= _-Ill!]-III-IIII7- • ,IIIIIIIIIIIIIIID „G AQ

G IIIVI IIII III II II1.0011l I1 ll

¤¤lII¤¤lu¤¤lII0. . IIIIIIIIIIIIIII

0.01 0.1 1.0 10.0PERIOD ISECI

F10. 89 COMPRRISON OF THE PERK & RMS NORMRLIZED PSV SPECTRR FOR GROUP ••5NOTE : THE RMS NORMRLIZED SPECTRR RRE INDICRTED BT THE THICKER CURVES

167

20.80 JLL.OZ

'

D:CI!

> 0.60 Äw•a1=· V

ZLU

U-E J'J|”’ J1]

0.01 0.1 1.0 10.0PER100 [SEC}

F10. 90 COEFFICIENT OF VFIRIRTION OF PERK 8. RMS NORMRLIZED PSV FOR GROUP ••5NOTE : THE RMS NORHRLIZEO SPECTRUM IS INDICRTED BY THE THICKER CURVE

168

*4.00

IIIIVWWNI Iä , . h. x.HJE / u’ IIIIW IIIk_'d 1 ‘ ^ —6¢E6 A TIhE

°° 10 —ÜV4II——III——IlIAIIIIIIIIIIIIIII„. „.. IIIIIIIIIIIIIII

0.01 0.1 1.0 10.0PERIOD (SEC}

F]G. 91 COMPFIRISON OF THE PERK & RMS NORMRLIZEO RSR SPECTRR FOR GROUP «1NOTE : THE RMS NORMRLIZEO SPECTRR RRE INDICRTED BT THE THICKER CURVES

169

I

1.20

$0.80 ILI.DZD:¢CZ> 0.60 IU-D I I IZ2 I I IU-E · I II” H IIR I I I

Inll

0.01 0.1 1.0 10.0PERIOD {SEC)

FIG. 92 COEFFICIENT OF VRRIRTION OF PERK & RMS NORMRLIZED RSR FOR GROUP •1

NOTE : THE RMS NORMRLIZED SPECTRUH 16 INDIGRTED BT THE THICKER CURVE

170

I

I

6.66

ß · 0 • I 0 ‘ ‘ '

I ‘11 M——lIlL.A@l——IIIz Ä \ N== -„

‘ IIIIIAIIEIHIIII1: I [ §§P:'UIB I ‘Dd II]cs IQDlu070.I

5) I

/I

6. IV, VMII IO —]IlI——lII——III

1... IIIIIIIIEEIIII0.01 0.1 1.0 10.0666166 16661616. 93 6666661666 OF THE 6666 6 666 6666661266 666 6666166 666 66666 166616 1 THE 666 6666661266 6666166 666 166166166 BT THE 1616666 666666

1 7l

1.20$0.00H.Q

Q.·:I

EE 1> _ A lQ·— '/Um|'•ZUJz:2LL .‘é=‘ 0 u0 X

IV VV vwl

0.01 0.1 1.0 10.0PERIO0 [SEC)

FIG. 9*4 COEFFICIENT OF VRRIHTION OF PERK 8. RMS NORMRLIZE0 RSR FOR GROUP näNOTE : THE RMS NORMRLIZE0 SPECTRUM IS INDICRTED BY THE THICKER CURVE

172

I

*1.00

Ii1.00 »G ——IIü$—§"A*|_—IlIhä xy 4**IIIIIIÄIL•..'\„dI,

S -I"1IlIIIIh¤u> V]Q3LLIth0.

gv IQ. I

I

0.10'—]III——IlI——lIl

,. ,, IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 (SEC}FIG. 95 COMPRRISON OF THE PERK & RMS NORMRLIZE0 RSR SPECTRFI FOR GROUP ••5

NOTE : THE RMS NORMRLIZED SPECTRR FIRE INDICRTEO BT THE THICKER CURVES

173

I

C; 0.80IL.D

O

2 .¤= EC; 0.60 ftu.D I z I.- I I Iz I •2I I |

LLLn$0.00 I‘ V1 '1 I I

0.00 I0.01 0.1 1.0 10.0

PERIOD (SEC}F10. 96 COEFFICIENT OF VFIRIFITION OF PEBK 8. RMS NORMRLIZE0 RSR FOR GROUP «5

NOTE : THE RMS NORMRLIZED SPECTRUM IS INDICFITED BY THE THICKER CURVE

17||

i

*-0Em II--III-!ElI—— v LL rß

~—-Qnuup •e "" " ‘E/1l—

I——6nouP

•uIIIIIIZIIIIIIII_;_ ii-III/ll-IIÄIIII; --IIIW/I-III——III|••Q I-IIIW-III--III:1>

é, 1.00 Äll [ulm III“ Ä IIII I _lIIIIIII-—III--IIIIIMIIIIIIIIIIIIIUHIIIIIIIIIIII1

Q. IÜ IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PEBI00 (SEC)FIG. 97 CUMPFIRISEIN BETHEEN THE UVEHFILL ‘HOHIZONTF1L‘ HSV HN0 THE SPECTBUM

FIN0 THE ‘HOF)I20NTRL‘ BSV SPECTRF) CBHFIESPONDING T0 GHOUPS «2 F1N0 *4

175

1

1.50B=0.05UVEBFILL1.66

GNU? •2 L1 Ä 0‘ \ 1

IÄÄQI6

6Iä Mg 0.75 ‘ . Ä 1*6 V 1 1

1“‘o.so ,_‘

3 · w 11'.J1L1I

I0.000.010.1 1.0 10.0PEHI00 (SEC)

FIG. 98 CMPRBISUN BETHEEN THE CUEFFICIENT UF VRRIHTIUN SPECTHH OF‘HOF\IZONTF1L‘ RSV FUF1 THE UVEHFILL ENSEMBLE, F1N0 FOR GBUUPS «2 & L1

176

E

10¤¤2IIIIIIIIIIIIß -0 . 05*-0Em llKKIlIKK;g!-— v 1.1. Q7——61=10uP •2 ‘l

—ß“°UP ·“

IIIQMII IIIIIIIIg 11- IZMIIIIIIIII= KKIIWIKIIIKKIII7- I-Ilyl-III-III0D

E é IIITIIIHIIIIIIQ.I>

ääIIHIIIIIIIIIIQ 1.00

.. .. IIIIIIIIIIIIIII0. 01 0.1 1. 0 10. 0PERIUD [SEC)

FIG. 99 CUMPHRISUN BETHEEN THE OVERHLL ‘HOHIZONTHL‘ PSV GND THE SPECTRUMRN0 THE ‘HOBIZONTHL‘ PSV SPECTRH CURRESPONDING T0 GRUUPS •2 QND Q

177

1.50

ovEnnL11.25 GBÜUP *2 knÄW‘ V'GBÜUP 9l-1

1.00Z

ND

2ß2 ..7. Ä 12LI-I

’° NW"!

z1:. Ü.5Ü

„11.J'0.25 4f W

A0.01 0.1 1.0 10.0

PEBI00 (SEC)

FIG. 100 CMPHRISBN BETHEEN THE COEFFICIENT 0F VRBIRTIUN SPECTRH 0F‘HOFiIZONTFIL‘ PSV FOF1 THE UVEHRLL ENSEHBLE, HN0 FOH GROUPS «2 & L1

178

*-1.00ß=0.0S

····OVERRLL

GROUP •3

¤ES1,00Z_ „E: I s L.!

·'* ——IlV§]•'EII——lIlE IIIWIIILFNIIIIr-•—| Illüllllllllu*··ILULJLJIILU>

Q .

HJü .J| .

(DC

°° 10 ——III——III——IlI„. .1, IIIII-IIIIIIIII0.01 0.1 1.0 10.0PERIO0 166c;

FIG. 101 COMPRRISON BETHEEN THE OVERRLL ‘VERTICRL‘ RSR RN0 THE sPEcT6uMRN0 r06 ‘VERTICRL‘ RSR SPECTRR CORRESPONDING rn GROUPS a3 06u 6

179

0.90ß-0.06

UVERFILL

0_75

O3ÜBÜUP•

M1 1 Ä. I

¢..> Nz: 1

~V'W1 N1 1 1%0.15Y

All0.01 0.1 1.0 10.0PERI00 (SEC}

F10. 102 CMPRFIISUN BETHEEN THE CUEFFICIENT 0F VHBIHTIUN SPECTRF1 UF1

‘VEF1TICF1L‘ RSR FUB THE UVERRLL ENSEMBLE, RN0 FOR GRGUPS «3 8. 5

I180

10¤¤2 _IlK—_II=_—!!Il‘· I-IVIIP ‘llnkMIIIIII

Z Ar° IIIIIFWIIIIIII; ——¤uu$¤u——¤uIKIIIIIAKIIIIKIIIIIIIIWIIIIIIIIIIV

ä:.] I 4E I IIIII“° I* IIIIIIIIIIIIIIIztlmlttllutblu

IIUWIIIIIIIIIIII„„ 10 IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIO0 (SEC}

FIG. 103 COHPRRISON OF THE PROPOSE0 & THE COHPUTE0 RSV SPECTRR FOR GROUP «2— NOTE : THE PROPOSE0 SPECTRR RRE REPRESENTE0 BY R SERIES OF STRRIGHT LINES

181

1

mm? IIIIÄ-IIÄÄIIIß 0 02 !II—-III]-III· g!l--lllllll0 · 0 · 0 0 1~‘r!Fi§!.'¢.¤!¤;Ih.;n!!.•.

