+ All Categories
Home > Documents > Virtual Impedance Control for Grid-Connected Power...

Virtual Impedance Control for Grid-Connected Power...

Date post: 22-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
21
Virtual Impedance Control for Grid-Connected Power Converters Xiongfei Wang, Frede Blaabjerg Aalborg University, Denmark [email protected] 1
Transcript
Page 1: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

Virtual Impedance Control

for Grid-Connected Power

Converters

Xiongfei Wang, Frede Blaabjerg

Aalborg University, Denmark

[email protected]

1

Page 2: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

2

Introduction

Impedance modeling and analysis

Virtual impedance control

Conclusions

Outline

Page 3: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

3

Impact of Power Electronics

Instability – Resonance (zero damping) – Harmonic (under-damping)

Sub-synchronous oscillation f1

2f1 Near synchronous oscillation

Harmonic oscillation fs/2

fs

Sideband oscillation

- multisampling control

f1: Grid fundamental frequency; fs: Switching frequency Grid Syn.: grid synchronization; PF: power factor;

Current Ref.: current reference generation

Page 4: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

4

► Offshore wind power plant - burned filters of offshore converter station1

► Electric railway network - tripped locomotive2

1. B. Matthias and T. Gerald, “Knall auf hoher see,” DER SPIEGEL 35/2014.

2. E. Mollerstedt and B. Bernhardsson, ”Out of control because of harmonics - an analysis of the harmonic response of an inverter

locomotive,” IEEE Control Systems, vol. 20, no. 4, pp. 70-81, Aug. 2000.

Real-Life Challenges

More Interactions among Clustered Power Converters

Page 5: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

5

Introduction

Impedance modeling and analysis

Virtual impedance control

Conclusions

Outline

Page 6: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

6

Impedance Modeling

Circuit-Oriented Analysis Tool

Ideal

Real case

Re{Yo}>0, stable but may be resonant

Re{Yo}=0, resonant, zero damping

Re{Yo}<0, unstable, negative damping

Impedance/admittance predicts grid-

converter interactions

L2

C VgGcl ic

Series resonanceParallel resonance

Vdc

L1 L2

C Vg

Grid-Connected Converter

L2

C VgYoGcl ic

Parallel instability Series instability

Page 7: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

7

Impedance-Based Stability Analysis

Example - Current Control of Grid Converter with Long Cable

LCL-Filter

L1

CLg

VSC

Vpcc

Multiple PI-sections cable model

L2

ig

Vdc

i1

Vg

Grid

Zg

► Multiple resonance peaks of power cable

► Not all resonances will cause instability

► Instability region needs to be identified

1) Current control is internally stable

2) External instability is dependent on

the impedance ratio Y2clZg

-50

0

50

100

150

Ma

gn

itu

de

(d

B)

101

102

103

-540

-360

-180

0

Ph

as

e (

de

g)

Frequency (Hz)

T2(s)

sf1

6

Page 8: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

8

Impedance-Based Stability Analysis

Example - Current Control of Grid Converter with Long Cable

► Identification of resonance frequency with Bode diagrams

X. Wang, F. Blaabjerg, and M. Liserre, “An active damper for suppressing multiple resonances with unknown frequencies,”

IEEE APEC 2014, 2184-2191.

-150

-100

-50

0

Ma

gn

itu

de

(d

B)

101

102

103

-90

-45

0

45

90

135P

ha

se

(d

eg

)

Frequency (Hz)

Y2cl(s) Yg(s)

Two resonance peaks

Capacitive Y2cl + Inductive Yg

2 2cl g cl gY Z Y Y

2 2cl g cl gY Y Y Y

2 2cl g cl gY Y Y Y

Page 9: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

9

Impedance-Based Stability Analysis

Example - Current Control of Grid Converter with Long Cable

► Validation in time-domain simulations

X. Wang, F. Blaabjerg, and M. Liserre, “An active damper for suppressing multiple resonances with unknown frequencies,”

IEEE APEC 2014, 2184-2191.

Page 10: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

10

Introduction

Impedance modeling and analysis

Virtual impedance control

Conclusions

Outline

Page 11: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

11

Virtual Impedance Control

Basic Idea - Circuit Representation of Multi-Loop Control

Gvo(s):outer virtual impedance controller; Gvi(s): inner virtual impedance controller; Gc(s): current controller

► Modify the reference of modulator (duty cycle) with Gvi(s)

► Adjust the reference of controller reference with Gvo(s)

X. Wang, Y. W. Li, F. Blaabjerg, P. C. Loh, “Virtual-impedance-based control for voltage- and current-source converters,”

IEEE Trans. Power Electron. vol. 30, no. 12, pp. 7019-7037, Dec. 2015.

