+ All Categories
Home > Documents > VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELGAUM-590010 Seminar presentation on “LIGHT TREE” by...

VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELGAUM-590010 Seminar presentation on “LIGHT TREE” by...

Date post: 16-Dec-2015
Category:
Upload: heidi-boliver
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
30
VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELGAUM-590010 Seminar presentation on “LIGHT TREE” by NAME USN Vasanth.M 1AT07TE059 Under The Guidance Of ATRIA INSTITUTE OF TECHNOLOGY Anandanagar, Bangalore- 560024 Mr.Ravindra Internal Guide, Lecturer , Department of TE
Transcript
  • Slide 1
  • VISVESVARAYA TECHNOLOGICAL UNIVERSITY BELGAUM-590010 Seminar presentation on LIGHT TREE by NAME USN Vasanth.M 1AT07TE059 Under The Guidance Of ATRIA INSTITUTE OF TECHNOLOGY Anandanagar, Bangalore-560024 Mr.Ravindra Internal Guide, Lecturer, Department of TE
  • Slide 2
  • Contents Introduction Block Diagram Comparison between CWDM and DWDM Light Path Light Tree- example Architecture of wavelength-routed optical network Multicast Switch Architectures An MWRS based on a splitter bank MWRS based on a drop and continue switch. The Optical layer Unicast,Broadcast and Multicast Traffic. Light trees problem formulations Advantages and Disadvantages Future enhancement Conclusion References
  • Slide 3
  • Introduction Today, there is a general consensus that in near future wide area networks (WAN) will be based on Wavelength Division Multiplexed (WDM) optical networks. Depending on the underlying physical topology networks can be classified into three generations: 1 st Generation : They employ copper-based or microwave technology. eg. Ethernet. 2 nd Generation : These networks use optical fibers for data transmission but switching is performed in electronic domain. eg. FDDI. 3 rd Generation: These networks both data transmission and switching is performed in optical domain. eg. WDM.
  • Slide 4
  • Block diagram Traditional Digital Fiber Optic Transport Single Pair of Fibers Traditional Digital Fiber Optic Transport Single Pair of Fibers Single Pair of Fibers Digital Transceiver Single Pair of Fibers
  • Slide 5
  • Digital fiber optic transport using WDM Digital Transceiver Single Pair of Fibers WDM MUX Fiber Optic Transport using WDM
  • Slide 6
  • Comparison between CWDM and DWDM Two types of WDM Coarse wavelength division multiplexing(CWDM) Dense wavelength division multiplexing(DWDM) Feature CWDM DWDM Wavelengths per fiber 8 16 40-80 Wavelength spacing 2500GHz (20nm) 100 GHz (0.8nm) Wavelength capacity Up to 2.5 Gbps Up to 10 Gbps Aggregate Fiber capacity 20 40 Gbps 100 1000 Gbps Overall cost Low Medium Applications Enterprise, metro-access metro-core, regional
  • Slide 7
  • Light Path A light path is an all-optical channel which may be used to carry circuit switched traffic and it may span multiple fiber links. A light path can create logical (or virtual) neighbors. A light path carries direct traffic between nodes it interconnects. Major Objective of light path communication is to reduce the number of hops. Under light path communication the network employs an equal number of transmitters and receivers because light path operates on point to point basis.
  • Slide 8
  • Light Tree A light tree is a point to point multipoint all optical channel which may span multiple fiber links. It enables single-hop communication between a source node and a set of destination nodes. A light tree based virtual topology can reduce the hop distance, thereby increasing the network throughput.
  • Slide 9
  • Light tree example Figure : Architecture of a wavelength-routed optical network and its layered graph
  • Slide 10
  • Light tree example Contd We refer light tree as a point to multi point extension of light path. Many multicasting applications exist such as teleconferencing, software/file distribution including file replication on mirrored sites, distributed games, Internet news distribution-mail mailing lists. In future as multicast applications become more popular and bandwidth intensive.
  • Slide 11
  • Architecture of Wavelength-Routed Optical Network NSFNET backbone topology
  • Slide 12
  • Virtual links induced by the light tree consisting of source UT and destination nodes TX,NE and IL. Architecture of Wavelength-Routed Optical Network contd
  • Slide 13
  • A WDM control network may require efficient delivery of broadcast traffic. which may be modelled as a layered graph in which each layer represents a wavelength and each physical fibre has a corresponding link on each wavelength layer. The switching state of each wavelength-routing switch (WRS) is managed by a controller. A light tree based broadcast layer may provide an efficient transport mechanism for such multicast applications.
  • Slide 14
  • Multicast Switch Architectures Linear divider combiner (LDC)
  • Slide 15