Z° IIIIIY"; ° —1¤|um—¤u$$¤||g IIIIIKIIIIII--IIIIIIIIHIIIIIIIII0; [ VE..I

Ä'

„>0 IIMIIIIIIIIIII1 ° 00 ÄÄIIXIIÄÄ-IIIK-IIS-[/All--III]-III-IMII--III--IIIIWIIIIIIIIIIIII

;; ;; IIIIIIIIIIIIIII0 . O1 » 0 . 1 1 . O 1O . O

PE R 1 OD (SE C)F 1 G. 10*-1 COHPRRISON OF THE PROPOSED & THE COMPUTED RSV SPECTRR FOR GROUP ••3

NOTE : THE PROPOSED SPECTRR RRE REPRESENTEU BT R SERIES OF STRR1 GHT L 1 NES

182

V

l0¤¤2-IIIÄ-II11-llIIIKKIIIKKIIIIL. 1

°2 "I--III--IIIß-0. 10Il \ Hdl ^‘fl ‘~sv••-’

Z BMI IIjf im ii-IIFZÄ-III}-III'

I-Ilßß-III-III2 V V-I2EIIIVVIIIIIIIIII2’IIWIIIIIIIIIIIim IXIYAIIXI-IIKI-ll

1Ü IIIIIIIIIII-III0.01 0.1 1.0 10.0PER100 (SEC}

F10. 105 COMPRR1SON 0F THE PROPOSE0 & THE CUHPUTED RSV SPECTRR FOR 0ROUP «5NOTE : THE PROPOSE0 SPECTRR RRE REPRESENTE0 BY R SERIES 0F STRRIGHT LINES

183

¤u——¤u——;•uIII-Illßmvylil‘° -‘I‘ß'”“-IIIIIIL All-

2.-:“ IIIIIVZIIIIIIII. Iä 10 0 f1_Il!UI1_II11_IIg IIIIIWIIIIII-IIIIIIIZDIIIIIIIIILE Mä ..,7,

I I

LE Inalllllulull

„. „ IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC}FIG. 106 COMPRRISON OF THE PROPOSED & THE COHPUTED PSV SPECTRR FOR GROUP u2

NOTE : THE PROPOSED SPECTRR RRE REPRESENTED BT R SERIES OF STRRIGHT LINES

18II

2

10 2"" ¤u——¤u=—¤u0 QIIKKIII XIII

ß= .02 ‘unl--III--III11-0. 10'

‘ “'(Y

.. Wr"'‘ 10.0 Aä' -]_II[Il— II--_II>·· ,

IIIMIIIIIIIIII2 /2 A2D.

I IIIIl!I!II!!III1.00

.1. IIIIIIIIIIIIIII1 0.01 0.1 1.0 10.0PERIO0 [SEC}

F10. 107 COMPRRISON OF THE PROPOSE0 8. THE COMPUTED PSV SPECTRR FOR 0ROUP w3NOTE : THE PROPOSE0 SPECTRR HRE REPRESENTE0 BY H SERIES OF STRHIGHT LINES

IBS

!II!-III-IIII°* *I--III--IIIß-0 10 I"Q Il~\F !”N.IIIik L.V-KIQ1 7 ll‘° ° ——-um—-||——¤u

g IIIIMIIIII--III·—· „ AE IIIYIIIIIIIIIIIDTQ IIFAIIII IIIIßälllll l!III—— | — u— -lI

1.. IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 (SEC)FIO. 108 COHPRRISON OF THE PROPOSE0 & THE COHPUTE0 PSV SPECTRR FOR GROUP ••5

NOTE : THE PROPOSE0 SPECTRR RRE REPRESENTE0 BT R SERIES OF STRRIGHT LINES

186

*1.00

II.,. ll|',.§I'-§ 1.00 II Ä IE ——III1l!-1.,- .‘ Y'·— IX—IlI"" Nä IIIIV ÄII“\ IIIE ·ÄI-I1l-IQ I. 1 , II” IIIWÜI IÜE>: „-1U1 {~ 1¢az /Ü' 10 —EAII——III——IIl

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOB (SEC)FIG. 109 COMPRRISON OF THE PROPOSED & THE COMPUTE0 RSR SPECTRR FOR GROUP ••1

NOTE : THE PROPOSE0 SPECTRR RRE REPRESENTE0 BT R SERIES OF STRRIGHT LINES

I187 ‘

ä.00 Ili; vw16-0. 10Ä

G Ä ID 1,00 Ib. anZ

·

\=· ——IIIl„« L. -° " "ZW@—IIIz ‘ ‘

P tE IIlITIAII!n§}\\ILJ“ I2.-; J/1 IIIIIIIII wgmI-LI ' I>

CC-lU-I

II 1 JCE

O" 10 —ÜlIl——IIl——III

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)F10. 110 CUMPRRISUN 0F THE PROPOSE0 8. THE COHPUTED RSR SPECTRR FUR GROUP nä

NOTE : THE PROPOSE0 SPECTRR RRE REPRESENTE0 BT R SERIES GF STRRIGHT LINES

188

U.00

II.18-0.10 °”II2I'.-§

“L_~

Äh‘

‘Ö,=·f

:1 V 1 ( än-—&’ 1 .Ä=·‘ 1/ III>

II„-IILI°F ,

IIh

°” 10 —HIII——III——IlI

1.11 IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIO0 [SEC)

F10. III COHPFIRISON OF THE PROPOSE0 & THE COHPUTED RSR SPECTRR FOR 0ROUP •5NOTE : THE PROPOSE0 SPECTRR FIRE REPRESENTE0 BY R SERIES OF STRRIGHT LINES

— 189

10¤¤2 5-00. 02°° qlllllllllll¤¤;m_¤z:==¤u0 -0 - 000

-0 0 0"° ‘ ” I!i¤%?m

ä L_L_?1.Ä_4 _-

Illllüülillllll° ÄÄIIIÄIIIÖB-ll_—l|Iy/Üllllhhlll-Ilwßl-III--III

——|/;Ä|——lu——¤||—IAy%l|__ll|—_l||

0.20 0.01 0.1 PEHIGU (SEC) 1.0 10.0F 1 G. 112 PROPOSED SPECTRR FOR HERN RSV FOR HOR] ZONTRL RECORDS OF GROUP •• 1

°° IEIIIIIIIIIII"°° °2 ihghunuugnggunß · ¤ - ¤5 =!Q$§!=I1gg.;;ß · O . 10E"4‘•I..III

KKIVIMKCIIIKKIIIg--I}%H_III_-III

IIMIIIIIIIIII, N IIMIIIIIIIIIII” E5%I|"'ll¤'EEIII/-ÜIII--III-III„ . „ II". Illu0 _ ÜF 1 G . 113 PROPOSED SPECTRR FOR

PMEERRINUÜRSZISEFCORVERT 1 CRL RECORDS OF GROUP s1

¤q [-.I IIIII III°2¤5 =¤;¤u¤g:;·•g;§,.0. 002° lnlygyßgl IIInnnuumuuunnuuI-IIIWIIIIIHI Ilgllßßglßll II I

I WI. I IIIIIEE%|EEIII"'IIIlßll--IIIIIIII.. .. IIIIIIIIIIIIIII

Euakzäi —- n°° WllllllllllM-22M-22E

III Mall. III§„„.„ [Ibn.‘2“ Ä ° IIIÄ-=lÜWZVn|¤|¤==lHIlhlghlllllllll2 IIHMI IIIIIIIIIWIIIIIIIIIII——r%A|——¤u——¤uunyuu--nu-unIMMIIIIIIIIIIII

0. „ IIIIIIIIIIIIIII

°° -"..lII IIII°2 —¤u

E lllllrVAIIIIIIIäl . A1-HlI!¢%“"“%11 A-E-I; y'Q IIIMIII I I

..0%. I I,1—$w/u|—-myäu-=uI===lIIIMIII-IIIIIIII

,„ ,, IIIIIIIIIIPERIOD (SEC)

FIG. 116 PROPOSED SPECTRR FOR HERN RSV FOR HORIZONTRL RECORDS OF GROUP ••3

ß =0 . 00- l11111 1 11 1 Ü2 lßällllllllll;¤._m—¤u nß -¤ - ¤ 5 -l!$;_!ll;;_g_!_!1 .1 1 1 1Inlggß;

