+ All Categories
Home > Documents > Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨...

Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨...

Date post: 01-Mar-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
34
Electronic properties of graphene antidot lattices Vladimir M. Stojanovi´ c University of Basel urzburg June 1, 2010
Transcript
Page 1: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

.

.

. ..

.

.

Electronic properties of graphene antidot lattices

Vladimir M. StojanovicUniversity of Basel

WurzburgJune 1, 2010

Page 2: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Outline of the talk

Introduction to graphene antidot lattices

Tight-binding band structure, appearance of midgap states,comparison with other approaches

[M. Vanevic, VMS, and M. Kindermann, PRB 80, 045410 (2009)]

Electron-phonon coupling, mass renormalizationas a signature of polaronic behavior

[N. Vukmirovic, VMS, and M. Vanevic, PRB 81, 041408(R) (2010)]

[VMS, N. Vukmirovic, and C. Bruder, PRB 82, 165410 (2010)]

Conclusions and Outlook

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 2 / 31

Page 3: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Outline of the talk

Introduction to graphene antidot lattices

Tight-binding band structure, appearance of midgap states,comparison with other approaches

[M. Vanevic, VMS, and M. Kindermann, PRB 80, 045410 (2009)]

Electron-phonon coupling, mass renormalizationas a signature of polaronic behavior

[N. Vukmirovic, VMS, and M. Vanevic, PRB 81, 041408(R) (2010)]

[VMS, N. Vukmirovic, and C. Bruder, PRB 82, 165410 (2010)]

Conclusions and Outlook

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 2 / 31

Page 4: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Outline of the talk

Introduction to graphene antidot lattices

Tight-binding band structure, appearance of midgap states,comparison with other approaches

[M. Vanevic, VMS, and M. Kindermann, PRB 80, 045410 (2009)]

Electron-phonon coupling, mass renormalizationas a signature of polaronic behavior

[N. Vukmirovic, VMS, and M. Vanevic, PRB 81, 041408(R) (2010)]

[VMS, N. Vukmirovic, and C. Bruder, PRB 82, 165410 (2010)]

Conclusions and Outlook

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 2 / 31

Page 5: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Outline of the talk

Introduction to graphene antidot lattices

Tight-binding band structure, appearance of midgap states,comparison with other approaches

[M. Vanevic, VMS, and M. Kindermann, PRB 80, 045410 (2009)]

Electron-phonon coupling, mass renormalizationas a signature of polaronic behavior

[N. Vukmirovic, VMS, and M. Vanevic, PRB 81, 041408(R) (2010)]

[VMS, N. Vukmirovic, and C. Bruder, PRB 82, 165410 (2010)]

Conclusions and Outlook

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 2 / 31

Page 6: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Graphene antidot lattices

T. G. Pedersen et al., PRL 100, 136804 (2008)

triangular superlattices with circular antidots {L, R},or triangular antidots {L, D}

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 3 / 31

Page 7: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Research on graphene antidot lattices: an overview

.

.

Theory:

T. G. Pedersen et al., PRL 100, 136804 (2008);T. G. Pedersen et al., PRB 77, 245431 (2008);M. Vanevic, VMS, and M. Kindermann, PRB 80, 045410 (2009);J. A. Furst et al., PRB 80, 115117 (2009);J. A. Furst et al., New J. Phys. 11, 095020 (2009);L. Rosales et al., PRB 80, 073402 (2009);X. H. Zheng et al., PRB 80, 075413 (2009);W. Liu et al., PRB 80, 233405 (2009);R. Petersen and T. G. Pedersen, PRB 80, 113404 (2009);N. Vukmirovic, VMS, and M. Vanevic, PRB 81, 041408 (R) (2010);VMS, N. Vukmirovic, and C. Bruder, PRB 82, 165410 (2010).

Experiment:

T. Shen et al., APL 93, 122102 (2008);J. Eroms and D. Weiss, New J. Phys. 11, 095021 (2009);J. Bai et al., Nature Nanotech. 5, 190 (2010);M. Kim et al., Nano Lett. 10, 1125 (2010).

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 4 / 31

Page 8: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Realization of graphene antidot lattice (March 2010)

M. Kim et al.,Nano Lett. 10, 1125 (2010)

J. Bai et al.,Nature Nanotech. 5, 190 (2010)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 5 / 31

Page 9: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Relevant numbers

triangular antidot lattice period: La√

3 ( a ≈ 2.46 A )

UCLA lattices: period 27 − 39 nm

Wisconsin lattices: period 36.4 nm

our lattices: {L, R = 5} family ( 9 ≤ L ≤ 19 )

{L, R = 7} family ( 12 ≤ L ≤ 20 )

⇒ period ≤ 8.2 nm

Nat ∼ 300 − 1600 C atoms per unit cell

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 6 / 31

Page 10: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Electronic structure of antidot lattices (I)

DFT band-structure calculation not conceivable!