Page 12: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

12

Virtual Impedance Control

Case I - Inner Virtual Impedance for Current Control Stability

sLf Zvi,2L sLg

VpccsCf

1VM

sLf sLg

VM VpccsCf

1Zvi,2Ci

or Zvi,2Cv

sLf sLg

VM VpccsCf

1Zvi,2g

Converter current feedback Capacitor current/voltage feedback Grid current feedback

,2 ,2( ) ( ) ( )vi L vi dZ s G s G s,2

,2

( )( ) ( )

f

vi ci

vi d f

LZ s

G s G s C

,2

,2

( )( ) ( )

f

vi cv

vi d f

L sZ s

G s G s C

2

,2

,2

( )( ) ( )

f g

vi g

vi d

L L sZ s

G s G s

Grid current control loop

Page 13: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

13

Virtual Impedance Control

Case I - Inner Virtual Impedance for Current Control Stability

System description

Control diagram Equivalent circuit

► Example - Virtual damper

Page 14: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

14

Virtual Impedance Control

Case I - Inner Virtual Impedance for Current Control Stability

► Example - Virtual damper

Lg = 0 mH

[4 ms/div]

i2: [5A/div]

Vpcc: [250 V/div]

[4 ms/div]

i2: [5A/div]

Vpcc: [250 V/div]

[4 ms/div]i2: [5A/div]

Vpcc: [250 V/div]

w/o damper

Lg = 4.5 mH Lg = 9 mH

w/ virtual damper

[4 ms/div]

i2: [5A/div]

Vpcc: [250 V/div]

[4 ms/div]

i2: [5A/div]

Vpcc: [250 V/div]

[4 ms/div]

i2: [5A/div]

Vpcc: [250 V/div]

Page 15: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

15

Virtual Impedance Control

Case II - Outer Virtual Impedance for Grid Synchronization Stability

K. M. Alawasa, Y. A.-R. I. Mohamed, and W. Xu, “Active mitigation of subsynchronous interactions between PWM voltage-

source converters and power networks,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 121–134, Jan., 2014.

Page 16: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

16

Virtual Impedance Control

Passivity-Based Impedance Shaping

► A linear, continuous system G(s) is passive if

• G(s) is stable, no right half-plane poles

• Re{G(jω)} ≥ 0, -90˚ ≤ arg{G(jω)} ≤ 90˚

L. Harnefors, L. Zhang, and M. Bongiorno, “Frequency-domain passivity-based current controller design,” IET Power

Electron. vol. 1, no. 4, pp. 455-465, 2008.

Re

Im G(jω)

► For a cascaded dynamic system, the closed-loop response is passive if

• All subsystems G(s), H(s) are passive

rG(s)

H(s)

y

-180˚ ≤ arg{G(jω)H(jω))} ≤ 180˚

Page 17: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

17

Virtual Impedance Control

Example - Passivity-Based Impedance Shaping

► Multi-paralleled grid converters in renewable power plants

X. Wang, F. Blaabjerg, et al., “Proportional derivative based stabilizing control of paralleled grid converters with cables

in renewable power plants,” IEEE ECCE 2014, pp. 4917-4924.

Lg

Grid

Vg

Four Π-sections cable model (1km/Π-section)

LcCc

2

Cc

2

LcCc

2

Cc

2

LcCc

2

Cc

2

L1

L2

Cf

L1

L2

Cf

L1

L2

Cf

L1

L2

Cf

LcCc

2

Cc

2

Π-section

Vd

c

Vd

c

Vd

c

Vd

c

Page 18: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

18

Virtual Impedance Control

Example - Passivity-Based Impedance Shaping

► Experimental verification

• Six paralleled three-phase voltage-source converters (50 kVA in total) with LCL-filters

• Flexible and intelligent control platform with three DS1007 dSPACE systems

• Reconfigurable for different operating scenarios of distribution power systems

Page 19: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

19

Virtual Impedance Control

Example - Passivity-Based Impedance Shaping

► Experimental verification

#1 current

PCC voltage

#2 current

#3 current

Page 20: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

20

Introduction

Impedance modeling and analysis

Virtual impedance control

Conclusions

Outline

Page 21: Virtual Impedance Control for Grid-Connected Power Convertersgrouper.ieee.org/groups/harmonic/simulate/Panel Sessions/GM_2016… · Parallel resonance Series resonance V dc L 1 L

21

Conclusions

Impedance modeling and analysis - intuitive and efficient tool

Virtual impedance control - circuit representation of multiple-loop

control

Passivity-based impedance shaping provides a robust control design

against grid impedance variation


Recommended