IIIIIMM? I_—¤vĤu/änuunnnu

IIMI1IIMIIII1 1 II_—ymu——¤u_—¤u

KIMIKKIIIKKIIIIMIII-IIII-III11 20 IIIIIIIIII0 _ 0F 1 G . 117 PROPOSED SPFCTRF1 FOR PMEEHRINGDRSZISEFCIZIR VERT 1 CRL RE GORO5 OF GROUP «3

°° -‘IIIIIIIII’“°°°2 !!R!!¤||——¤u¤·0- 05·¤ llnüüllunßggäM. 20 IE IIIIYWWIIIIIIII=El71lä%l‘=""'lI|

. II lg! IIII

—_1%@——¤!!——¤¤!K—lgüIIKKIIIKKlII-Qßll--III--III

0.„ IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 118 PROPOSED SPECTRR FOR MERN RSV FOR HORIZONTRL RECORDS OF GROUP nä

196

._ ¤, 0„„2 EÄ. EZ !I!!!!II!!IIIEH. _L I_lI

16-0. 10

KKIIIYIXIIIKKIIIIIIHIM IIIYW III!!%I--In--I-II--m||-¤u-|u-Müll--III-III

1. „ IWIIIIIIIIIIIII

10¤¤2 ß=0 . 02°° I I¤¤ux—¤u— n n¤ =· 0 · ¤ 5 =lI$$llI——lII» -¤ — ¤ ¤ EIIESIIIIIIIILIIIIIP ‘%’¤'•l·III° ——¤yÄm$i¤i=|——¤u——lIuߧlII——IlIIlyßß-III-III

——véu——¤||——¤u—IA!lll——llI——lll-EIIII-III-III„ . „ IIIIIII Ü

P E R I O D (S E C IF 1 G. 120 PROPOSED SPECTRR FOR HERN RSV FOR VERT1 CRL RECORDS OF GROUP •5

I 98

°° illllllllllllß=0.02·¤ — ¤5 -!nL·,«Il!„IIß _ 0 _ 1 0 —I!§l‘H_I!§X§&l_ gaqqmnmuzgggß · Ü · 2 O ¤lIML.A§'!H2lu

II1 0 ‘ 0 EE'lü!IIé'L""""l|é ——lI?ß—III——III“ IIHMIIIIIIIIIII

——;u||——¤||——I||—I4III——III——IIIÜ . „ Illllllllll ÜP E R 1 O D ( S E C I

F IG . 121 PROPOSED (MERN+SDl RSV SPECTRR FOR HORI ZONTRL RECORDS OF GROUP •• 1

1 99

°° "llIIIIlIIII#-0.0211111 0 · 0 —00,_ 1, _ 1 1, nnmqgz-¤u—z;„;A 2 · °· 22 ¤lIK§ll!Z£III..IIw$‘r°V'.IIIÄL<gé!I!Ä

llIM';‘ 1 O . D Eäülßäälllä-"lllAA --H%Y·-III-IIIIlßlllllllllll1 1 11 IIAIIIIIIIIIIII—¤1uu——¤u——¤u—1lll——ll|——ll|-ÜIII--III--III

1 1 20 IIIIIIIIIIA _ APE R 1 O D ( S E C J

F 1 G. 122 PROPOSED (MERN+SD) RSV SPECTRR FOR VERT 1 CRL RECORDS OF GROUP « 1

200

°° I!|IIIIIlIIIIÜ; Ü Ü; 'ÜEÜÜIÜIÜEFN1 oxN2ß _ 0 0 10äB =Ü • 20

‘g""-I'1O' 0 =Elüé}é!""""II0% __Il%'l—IH_—IIIIIMAIIIIIIIIII1

' VIIIIIIIIIII1 ° 00 !éI§Ä—IIil—Il

==%ll==ll°--lllIWIIIIIIIIIIIII0.200.01 0.1 1.0 10.0

PERIOD (SEC)F IG. 123 PROPOSED (HERN+SDl RSV SPECTRR FOR HOR I ZONTRL RECORDS OF GROUP a2

°° °‘l.llII-lll]ß ¤ 0 • 02

"

«= — M AnklnlllläßlI·I · I IM M ·¤s¤ü•¤‘¤ö*äunf.fféig Au-.g..IÜI%DIIIIIIlä1 0 ' 0 lfIlIllllK—IIÄl—Il——u|wi1—l||——l||tf ——HUZ'H—III——III

"°° l$7léIl1§—II--—II—la¤||——Il|——I||—ÜIII——III——III0 . „ IIIIIIIII0 f Ü

F I G . 12*4 PROPOSED (MERN+SDl RSV SPECTRFI FOR VERT I CRL RECORDS OF GROUP a2

202

‘ °° I!|IlIIIIlIIIß-0.02 ‘*M Ilßlllll-III10* N2B _ 0 _ 1 0 —l!$§§Z5E1___;§II_ gaqqßnuzgggg

; IllllyßmAIIIIIä Illlfüiilßulllä’°‘ ° -X—IÄ7III1—II§§—IIKKIIAWIAKIIIKIIII EB;——lWß—“I_—III

IIHMIIIIIIIIIIIIMIIIIIIIIIII00KWIIIXXIIIKXIII_IzIII——III——III

B„ ÜIIIIIIIÜ _ 0F 1 G. 125 PROPOSED (MERN+SDl RSV SPECTRR FOR HOR I ZONTRL RECORDS OF GROUP ••3

203

°° "|IIIIIIIIIIß · 0 . 02 ‘, ß ·¤·ß_ 0 _ 1 0 —=lX$!äIl!l§;:E ß 0 2 0 =LQ$».€!„l!4Z@‘ ·

IIIWWAÄIIII§’°° °1-—lÜ'II——I1mrn—l||——l||2 IIWIII 2 E E III2 IWÜIIIIIII

—I0|||——l||——l||-ÜIII_—III--III2„ IIIIIIIIIIIIIII

0 . 01 0 . 1 1 . 0 10 . 0PE R 1 O D (S E C)

F 1 G . 126 PROPOSED (HERN+SDl RSV SPECTRR FOR VERT 1 CRL RECORDS OF GROUP ••3

A

°° IEIIIIIIIIIIIß-0. 02 ‘*‘\.III.F'!l__ß_ 0 _ 1 0 —I!§I§—l¤'n?l§§§_ gaqgmnugzggg2 · 2 · 22 AIMQE-njälllIIIIFWF“'|*'III

——|wAm—l||——¤||% ——l%ß—III——III“ Ilßßdllllllllll—myu|——l||——l||—ÜIII——III— III[„„ „ ÜIIIIIIIP

E R 1 O D (S E C 1F 1 G . 127 PROPOSED (MERN+SD1 RSV SPECTRR FOR HOR 1 ZONTRL RECORDS OF GROUP ••‘4

0 . 0 . 00 lqlnlllllllllllß ¤ 0 . O 2 ‘ß = 0 . 0 5 NEIIIIIIIII'°“"2 ,,_0_ ,0 =äg§L!¤g:x$¤u__ gaqqgzegmnnuß · 0 · 2 0 -¤!%¢!¤!·¤§!!llllgßäérälafiiääIIII WAIIIIIII1 0 ” 0 =ElHé}?é'2'lIlI“ IIIQZIIIIIIIIII, . 0, IIMIIIIIIQIII=H%lIE=lII=-HIIäIII__lII_—llI

IIIIIIIIIF 1 G . 128 PROPOSED lHERN+SDJ RSV SPECT RR FOR HOR1 ZONTRL RECORDS OF GROUP «5

‘206

‘ °° "|IIIIIIIIIIß - 0 . 0 20 IRHIIIIIIIII22 22ß _ 0 _ 1 0 —IlXK_IIlK—Ill¤gm$I!!——l;|2 2 2 ° 22EIlllüßwzlääill

';' 1 0 . 0 1 ÄlII1|W$2"2iIIIII: 1§IÄIMYl1—IIÄl—IIKQIIUZKIIIXIIIIé -Ilßgß-III-IIIIIMAIIIIIIIIIIIIWIIIIIIIIIIII—-övÄu——¤u——¤u—mul|——ll|——l||-EIII--III--III„ _ „ IIIIIIIIIIIPE

R 1 OD ( S E C 1F 1 G. 129 PROPOSED lMERN+SD) RSV SPECTRR FOR VERT 1 CRL RECORDS OF GROUP ••5

207

°° W.- IIIIIIIgsgmnr.., _

‘° E§!§!!!5=%ääIhlmulhßalliE IlII!""ürE Ü VIIInnnüvärgnu-_¤uIIIJZHIIIIIIIII, rg‘ IIMIIIIIIIIIIIÜIIIIIIIIIIIII==IIIKKlIIKKlII

IIIIIIIIIIIIPERIOD (SEC}

FIG. 130 PROPOSED SPECTRF1 FOR HEFIN PSV FOR HORIZONTRL RECORDS OF GROUP ul

208

ß -0 . 00I |IIIIIIIIII’ °””2 " '° ° °2 igä“]_I!?...-"'iE§;'¤ -¤ · ¤5 =lQ$Q§E|’§§zä