Tight-binding model (n.n. hopping integral t ≈ 2.8 eV):

He = − t

2

∑R;m;�

(ay

R+dm+�aR+dm + h.c.)

Good comparison with DFT results for lattices with small unit cells![J. A. Furst et al., NJP 11, 095020 (2009)

]

Artifact of the n.n. tight-binding model on a bipartite lattice:exact particle-hole symmetry

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 7 / 31

Page 11: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Electronic structure of antidot lattices (II)

Heψnk(r) = εnkψnk(r) , ψnk(r) =∑m

Cn;km φnk(r)

φnk(r) ≡ N�1=2∑

R

eik�Rϕ(r − R − dm)

2pz orbital of the C atom at R + dm: ϕ(r − R − dm)

⟨ϕ(r − R0 − dm0)

∣∣ϕ(r − R − dm)⟩

= δR;R0δm;m0

(Overlap of 2pz orbitals on different atoms is negligible)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 8 / 31

Page 12: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Band structure: circular-antidot case

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 9 / 31

Page 13: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Band structure: triangular-antidot case

{L = 9, D = 6} {L = 9, D = 9}

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 10 / 31

Page 14: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Origin of completely flat bands at ε = 0

Bipartite topology ⇒ the degeneracy of zero-energy states equalsthe site imbalance between the two sublattices !

[ M. Inui, S. A. Trugman, and E. Abrahams, PRB 49, 3190 (1994) ]

Periodic systems: ε = 0 flat bands ⇐⇒ site imbalance per unit cell

Graphene antidot lattices:

circular case NA − NB = 0 =⇒ no flat bands

triangular case NA − NB = D =⇒ D flat bands

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 11 / 31

Page 15: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Further implications of bipartite structure

The theorem of Inui et al. holds even whenthe hopping integral is random and/or not real!

Implication for the case with an external magnetic field

t → tij = t exp(

− ie

~c

∫ rj

ri

A · dr)

ε = 0 flat bands remain flat!

Lieb’s theorem: ground state of the Hubbard model onan imbalanced bipartite lattice has total spin

Stot =1

2|NA − NB|

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 12 / 31

Page 16: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Zero-energy midgap states in real space

tunnelling current

I(r) ∝∫ "F+eV

"Fdε ρ(r, ε)

ρ(r, ε) – local electronic DOS

the ε = 0 midgap statesare pseudospin polarizedand exponentially localized!

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 13 / 31

Page 17: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Influence of an on-site potential along the edges

{L = 9, D = 6}

On-site potential mimicshydrogen passivationwithin a TB model !

Attractive on-site potential:

V = −0.15 t

partially lifts the flat-banddegeneracy and “flatness”

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 14 / 31

Page 18: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Beyond tight-binding model: D = 3 example

Calculations by J. A. Furst et al.,PRB 80, 115117 (2009)

Conclusions:

one completely flat+ two low-dispersion bands!

spin-splitting in the sDFT!

Lieb’s theorem still works!

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 15 / 31

Page 19: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Electron-phonon coupling in graphene antidot lattices

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 16 / 31

Page 20: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Motivation

QUESTION: Worth of studying at all?

Phonons in graphene are comparatively unimportant:

ARPES data on inelastic carrier lifetime explainedwithout even invoking phonon-related effects!

[A. Bostwick et al., Nature Phys. 3, 36 (2007)]

However, graphene antidot lattice is a totally different system:

narrow-band semiconductor

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 17 / 31

Page 21: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Bandgaps & bandwidths

Graphene antidot lattices are narrow-band systems!

{L, 5} family:

Wc = 0.11 − 0.14 eV(increases with L)

Eg = 0.18 − 0.74 eV(decreases with L)

Scaling law:

Eg ∝ R

L2=

(R/L)

L

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 18 / 31

Page 22: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Phonons in graphene antidot lattices

Dph(ω) ≡ N�1∑

q;�

δ[ω − ω�(q)]

Two methods:

valence force field (VFF)V. Perebeinos & J. Tersoff,PRB 79, 241409(R) (2009)

4th nn force constant (4NNFC)J. Zimmermann et al.,PRB 78, 045410 (2008)

Model parameters extractedfrom graphene data!

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 19 / 31

Page 23: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Peierls-type electron-phonon coupling

.

.