  • Multicast Switch Architectures contd linear divider combiner with two input fibers (the Pis), two output fibers (the Pos) two dividers and four control signals (the js). The LDC acts as a generalized optical switch with added functions of multicasting and multiplexing. Formula Derivation: The values of 1, 2, 3, 4 control the proportion of the input power that can be sent to the output links. Let Pi1 and Pi2 be the power on the input links, and let Po1 and P02 be the output powers. Then, Po1= (1-1) (1-3) Pi1+ (1-2) 3Pi2 and Po2= 1 (1-4) Pi1+14Pi2
  • Slide 16
  • An MWRS based on a splitter bank A multi-cast capable wavelength routing switch
  • Slide 17
  • An MWRS based on a splitter bank contd An optical splitter splits the input signal into multiple identical output signals. Since an optical splitter is a passive device the power from at least one output signal of an n-way optical splitter is less than or equal to 1/n times the input power.
  • Slide 18
  • MWRS based on a drop and continue switch In a drop and continue switch a light path can be terminated at a node and simultaneously an identical copy of the light path can be allowed to continue to another node in the network. Technique: It is the special case of light tree, By employing a drop and continue switch we can construct a chain of nodes which are connected by a drop and continue light path. All nodes on the chain will receive transmissions on a drop and continue light path where light is dropped.
  • Slide 19
  • The Optical Layer Definition: The optical layer provides light paths to the higher layers. In addition to the pass through capability provided by the optical layer other features include are: Transparency Wavelength reuse Reliability Virtual topology Circuit switching.
  • Slide 20
  • Unicast, Broadcast and Multicast Traffic Unicast Traffic: IP/TV on Demand use unicast traffic. Each user can request the program at a different time. with the number of simultaneous users limited by the available bandwidth Unicast traffic is sent from a single source to a single destination IP address.
  • Slide 21
  • Unicast traffic Contd Example of Single Unicast TrafficExample of Multiple-Stream Unicast Traffic
  • Slide 22
  • Broadcast Traffic: Broadcast traffic uses a special IP address to send a single stream of data to all of the machines on the local network. A broadcast address typically ends in 255. (for example, 192.0.2.255) or has 255 in all four fields (255.255.255.255). Example of Broadcast Traffic
  • Slide 23
  • Multicast Traffic: Unlike unicast addresses, when a data stream is sent to one of these addresses potential recipients of the data can decide whether or not to receive the data. If the user wants the data the user's machine receives the data stream if not the user's machine can ignore it. Example of multicast traffic
  • Slide 24
  • Combining Unicast and Multicast Traffic: Example of Combined Multicast and Unicast Traffic
  • Slide 25
  • Combining Unicast and Multicast Traffic contd If the routers in a network are not capable of handling multicast IP/TV can use unicast transmissions to send the multimedia content across the non multicast - enabled router. A server on the other side of the router can then use multicast transmission to deliver the content to its local users.
  • Slide 26
  • Light trees: problem formulations Here, we state the problem of unicast traffic. We are given the following inputs to the problem: A physical topology Gp = (V, Ep) consisting of a weighted undirected graph. The number of wavelength channels carried by each fibre =W. An NxN traffic matrix, where N is the number of network nodes and the (i, j) th element is the average rate of traffic flow from node i to node j. The number of wavelength tunable lasers (Ti) and wavelength tunable filters (Ri) at each node.
  • Slide 27
  • Advantages and Disadvantages: Advantages: Single hop communication. Increased Bandwidth. Broadcasting and Multicasting. Disadvantages: Difficulties arising from limited number of transceivers per node. Difficulties arising from limited number of wavelengths.
  • Slide 28
  • Future enhancement Wavelength assignment algorithm should be explored in future research. To Minimize wavelength cost.
  • Slide 29
  • Conclusion A novel WDM WAN architecture based on light trees that are capable of supporting broadcasting and multicasting over a wide-area network by employing a minimum number of optoelectronic devices. Such WDM WAN can provide a very high bandwidth optical layer which efficiently routes unicast, broadcast and multicast packet-switch traffic. Preliminary results show that if we employ a set of light trees, then significant savings can be achieved in terms of the number of optoelectronic devices that are required in the network.
  • Slide 30
  • References 1. Laxman H. Sahasrabudhe and Biswanth mikhergee, Light trees : Optical Multicasting For Improved Performance in Wavelength-Routed networks. 2. Biswanth Mukhergee, Dhritiman Banergee, S.Ramamurthy And Amarnath Mukhergee,The Principles for Designing a wide-area WDM Optical Network,IEEE/ACM Trans.Networking. 3. Laxman H. Sahasrabudhe, Light trees: An Optical Layer for Tomorrows IP Networks, 4. www.ucdavis.edu 5. Rajiv Ramaswami and kumara N. Sivarajan Optical Networks. 6. www.ieng.com/univercd/cc/td/doc/product/software

Recommended