‘ —_¤yuu•rn¤u—=¤ug ——l|ßM—lll— Illä IIIMK- II

IIIIIIIlläilllllllllll__¤u_¤¤u__¤uKKIIIKKIIIKKIII-IIIIIIIII--III

M IIIIIIIIIÜ_ 0F 1 G. 131 PROPOSED SPECTRR FOR MERN PSV FOR VERT I CRL RECORDS OF GROUP ul

209

°° Ü}!.-l!l=.III”'°°°2 i¤g_hzüu—§§¤|¤ -¤ · 0 5.„ . 2Ü lnlggäz; ..1IIIIF VIIIIIIII

IIIWHIIIÄIIIIIWIIIIHIIIIIIIIIIIIIIIIII00 EEl||EEII""EllI--III--III__III

FE R 1 O D IS E ClF 1 G. 132 PROPOSED SPECTRR FOR MERN PSV FOR HOR I ZONTRL RECORDS OF GROUP ••2

21 0

I"'. IIIIIII”'°°°2 .„in"""—i-¤M- -0 !llM_I!I¢E5¤i

EI. 4——¤Aw%ü‘ » ¤ nuäEIIWII Ü-—l||——l||——l||-_III_-III__III„4 „ IIIIIIIIII

PERIOD (SEC)FID. 133 PROPOSED SPECTRR FOR HERN PSV FOR VERTICRL RECORDS OF GROUP •2

ß-0.00 zu„.. . . !h...III!.!!!‘2 2 2 2 22 !¤qu—¤u —#·¤— ¤5w„.„. 20 l\sWk"§Il""',-15.1-=Ih }$# 4 {fil= yqröjfE MU ul222 2

I-Igßillll-IIIII%|ll IIIIIIII III

„.„ IIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC}

F10. 13*1 PROPOSED SPECTRR FOR MERN PSV FOR HORIZONTRL RECORDS OF GROUP ••3

- 212

ß ·0 . 00I IIIIIIIIIII0 -0 · 001- 11 1 1 1 .‘>$#E¥*‘

F V I-IIII--||Zm—l||-—I||1; --,1gjK-III__III

KIIIIKKIIIKKIII-_III--III__III„ „ „ IIIIIII0 _ 0F I G. 135 PROPOSED SPECTRR FOR MERN PSV FOR VERT I CRL RECORDS OF GROUP «3

I2l 3

V

°° -ullllll-III’ °””2 "°°°2 !!}k—¤||——¤u¤-M5w„.„. 20

KKIMIWAKIIIKKIII=; I-MM-III-IIII W1.- IIIII ih-. IIIII

IIIIIIIIIIIIIII0.01 0.1 PEMUÜ (SEC] 1.0 10.0FIG. 136 PROPOSED SPECTRR FOR HERN PSV FOR HORIZONTRL RECORDS OF GROUP «•~I

2lll

°° "|IIIIIlIIII”'°°°2 !!}k—¤u——¤u¤ -¤ - 05 =!Q$—l!!——llI»··=·- w2°

--l%H-I I-II——¤|¤——¤||—$¤u--|||-—¤u—-¤||--III--III-III„„„ IIIIIIIIIIIIIII

FIG. 137 PROPOSED SPECTRR FOR MEFTJHRES RORCFIORIZONTRL RECORDS OF GROUP •5

°° IIIIIIII IIII1Dx¤2 #-0.02 —. Ä.usgmnuu —¤u¤·¤-@5 =lQ$—lll——ll!,.0.00B" •

~

/I” ° 2° lh0.%‘é IIIW ‘”' snllll° ——¤Än%ä=E|$—¤||

Illlßüßa I’* IIMI I IIIIIIIIIII IIIKKIIIKXIIIKIIIIIIIIIIIIIIIIIII

.. .. IIIIIIIIIIFIG. 138 PROPOSED SPECTRR FOR MERN PSV FOR VERTICRL RECORDS OF GROUP ••5

V216

°° lllllllllllllß•Ü•Ü2-ÄIÄIAI-lgl,,_0 ,0 nnmunnnnuuzemu‘ =l@KIl§ZZ§§§

ä ß·0 . 20IlllpßgghlllllIIINWAIIIIIIII§‘°° ° $$¤yÄmAL¤u11¤uE XIIIAKXIIIXXIII E

0

__”%2Z_III—_IlI

IIIIIIIIIIIIIIIIIIII‘°°° 1$¤u!1-u11-uKKIIIIIIIIIXIII__III__I:i__llI

0 0 IIIIIIPERIOD(SEC}FIG. 139 PROPOSED IMERN+SDl PSV SPECTRR FOR HORIZONTRL RECORDS OF GROUP «1

217

E1

°° 'IIIIIIIIIIII3-0.02 ,r;;·Y IF *‘ /3 -0 . I

0=!Q¤§I!l.?.4Z'llIg 3 -0 •203

IIIII/’AIIu.III§‘°° °__?M'l_llI—_III

"°° l!—II1Ä—IIll—IIXIIIIXKIIIIXIII__lII__III—_III„1 „ IIIIIIIIIII-IIIO. D1 D . 1 1 . D 10 . D

P E R I O D ( S E C 1F I G. 1*10 PROPOSED lMERN+SD) PSV SPECTRR FOR VERT I CRL RECORDS OF GROUP «1

I21 8

°° il|IIIIlIIIII02 .Üi¤"ÜI.-"l„_0_ lo —I!§|1—ZlliZ$_\gmqqgmazänsgnlltßlllllllIIIII'¢”?!I'|llIII:

lII|1%II|IlIIIEEEä&%""""lII?; __UMZ_III__III

°°__III__llI__III

„„ „ IIIIIIIIIIIPERIOD(SEC)FIG. 1*41 PROPOSED (MERN+SD) PSV SPECTRR FOR HORIZONTRL RECORDS OF GROUP ••2

219

°° °‘lI.III..IIl8 -0 • 02 ‘|‘

mu?ß _0 10 —I!§——IIäZi!§‘ EHQYÄQIEIVZZIIE

I: lllllkßdlllllllIIIÜMÜÄÜIIIIIIIä ° ——¤1¤y1r1n—¤u——¤u

IÜÄAIIIIIIIIIIIIIIIIIIIIIIIIII"°° §§—II1§—II“—IIXXIIIXIIIIKIIII__lII__llI__lII„„ „ IIIIIIIIIIIIIII0. 01 0. 1 1 . 0 10 . 0

PER I OD [SEC)FIG. 1*12 PROPOSED lMERN+SDl PSV SPECTRR FOR VERT I CFIL RECORDS OF GROUP ••2

.

220

°° ° |IlIIIIIIIIß -0.02.«»- .!¤§lIIlIIlII0 _0_ ,0 nuuqmgzz-—_;•;_g=!!QKI;E—=ß -0- 2 0

llllgßggdllllS ' 0» . IIIIA%MlIIII§A1—l0

__lß2l_llI—_III. A

L IIWIIIIIIIIIIIIÜÜIIIIIIEQIIInuXKIIIXXIIIKXIII__IlI__IIl__IlI.. .. IIIIIIIIIIIIIII0. 01 0. 1 I . 0 10 . 0

PER I OD (SEC)FIS. 103 PROPOSED lMERN+SDl PSV SPECTRR FOR HORI ZONTRL RECORDS OF GROUP «3

22 I

°° °‘lI.III-IlllM IM)Y IIW00ß_0_ lo —I!ll.EälI§§%II=!Q§»KII!llI0 ·0· 20 -!gyQ_IlI

„.

Iläl.-IIIIIEI——III——III——IIIIIIIIIIIIIIIIIID. 01 D. 1 1 . D 10. D

PER I OD (SEC)F I G. IQ)! PROPOSED (MERN+SD) PSV SPECTRR FOR VERT I CRL RECORDS OF GROUP ••3

222

°° "|IlIIIIIIII11111 0 - 0 — 05 .!•L!IIl__!l¤:e11, _ 0 _ 1 0 _Ilw§—l¤¤1!E5ügmqsggllggauul5 ·¤ ·55.:ÄLIAI-V Al.IIFq”«/II

é 1 0 ° 0 ÄÄ—VlYllIll——¤Ig'IA—ll|——l||

IIMIIIIIIIIIIIIIIIIIIIIIIIK1IIl1KIII11Ill--III--III-.III1 1 2Ü IIIIIIIIIIIIIII0.01 0.1 PERIGD [SEC) 1.0 10.0

F I G. 1*15 PROPOSED lMERN+SDl PSV SPECTRR FOR HOR I ZONTRL RECORDS OF GROUP nä

A223

°° IEIIIIIIIIIIIB - 0 . 02 ‘

B -0 . 05 ‘I‘§IIIIIlIII‘°’“‘L 0,0 ,0 =§§§Li¤u$1¤u3 B-0.20

C Äß‘

Q y QV V10 0AQ‘ ——¤ym1na¤¤1—¤u——l|{AH—lll——lIlQ __HMK_III——IlIL IIVIIIIIIIIIIIIlälllll III'°°° 11-u$1¤¤!!!¤uKKIIIKXIIIKKIII__III__lII__III

0 ao IIIIIIIIIIFIG. U16 PROPOSED lMERN+SDl PSV LSEEL HORIZONTRL RECORDS OF GROUP a5

22!I

°° IIIIIIIIIIIII6-o. oa ‘*. ¤5 IIIEIIIIIIIII„_0_ 10 —Il§X—IIÄ-—l?