π-electron hopping integral isdynamically bondlength-dependent!

t → t(∆ucc) = t + α∆ucc

also known as:

SSH coupling

BLF coupling

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 20 / 31

Page 24: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Peierls-type electron-phonon coupling

phonon modulation of π-electron hopping integrals

t −→ t + α∑�

[u�;R+dm+� − u�;R+dm

] · δ

α = 5.27 eV/A ; δ ≡ δ/‖δ‖

electron-phonon coupling Hamiltonian in real space:

Hep =α

2

∑R;m;�;�

(ay

R+dm+�aR+dm + h.c.)[

u�;R+dm+� − u�;R+dm

] · δ

u�;R+dm ≡ 1√N

∑q

eiq�R(by�q;� + bq;�)√2Mω�(q)

v�m(q)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 21 / 31

Page 25: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Electron-phonon coupling in momentum space

Hep =1√N

k;q;�;n

γ�nn(k, q) ayn;k+qan;k(by�q;� + bq;�)

vertex function: γ�nn(k, q) = V �nn(k, q) + W �

nn(k, q)

V �nn(k, q) =

α√8Mω�(q)

m;�

δ · [v�m+�(q) − v�m(q)]

× [(Cn;k+q

m+� )�Cn;km + (Cn;k+q

m )�Cn;km+�

]

H(c)ep =

1√N

k;q;�

γ�cc(k, q) ayc;k+qac;k(by�q;� + bq;�)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 22 / 31

Page 26: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Strongly momentum-dependent electron-phonon coupling

(a) (b)

(c) (d)

important quantity:

|γ�cc(k = 0, q)|

strongest couplingto the highest-energy

optical phonon!

For this branch|γ�cc(k = 0, q)|largest at q = 0!

..

RB

=⇒ expect large mass enhancement!

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 23 / 31

Page 27: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Comparison with other electron-phonon couplings

.

..

1 momentum-independent couplings

Holstein-type (local) coupling: γ(k, q) = g = const.

.

.

.

2 momentum-dependent couplings

SSH coupling on a square lattice:

γSSH(k, q) ∝ sin(k · a) − sin[(k + q) · a

]

γSSH(k = 0, q) ∝ |q| → 0 (q → 0)

coupling to the “breathing” modes in cuprates:

γ(k, q) = γ(q) ∝√

sin2(qx/2) + sin2(qy/2)

γ(q) ∝ |q| → 0 (q → 0)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 24 / 31

Page 28: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Quasiparticle weight and effective mass

GENERAL: ratio of the effective (meff) and bare band (m�e) masses

meff

m�e

= limk!0

ε(k) − ε(0)

E(k) − E(0)

renormalized dispersion: E(k) = ε(k) + ReΣ[k, E(k)]

Z�1(0) = 1 − ∂

∂ω

[ReΣ(k, ω)

]∣∣∣∣k=0; !=E0

Rayleigh-Schrodinger perturbation theory:

Z�1c (0) = 1 +

1

N

q;�

|γ�cc(k = 0, q)|2[εc(0) − εc(q) − ω�

]2

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 25 / 31

Page 29: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Strong phonon-induced renormalization (I)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 26 / 31

Page 30: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Strong phonon-induced renormalization (II)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 27 / 31

Page 31: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Large electron-phonon mass enhancement

(meff

m�e

)�

=1 − ∂

∂ωReΣc(k, ω)

∣∣k=0;!=Ec(0)

1 +∂

∂εc(k�)ReΣc(k�, ω)

∣∣k�=0;!=Ec(0)

λ(�)me =

Z�1c (0)

1 +∂

∂εc(k�)ReΣc(k�, ω)

∣∣k�=0;!=Ec(0)

− 1

example: {9,5} lattice – λ(x)me = 2.411 , λ(y)

me = 2.448

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 28 / 31

Page 32: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Are there polarons in this system?

Standard criteria for polaron formation not amenable to testing;

short-range, nonpolar e-ph coupling (covalently-bonded systems)

⇒ carriers are quasifree electrons or small polarons!

interface with polar substrates (SiC, SiO2):interplay of Peierls-type and Frohlich-type coupling

G. De Filippis, V. Cataudella, S. Fratini, and S. Ciuchi,arXiv:1005.2476 (2010)

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 29 / 31

Page 33: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Conclusions and Outlook

Graphene antidot lattices have completely/nearly flat bandsas a result of bipartite structure and sublattice site imbalance

Phonon-induced mass renormalization in graphene antidot latticesis very strong – onset of polaronic behavior

Study more realistic graphene antidot latticesusing simplified (continuum) approaches

V. M. Stojanovic (University of Basel) Wurzburg 01/06/2010 30 / 31

Page 34: Vladimir M. Stojanovi´c University of Basel · V. M. Stojanovi´c (University of Basel) Wurzburg¨ 01/06/2010 2 / 31. Outline of the talk Introduction to graphene antidot lattices

Basel, Switzerland

Thank youfor your attention !

Funding:

Swiss NSF,NCCR Nanoscience


Recommended