M. 20* °. llllwbdßllllS 1XIlI'IIZ4$—IllÄ—Il» XXMYAZKKIIIXXIII

IIMIIIIIIIIIIIIWIII I ' I"°° 11 "”*— ¤-—=EI—==E|——¤|IIIIIIIIIIIIIIII.. .. IIIIIIIIIIIIIII0.01 0.1 PEHIÜD (SEC) 1.0 10.0

FIG. 1*47 PROPOSED lMERN+SDl PSV SPECTRR FOR VERTICRL RECORDS OF GROUP a5

225

6.00 .. EIIIIIIIIIIII.7, ß=0. 10

1. 00 I .——I!A¤@@lIIIIHWYIIIKEE, ~ Ä

.44.1 Ä° -wur:-uu-nu-IIII--III-III0. „„ IIIIIIIII

PERIOD (SEC)FIG. 1*48 PROPOSED SPECTRR FOR MERN RSR FOR HORIZONTRL RECORDS OF GROUP ••1

1

6.00

.. EIIQIIIIIIIII6-0. 10 ‘

ä ß-0.20 ._LKKIIß}E5‘!$$III

I

4* IIWOIKIIIE V

0.10

.1.. IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD [SEC}FIG. 149 PROPOSED SPECTRR FOR MERN RSR FOR VERTICRL RECORDS OF GROUP •1

U227

S'B=0 . 02

IJ·Vw'*\‘III

IIw?YI@II|°° '° -lödllh-lu--lll-Iälll--III-III„. „„ IIIIIIIII

6.00 0. IIIZHIIIIIIII1.0.0. lvEM in‘· ‘~ 4*_—Mlm§gVi!!n"§llI-lIMM

ä' 1_, Ä

é 1 Ä

°‘ ‘° ¤-uu--uu--uu--III--III-III0. „„ IIIIIIIIPERIOD (SEC}

FIG. 151 PROPOSED SPECTRR FOR HERN RSR FOR VERTICRL RECORDS OF GROUP •2

229

„„ EIIIIIIIIIIII02 F“V'*IIIIIIllä ß -0 . 20 ~,

llIII

°‘ ‘° -nänun-nu-uulllllllllllllll.„. Ol. IIIIIIIIIII

6.00

!lIIIIIIIIIII02""“‘llIIIIII

a B-0.10

maggh.—K!ll§%QE!E§—IIl2 Ilhllb Mi i ué=°°

'° KKIIIKKIIIKKIII„_ „„ IIIIIIIIIIIIPERIOD(SEC}FIG. 153 PROPOSED SPECTRR FOR MERN RSR FOR VERTICRL RECORDS OF GROUP •3

23l

ß" „„ §Ql;!‘IIIIIIIIß -0 . 02

~"‘ B -0 .10

.

°° '° —IÄll|——ll|__l||__III__III__III0. 0., IIIIIIII

8.00 „„ !lIIIIIIIIIII02 I“F~II|..|||ß-0.06ZIEZLE—_l|¤';ilä

rl A

·

IlIW'f‘

°° ‘°—IIlII——llI——llI

IIIIIII{ l

FIG. 155 PROPOSED SPECTRR FOR MEFIN RSR FOR HORIZONTRL RECORDS OF GROUP »5

233

“ X

6.00 EIIIIIIIIIIII.„ZIEZÜZ;

1.00 ‘¤x

.-IM§ä;IIIIWAIIIHIIII°° ‘°—_lll—_llI—_llI--III--III-III„_ .„ IIIIIIIIII

PEFH00 (SEC]FIG. 156 PRUPUSEU SPECTRH FUR MERN BSR FUF1 VERTICHL RECURUS 0F GBUUP •5

X· .23lI

ggmnuunnuuAIEEIIIIIIIIß-0.06 *"y "l

IE IKIE _

°‘ ‘°¤-nu--uu-nurIIIIIIII

8.00 M. 00 aglg-III--IIIggg gg ;QgIlIIIIIIIIä ß-0.20 . .V WHää

1. DD *

;°‘

‘° ——lIlK—IIIK—llI0. .. -III-IIIIIFIG. 158 PROPOSED lMEFIN+SD1 RSR VERTICRL RECORDS OF GROUP #1

236

agllgllllllllg·g· gg ;%QFIl!lIIIIII: lv YI IÄIM4lh¤..-nrumnrar-..x1u

;IIßIA'ßgIIMMINIEH

°‘ ‘°Illlll

aglläüllllllll!MIIlIIIIIIIß-0.06 \‘

IIKIEIQE HM,gnoo Ä--¤rum-¤nwIIM?l

nur-nullllunuuuu

02 ;h!!lIIIIIIIIÄ

QQQ Q QQQ Q IQ°‘ ‘°

Eglllllllllll

LEZLE nI¤n¤u¤q,•g¤¤@3u|II!/0I&lIIMII@Il

lllllll

;h!nHIIIIIIIIß-0. os V‘

ä ß=0.20 k

Au EIIIIIIII°° ’° —KIII—KIII—KIII-III-IIII

8.00 ¤-¤- ¤¤ lll--III--III'WIIIIIIIIIIß=0.20 ‘· ‘¤

IIWIIÄ

°‘ ‘° —KIlIK—lII——IlI„. „. -III-II-IIIFIG. 16*4 PROPOSE0 lMERN·•·S01 RSR l;;!;]HORl2ONTRL RECORDS OF GROUP a5

2*42

8.00 ¤-¤- ¤¤ EQ!-III--IIIjjgj jj ;äQlIIIIIIIII·'WÜWIII‘E ß,g_2gIFWQNä4Q°‘

’° --u|-l|u--|u„. UB -III-II-III 0 _0FIG. 165 PROPOSE0 (HERN+S0l RSR VERTICRL RECOROS 0F GRUUP «•5

2443

N-B-K SPECTRUH

WW2 GROUP ••l ÄGROUP_PIII

IN'II'*EEE ' VLU 1 Ä

——IWIK—IlI—_IIIQ.—+~ IIIUVIIIIIIIIII

AI

1.00 ÄXIIIIIIXIIIIIIII——III—lII——III0.01 .1 PEMUD (SEC) 1.0 10.0F10. 168 COHPRRISON OF THE PROPOSE0 & THE N-B—K ‘HOF11ZONTF1L‘ PSV SPECTRH

FILL THE SPECTRFI FIRE DRFIHN FOR R PERK RCCELERRTION OF A10 0 RN0 ,9- .05

2lUl

l

N—B-K SPEGTRUHGROUP ••1

ÄGROUP_G’

'IR E., II ZéllhL 4I V I FVINIIY" ‘

ä ÄÄ} il L: ' V ‘Q Ä Ä }‘“ 10.0 „é KXIIIHIIIIIKIIII——IW![—lII—_IIIIIIMIIIIIIIIII

1.00 ÄI-IIIIIIIIIKXIII——III——III——III0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 167 COMPRRISON OF THE PROPOSE0 81 THE N—B-K ‘VERT1CHL‘ PSV SPECTRRFILL THE SPECTRR RRE DRRNN FOR R PERK RCCELERRTION OF A0 G RN0 ß- .05

21IS

N-B-K SPECTRUH

HO"? GROUP •3Ä

BHW _H MIIGROUP ••5I }D\_l

(D T 'I ÄAmllln AB: T $7 YV

> 10.0 .g IIIIIIIKIIIXXIII——IWIH—III——llIIIIQHIIIIIIIIII1.00 ÄIIIIIIIIIIIIXIII——IlI——III——IIl

0.01 0.1 PEHIUD (SEC] 1.0 10.0F10. 168 COHPHRISON OF THE PROPOSE0 & THE N-B-K ‘HOR1ZONTFIL‘ PSV SPECTRR

RLL THE SPECTRR RRE DRRHN FOR R PERK RCCELERRTION OF .*40 0 RN0 ß- .05

2*l6

N-B-K SPECTFIUHcnouv ••a Ä AlVGROUP_GV_ _ “!!Il!.!.lIlI I VlIIl' WIÄ

LJ

\Q ÄNII I LA A A5 Ä ,44G y Grqwr ‘I·

.1Q A All I> 10.0 Pg IIIIIKXIIIIIIIILQ /2 ——lpl——IlI——lIII IIIAIIIIIIIIIII

1.00 Ä1-IIIIXX IIIXIII——III——Ill——III0.01 0.1 1.0 10.0

PERIUD (SEC)FIG. 169 CUMPRRISUN UF THE PHUPUSED & THE N·B-K ‘VEBT1CFIL‘ PSV SPECTBFIFILL THE SPECTBH BRE DBFIHN FUH FI PEHK RCCELERFITIUN UF .*10 G FIND ß- .05

2!I'1

KKIIIKKIII—°“°“*’ ·‘ ——IlI=§I‘I—·GROUP ••2 ,

-IIIII.=..„«.— Ilwpilw

MI'- lläE' 10.0 I§ 1XIlIIAIIIlI1IIIE __IIIM_III——IlIä xIIIIIIWIIIIIIIII

/1

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC)

F10. 170 COHPRRISON OF THE RTC—S3 & THE PROPOSE0 ‘HOR1ZONTRL‘ PSV SPECTRHRLL THE SPECTRR RRE DRRHN FOR R PERK RCCELERRTION OF .40 G RN0 ß- 0.05

248l

10¤¤2 IZlllZ$llI—— Illallggll·——-GHUUP ••2 l-Ill I Ahn—— mc-saII|!*¤

Aal6 V,*.74” 10.0 M§ KKlllWl,lIIlKKlIIE _—lIIVIllII——lIID IIIIMIIIIIIIIII

A ,1

. 1.00 ÄKZHIIKKIIIIIIII—]III——III——IIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PER100 (SEC)F10. 171 CUHPRHISUN 0F THE HTC-S3 & THE PROPOSED ‘VEF1T1CF4L‘ PSV SPECTHHFILL THE SPECTHFI FIRE DFIFIHN FGR F1 PERK RCCELEHHTION UF .140 G BND ß- 0.05

I2\I9

10¤¤2 IIIIIIIIII—·¤~¤~P ·Q I IIIIIII—GHUUP Q IEIIIIIIIIIllu "¢„..«I!lIII

I" 10.0 Ää IIIIIIIIIIIIIIIIQ IIIIIVIIIIIIIIIIQ /IIIIVIIIIIIIIIII

Q. A1.00

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIUD (SEC)

FIG. 172 CGHPFIFIISUN UF THE f-'ITC·S2 & THE PBCIPOSED ‘HOFIl20NTFIL‘ PSV SPECTFIFIFILL THE SPECTBR FIRE DRFIHN FGH FI PEFIK HCCELEFIHTIUN 0F .*40 G RN0 ߤ 0.05

I250

Ä

10¤x2

Gm, _3 KKIIIKKIII— II- II!"’°°S2 IEEIII VIIIIVI1.-Ä,41II-

lu9? 1 Ä10.0§ KIIIIHKIIIKKIII_—IIIM—III—_IlID3 IIIIWIIIIIIIII3.* .I

m.

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PER100 (SEC)FIG. 173 CUMPHHISDN 0F THE HTC-S2 & THE PHOPOSE0 ‘VEHT1CHL‘ PSV SPECTBHHLL THE SPECTHR BRE DHHHN FBR H PERK RCCELERRTIGN 0F .U0 G HN0 ß= 0.05

251

1

10¤¤2

GROUPä

G lllI L II”10.o A Iä KXIIIXIIIIKKIIID _—IIIVl—IlI——III3 IIIIVIIIIIIIIIIPA

I

L A1.00

nnßlunälnnlll0. 0 IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PER100 [SEC)FIG. 17U CUHPHRISUN DF THE HTC-S1 & THE PRUPUSED ‘HOR1ZONTRL‘ PSV SPECTRH

RLL THE SPECTBH RBE DRRHN FOH R PEHK HCCELERRTIUN 0F .U0 0 HND ߤ 0.05

252

I

I0¤¤2I

mw, _5 DDIIIDDIII

_ AIQ ATG IIII|I""”MIIII10.0§ DDIIIIIKIIIDDIII——IIIH_III__IlIDg IIIIIHIIIIIIIIIä E .I

°° VV>

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIU0 (SEC)FIS. I75 CUHPHRISUN UF THE RTC—S1 & THE PHUPUSED ‘VERTICHL‘ PSV SPECTHRRLL THE SPECTRH BBE DHRHN FUR H PERK HCCELEHRTIUN UF .40 G HN0 ß- 0.05

253

1

"·—'°‘°2 IIIIIIIIII—— COHPUTED—— IlIIIlIl||1g«¤a :;.4Sum a M ::l¤|::¤uXXIIFERII_ __III_]!!•;:IllIIIIIIVIIIIIIII

Äf ° ::lI|ml:lu::ll|; IXIIIVJXIIIKXIII¢ __llll_lII__lII2 I* IIIIIIIIIIEIIII

‘°°° -XIIIIX-—II !!II1K!/IIIIIIIIIIIII__ylII__III__III0.„ IEIII--IIIIIIII

O. O1 0. 1 1. O 10. 0PERIOU (SEC)

FIG. 176 COMPRRISON OF PREDICTED HNO GOMPUTED RSV SPECTRR FOR GROUP ••1HNOTE z THE RCTURL COHPUTED SPECTRUH IS REPRESENTED BY THE THICKER CURVE

. ZSK

IIIIIIIIII-—· COMPUTED

'IIIIIIIIIA

.. __III__!ll_hM!z 1

3 IIIIII F IÜIIIIZ

A-1

“ lIIII'”‘j’° ° ÄÄ—IlIl§—ll11—II_; IIIIIQIXIIKKIII,__IIIß_IlI__III‘ 7

. 1/lllälllllllllll’ °° 11IA||11 II11—II

IUIIIIIIIIIIIII0.200.01 0.1 1.0 10.0

PERIOU (SEC)FIG. 177 COHPRRISON OF PREDICTED RN0 COHPUTED RSV SPECTRR FOR GROUP «2VNOTE : THE RCTURL COHPUTED SPECTRUH IS REPRESENTE0 BT THE THICKER CURVE

255

°!

’·—'°‘°5 IIIIIIIIII—— c0m=u1s0 V. „„.. —— IIIIIIIII11§_II1§IlIIIHQAII

= ßlknlZ 2E Ä” IIIIIIIIIIIIIII—' 10.0ä Ä-—IIIl1—II-§—II5 $1Illyl1IlI11IllCI __III7l_lII__lII. IIIIVIIIIIIIIII

’°°° §11T]L§—ll§1_lI11IAll11Ill11III__MII__III__lIIIWIIIIIIIIIIIII0.20 Ä0.01 0.1 1.0 10.0

FERIO0 (SEC)FIG. 178 COMPRRISON OF PREDICTED RN0 COMPUTE0 RSV SPECTRR FOR GROUP M-}HNOTE : THE RCTURL COMPUTED SPECTRUH 1S REPRESENTED BT THE THICKER CURVE

256

1

IIIIIIIIII—i COHPUTED IIIIIIIIII11ll|11llI——·—GROUP—BRSED

U

== _ M Lug!IIIIII= Illww2 gs F3 ul—‘. .fm ° 11lI||;•|1ll|11l||_; KIIIIQTIKIIIKIIII__IIW!l_IlI__III¢ . ’; Il. IIIJIIIIIIIIIIIIWIIIIIIIIIII"°° 1§ÜIIÄÄ—Ill1—II1—I!llI11lII1KIll

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC)

FIG. 179 RSV PREDICTION FOR EL—CENTRO SDDE RECORD USING THE PROPOSED METHODNOTE : 11THE RCTURL COMPUTED SPECTRUH IS REPRESENTED BT THE THICKER CURVE21THE SPECTRR FIRE NORMFILIZED TO FI PERK RCCELERRTION LEVEL OF .50 G

257

IIIIIIIIII-- COMPUTED, —sELF—B~sE» IIIIIIIIII—— ==§ll==lll__III_FIIT‘!__lII

° '**WLIWWl"'I Illu«U»

E IIIIIIIIIIIIÜIII:„„.„ 4;_; zrnunumuxnnnxxnnu; $KIlIllI$IlI1KlllC!

' {>4 IIIIMIIIIIII IIIIIW. °° 11-mt;-u znuI$1IpIKKIll$1llI

__!lII__IlI__III

IlHIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIOD (SEC}FIG. 180 RSV PREDICTION USING PROPOSED HETHOD : 19*41 FERNDRLE N*45E RECORDNOTE : IITHE RCTURL COMPUTED SPECTRUH 1S REPRESENTED BT THE THICKER CURVE2) THE SPECTRR RRE NORMRLIZED TO R PERK RCCELERRTION LEVEL OF .50 G

258

IIIIIIIIII——SELF-BRSED IIIIIIIIII__mUP_BHSEDunnunnllllnlll23 IlIIIInIII1I||.— 4-

U n l'E IIIIIY‘IN1}“HBII'J] I I; 11lllI¤1lll11lll_; XXIII!/—XIIIXXIII¤ ¢Äl'E ll°" V A

II VII I Il II‘°°°!ILl!lI

IWIIIIIIIIIIIII0.200.01 0.1 1.0 10.0

PERIOD (SEC]FIG. 181 RSV PREDICTION USING PROPOSED HETHOD : PRCOIMR DRM VERTICRL RECORD

NOTE : 1lTHE RCTURL COMPUTED SPECTRUM 15 REPRESENTED BY THE THICKER CURVE21 THE SPECTRR RRE NORHRLIZED TO R PERK RCCELERRTION LEVEL OF .50 G

259

6.00 IIIIIIIIIIIIII- _1~=·[r-•/„/V ‘·"‘\. lé 1/ *1*; 1 . oo '// LA= KKIIIBKIIIRKIIIE IQ

*[LI } —

5 IIIIIIIIIIIIIII"C.-I" I1

I

¢ IU') 1C ,IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERTOD (SEC)FIG. 182 COHPRRISON OF PREDICTED RN0 COHPUTED RSR SPECTRR FOR GROUP ••1H

NOTE : THE PREDICTE0 SPECTRUH IS REPRESENTE0 BT THE THICKER CURVE

250

1

6.00 IIIIIIIIIIIIIO-

··’· ^. [ „„|93 "1Z 1.00 V. ·lÄD·.: —DIIMDDIIIKDIII2;ur31LJ

.‘

>* IIIHIIIIIIII§"*·· II. :¢-IILOI

¢2

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 {SEC)FIG. 183 COMPRRISON OF PREDICTED RN0 COHPUTE0 RSR SPECTRR FOR GROUP ••2V

NOTE : THE PREDICTED SPECTRUM IS REPRESENTEB BY THE THICKER CURVE

r 261

6.00

IIIIIIIIIIIII!" .;EI « A_

N 'Iz 1.00 F- I= KKlII—KIBIKKIIIg-

/IIIIH m„_.*=• 1IIIIIIIIIII ”’..Q

.-IHJ¢ .I

EI Ä

O' 10 KKIIIKKIIIKEIIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIO0 (SEC)

FIG. IBM COMPRRISON OF PREDICTED RN0 COHPUTE0 RSR SPECTRR FOR GROUP •MHNOTE : THE PREOICTE0 SPECTRUH IS REPRESENTE0 BY THE THICKER CURVE

262

I

6.00 IIIIIIIIIIIIIE6 I21.00 L6 KKIIIHn 11 .° ‘1lllI_KIIIC: ‘ \CUJ.1 --lIlIlI-IlIL\ -lII

YU. ***78 ‘• ‘—II> n 1Ä

-

E AMI inIl’I

-|6 VLLI¢I

CI!thE

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0060100 (SEC)010. 185 6000001600 00 006016160 000 60000160 060 000 66-660100 6006 0660000016 1 11 THE 1016060 60006 100160166 THE 006016160 60661000 000 THE 06600021 THE 6066100 60000 006 NGHMHLIZED 000 0 0600 066666001100 00 .60 0

263

6.00

IIIIIIIIIIIIIjG

ZD‘* 1_

1- ÜÜ 1 1 •'L_ _1

f- —KIIII1l1—II'1\1K—IIII1. 1 1'¢=‘1

> IIIIIIIIIIIIIW‘·"~ nunE

..IluG

c: 113 Ä1 11T11!"WIIO.10K—MI1IKKIIIKKllI

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PER100 [SEC)F10. 186 CUMPHRISUN 0F PHEDICTED & CUMPUTED BSH, 19¤1 FEHNDRLE NUSE HECOR0NOTE : 11 THE THICKEH CUHVE INDICHTES THE PREDICTED SPECTBUM FUR THE HECOR021 THE SPECTBH SHUHN HHE NUHHHLIZED FOB H PERK HCCELEBHTIGN OF .50 G

26lI

II

6.00

IIIIIIIIIIIII(DEZ v I'!$ I(3 I

Z 1.00 .„ I.I° —KII'H)—KlIlIKKIIlE III;·= I. IIIIIIII1NEIIIIIIIIIWIIIII)W§"'III: j

¢-IluI

ä IIII

KHIIIKKIIIKKIII

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PERIOD (SEC)

FIS. 187 COMPRRISON OF PREDICTED & COHPUTED RSR-PRCOIMR DRM VERTICRL RECORDNOTE : 1) THE THICKER CURVE INDICRTES THE PREDICTED SPECTRUH FOR THE RECORD2) THE SPECTRR SHOHN RRE NORMRLIZED FOR R PERK RCCELERRTION OF .50 G

265

N

200.0

All\I—_Ill_ßl4lIIINTIIIII/Yill

LÄAINZ1 I

‘B 10.00 AE KKQZIKKIIIKKIII

0.01 0.1 1.0 10.0OD (SEG?F10. 188 PROPOSE0 & COHPUTED HERN & lHERN+S0l ‘HOR1ZONTRL‘ RSV FOR GROUP al

NOTE s THE PROPOSE0 HRSSLESS SPECTRR FIRE INDICFITED BY THE THICKER CURVES

266

QIIIIIIIIIIMY Ü

IIIIIHHIQZQIIIIIIIIIINQQMIIII

nnzäinnuuuälllÜIIIIIIIIIIIZääei°$„E“EEEää2EE SEQSEEEE EäägjgygäéjggéäC$¥EE*‘ä$“‘+QE“$ä]EE2„°'23äCE;‘

200.0

LlL!__lIIllZlIIIINIIIIWAIIIA

.. LAAII5* I

I?.‘·’ 0.00 jd

E]0.01 0.1 1.0 10.0PERIOD (SEC) _

F1G.· 190 PROPOSE0 & COHPUTE0 MEHN & (HEF|N+S0l ‘HOH1ZONTRL‘ RSV FOR GROUP s2NOTE : THE PROPOSE0 HFISSLESS SPECTRR RRE INDICFITED BT THE THICKEB CURVES

u268

IIIIIIIIIIIII

1Ä AA]G lhllluhlllzmlllIIIIIHHIIIMKIII? IIIIIINIPMIIIIä ww}?

/IIT A--pM——l||—-l||-ldll-_III--IIIIIIIIIIIIIII

PERIOD (SEC)FIG. 191 PROPOSEO & COHPUTED HERN & (HEHN+SDl ‘VERT]CRL‘ RSV FOR GROUP ••2NOTE : THE PROPOSED NRSSLESS SPECTRH RRE INDICHTED BT THE THICKER CURVES

269

200.0

HUI__III_ßI%IIIILWIII V ' 'A.1 IMQIIIg LAÄA> WV= /}/>·

ä 10.00 1%-1 KKWBZKIIIKKIII

0.01 0.1 1.0 10.0PERIOD (SEC)

FIG. 192 PROPOSED & COHPUTED HERN & lHERN+S0l ‘HORIZONTRL‘ RSV FOR GROUP a3NOTE : THE PROPOSE0 MRSSLESS SPECTRR RRE INDICRTED BY THE THICKER CURVES

270

600.0

VIIIIIIIIIIIW

IIIIIÜEQMQCIIIIIIIII§%§ÄIIII

KKIZZZKIIIKKIII_IZlI--III--IIIÜIIIIIIIIIIIPEBIOD[SEC)

F10. 193 PBOPOSE0 & COHPUTE0 MEBN 8. (MEHN+S0l ‘VEBT1CFIL‘ BSV FOR GROUP •3NOTE z THE PROPOSEB MBSSLESS SPECTBB BBE INOICRTED BY THE THICKEB CURVES

271 _

IIIIIIIIIIIII

100.0 ‘ V Ä „"G ——lIll\_llI§tulI--IIIÜHIIIMMIIIl” IIIIIINIIWZIIIé ‘nv AV Ä

_—Ig¢C—llI__llIIÜIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 (SEC)FIG. ISM PROPOSE0 & COHPUTE0 HERN & lHERN+S0l ‘HOR12ONTRL‘ RSV FOR GROUP ••M

NOTE s THE PROPOSE0 MRSSLESS SPECTRR HRE INDICRTED BY THE THICKER CURVES

272

1

200.0QQIIIIIIÄIIMIl§§__III__ß’!IIIHIIIIIIAMy 7|%!”'

E wälllä 10.00 Är Ä

0.01 0.1 1.0 10.0PERIOD (SEC)

FIG. 195 PROPOSE0 & COMPUTE0 HERN 8. lMERN+S0) ‘HOR12ONTRL‘ RSV FOR GROUP 115NOTE = THE PROPOSE0 HFISSLESS SPECTRR RRE INDICRTED BY THE THICKER CURVES

273

IIIIIIIIIIIIIT ÜIÄ MAB ——IIIlWKIII—ylMII

--l¤!u-l||--l||WIIIIIIIIIII

PEBIGD (SEC)FIG. 196 PBUPUSED & CUMPUTED HEFIN & (HEHN·•SD1 ‘VEBTICRL‘ RSV FOR GBUUP ••5NBTE : THE PBDPUSED HBSSLESS SPECTBR BBE INBICFITED BY THE THICKEFI CUHVES

1.00·l·GHOUP

••1*··GHOUP•3 V Al/|—°“““P ·5 IIIIIIAIIIIIIIIIIIIä

V*1, AÄu_ •60 ÄD IIIIIIIWIIIIIä Ä I‘ Vä IIIIIIÄÄIIIIIIIIIIIIÄÄIIIIIIII3 IIIVÄHIIIIIIIIIAzW'l

0.000.01 0.1 1.0 10.0

PER100 (SEC) BF10. 197 CGEFFICIENT 0F VHBIBTIBN 0F ‘VEBT1CFIL‘ RSV FOFI MHSSLESS 0SC]LLBTOFI

V275

00.. III—]III:-IIIIII——III——III__I“_P"""""===200. 0 L ‘L V.4;;:12;;;

Y F____,,«1—n¤--IllmC...2..---uI-IIFW/III-IIII,, 100.0 „ A 41..1 V 7

X0 IIIZIMIIIIIIIIIU ' ,0 z

"\ IIMAE . Y A0 IIIVAIIIIIIIIII

J‘ IIIIIIIIIIIIIII°§1u0.0 Ä“ IIHIIIIIIIIIIII

IIIIIIIIII-IIII0.01 0.1 1.0 10.0

PERIOD (SEC)FIG. 198 PROPOSE0 & COMPUTE0 HERN & lHEF|N+SDl ‘HOR]ZONTRL‘ RSR FOR GROUP nl

NOTE : THE PROPOSE0 MRSSLESS SPECTRR RRE 1NOICRTE0 BT THE THICKER CURVES

276

..... IIIKKIIIKKIIEIIl——III——II„rv

R\I——I¤¤4IlI__I“P4lIID=·{ 1--lI..l.4•u--IIII-IIIA-III-IIII,_ 180.0AHJ

th° IIHIIIIIIII II.5 ,1HJ(D6 IIIHIIIIIII II·: 160.0 /D .Z IIMIIIIIIIIIIIIgILI IIIIIIIIIIIIIII3 1!«I0.0 Ä“ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIO. O1 O. 1 1. O 10. 0

PEFIIOD (SEC}FIG. 199 PHOPOSED 8. COMPUTEO HEFIN & lMEFlN+SDl ‘VEHTICBL‘ BSB FOR GROUP 111NOTE : THE PROPOSEO MFISSLESS SPECTRFI FIRE INDICBTED BY THE THICKEB CUFIVES

277

.1... IIIIIIIIIIIIIlIl——IIl——III

200.0 Ä Ä

AIllI\>I!—'*—*'--—···I -«¤¤11-nuI-IIPUKIII-IIII.. 180.0 „AÄ Ag V·¤ IIIMIMI I IIIIU ,IH\Z

‘” IIIIIWI I IIII:1 nr6 IIMIZIIIIIIIIII: I II / ·Ilu.-I~ IHIHIIIIIIIIIII8 UI0.0° IIIIIIIIIIIIIIIIIIIIIIIHI IläIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 (SEC}FIG. 200 PROPOSE0 & COHPUTE0 HERN & lHERN+SD1 ‘HOR1ZONTRL‘ RSR FOR GROUP ••2

NOTE : THE PROPOSE0 MRSSLESS SPECTRFI RRE INDICRTED BT THE THICKER CURVES

278

.1... IIIKKIIIKKIIIIII--III]-III--Ü“--III—_"'

200.0"’Ä ___ ...--1i--,l¢ ff.. I-Il„.I,4lII--III

ILI° IIIVI} ’2 xl /LJ / ·IIHIVÄIIIIIIIIIä 160.0 / Ä6 IHIMIIIIIIIIIIE _ 1..I“‘ A* IIIIIIIIIIIIIII8 1!|0.0° MIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIÜIIIIIIIIIIIIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PEB10D (SEC) °F10. 201 PHOPOSE0 & COMPUTE0 HEFIN & (MEFIN+S0l ‘VEBT1CRL‘ BSR FOH 0ROUP •2NBTE : THE PROPOSE0 MRSSLESS SPECTRFI HFIE 1N01CHTED BY THE THICKEF1 CUHVES

279

.1... III——III--IIIIII:-III;-III

l?"""'*"""=___ 4-_lll;4¢!„.a-nu!I-IIQJAIIIIIIIIG ' 7== IIIMMIIIIIIIII

Z* IIWWIIIIIIIIII·: 160.0 IA rlIIIMIIIIIIIIIIIE " /1MJ« IIMIIIIIIIIIIII3 1|10.0

ll,

“ IIHIIIIIIIIIIII

IIIIIIIIITIIIII0.01 0.1 1.0 10.0

PERIOD [SEC}F10. 202 PROPOSE0 & COMPUTED MERN & (HEHN+S0l 'HOR12ONTRL‘ RSR FOR GROUP a3

NOTE : THE PROPOSE0 MRSSLESS SPECTRR BRE INUICFITED BT THE THICKER CURVES

280

6... III-XIII;-II!III--III-Igg,MI——lI!Z_III-4

4

__l.-4 -Z-...„¤¤

-_IU\KIVH-IIIng A AnlIIIIEMAIIIIIIII,., 180. 0 A A /

U'!

“ IlI7I%IIIIIIIII.5 A. Ä .[LI

21 IIHIPIIIIIIIIII:: 180 . 0 1V

A Ä

: A A6 IIMIIIIIIIIIII[LIdE IIHIIIIIIIIIIIIg 1110. 0 {°“ IIIIIIIIIIIIIII

IIIIIIIIIIIIIII0. 01 0. 1 1 . 0 10 . 0PERIOD (SEC)

F10. 203 PROPOSE0 & COHPUTE0 MERN 8. lHERN+S01 ‘VERTICRL ‘ RSR FOR GROUP •3NOTE : THE PROPOSE0 MRSSLESS SPECTRFI RRE INDICFITED BY THE THICKER CURVES

”281

l

..... IIIKKIIIIIIIIIII——III——IIlnu--NlI——ll!!_,.-J.-ga§ll——_l!.4§l!!_—lQl—!gIl...-g--1-.;

YIIIIPMIIIIIIIII,_ 180.0 YA A IHJ° IIIVMIIII II··= M1..: J ,6 V> A:160.0 A= VI' A= IIAHIIIIIIIIIIIIIIIJ-l IIMIIIIIIIIIIIIg 1*40.0 rl“ IIIIIIIIIIIIIII

IIIIIIIIIIIIIII0.01 0.1 1.0 10.0PER100 (SEC)

FIG. 20*4 PROPOSED & COHPUTED MERN 8. lHERN+S0l ‘HOR1ZONTRL' RSR FOR GROUP «*4NOTE z THE PROPOSE0 MRSSLESS SPECTRR RRE INDICRTED BY THE THICKER CURVES

I282

II

.„„.„ IIIDDIIIKDIIIIII——III——III

Y200.0L \„zl—h—„ __ ______II*HU“·"%—-—-—~==ALQ

_I-WI;/HIIII-III_ 180.0 A A··“‘ /.:2 A A° Ill' I IIIIIIu.: V2 [E . IM I IIIIIIZD: A” ” IIIIIIIIIIIIIII¢·= VIA-I.J~ IIAIIIIIIIIIIII3 HI0.0 A°“ IIIIIIIIIIIIIIIIIIIHHIIIHIIIIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PER100 (SEC)FIG. 205 PFIUPGSED & CUMPUTED HEFIN & (MEHN+S0l ‘HOF11ZONTHL‘ FISH FUB GBUUP «5

NOTE : THE PBOP05E0 HFISSLESS SPECTRFI FIRE INDICRTED BY THE THICKEB CURVES

283

.1..1 III--III--IIIIII-:III—-III§ll——IlI_—lII§%%——III——!!_.._,

-_II\HP-'/"[ _ ...-1----IIIIIVfil--III„, 180.0 Ar ,44ÄIIIIFWIIIIIIIII

2Q IIIWIIIIIIIIIIg 160.0 AA ADE A'* IIWIIIIIIIIIII¢lud‘ IIOIIIIIIIIIIIIg 1110.0 A° IIIIIIIIIIIIHIIIIIIIIIIHIIIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PERIO0 (SEC)FI6. 206 PROPOSED & COMPUTED MERN 81 (HERN+S0) ‘VERTICRL‘ RSR FOR GROUP 115NOTE : THE PROPOSED MRSSLESS SPECTRR RRE INDICRTED BT THE THICKER CURVES

28*l

0.25 Ü IIIIIIIIII·—lGHOUP ••3—ZZZZZ ZZ Illu-IIIID IIIIIIIIIIIIIZkZZ¢

¤Ü Illllllllllllllä 0. 15 kZ kEÜ IIIHIIIIIIIIIIg unqZ II:Z5 o.1¤ k .4‘¢ZELJ

Ü I ÜIIL ll' 'ÜILJÜ IIII0.os A‘

IllllllklllllllIIIIIIIIIIIIIII0.01 0.1 1.0 10.0

PEB100 (SEC) BFIG. 207 CUEFFICIENT 0F VRBIBTIUN 0F ‘VEBTICRL‘ BSR FUB MFISSLESS USCILLFITGF1

285


Recommended