+ All Categories
Home > Documents > Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range...

Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range...

Date post: 09-Dec-2016
Category:
Upload: mariana
View: 215 times
Download: 0 times
Share this document with a friend
7
Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K Daniela Gheorghe, Dana Dragoescu,* and Mariana Teodorescu Ilie MurgulescuInstitute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania ABSTRACT: The results of the density measurements for the pair systems containing nitromethane with 1,1,2,2-tetrachloro- ethane, 1,1,1-trichloroethane, chloroform, 1,2-dichloroethane, 1,3-dichloropropane, 1,4-dichlorobutane, 1-chlorobutane, and 1-chloropentane at T = (298.15, 308.15, and 318.15) K and atmospheric pressure on entire compositional range are reported. The derived excess molar volumes, V E , are positive for the nitromethane + 1,1,1-trichloroethane, + 1,2-dichloroethane, + 1,3-dichloropropane, + 1,4-dichlorobutane, + 1-chlorobutane, and + 1-chloropentane binary mixtures, and they are negative for the other two systems: nitromethane + 1,1,2,2-tetrachloroethane, and + chloroform, on the entire compositional range and at all three studied temperatures. The excess molar volumes have been correlated with the three-parameter RedlichKister equation. INTRODUCTION Nitroalkanes and chloroalkanes dene classes of important industrially compounds which are used as nal products or as intermediates. Nitromethane is principally used as stabilizer for chlorinated solvents, with high importance in degreasing, dry cleaning, and semiconductor processing. From a variety of possible combinations, a large number of nitromethane + chloroalkane mixtures must be studied experi- mentally for obtaining the necessary data to the separation processes design in chemical plants. Simultaneously, these experimental data are very useful to the development of new thermodynamic property predictive methods and for verifying the existing theories of liquids. Therefore, the study of excess thermodynamic properties, such as excess molar volume, is quite important to understand molecular interactions in mixtures and to develop and test theories of solutions and mathematical models. 1,2 The present work is a part of our systematic study on the excess thermodynamic properties for nitroalkanes with chloroalkanes mixtures. The paper reports excess molar volumes data of eight binary liquid mixtures of nitromethane with: 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, chloro- form, 1,2-dichloroethane, 1,3-dichloropropane, 1,4-dichlorobu- tane, 1-chlorobutane, and 1-chloropentane, at three temper- atures (298.15, 308.15, and 318.15) K and atmospheric pressure, over the whole range of composition. The measurements were carried out for complementing the experimental data on vaporliquid equilibria (VLE) of the following binary mixtures: 1,2-dichloroethane + nitromethane/ nitroethane, 3 1,3-dichloropropane + nitromethane/nitroethane, 4 1,4-dichlorobutane + nitromethane/nitroethane, 5 and 1-chlor- obutane, 1-chloropentane + nitromethane/nitroethane. 6 EXPERIMENTAL SECTION Materials. The commercial sources and purity levels of the compounds used in this work are shown in Table 1. The liquids were kept in advance on freshly reconditioned 4 Å ́ molecular sieves and therefore dried by water traces. They were used without other purication procedure. The quality of the compounds was veried by gas chromatography, and it was better than declared. In Table 2 it can be observed that our experimental density values for the pure substances are in fair agreement with the values from literature. Apparatus and Procedure. The binary systems were synthetically obtained by mixing certain weighted volumes of pure liquids in airtight glass bottles by means of a electronic balance GH-252 (A&D Japan) with uncertainty of ± 0.1·10 6 kg. Received: November 26, 2012 Accepted: April 1, 2013 Published: April 25, 2013 Table 1. Material Descriptions chemical name source mass fraction purity purication method nitromethane Fluka 0.987 none 1,1,2,2-tetrachloroethane Aldrich 0.98 none 1,1,1-trichloroethane Merck 0.99 none chloroform Aldrich 0.99 none 1,2-dichloroethane Aldrich 0.998 none 1,3-dichloropropane Aldrich >0.996 none 1,4-dichlorobutane Aldrich 0.998 none 1-chlorobutane Aldrich 0.996 none 1-chloropentane Aldrich 0.998 none Article pubs.acs.org/jced © 2013 American Chemical Society 1161 dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 11611167
Transcript
Page 1: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

Volumetric Study for the Binary Nitromethane with ChloroalkaneMixtures at Temperatures in the Range (298.15 to 318.15) KDaniela Gheorghe, Dana Dragoescu,* and Mariana Teodorescu

“Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania

ABSTRACT: The results of the density measurements for thepair systems containing nitromethane with 1,1,2,2-tetrachloro-ethane, 1,1,1-trichloroethane, chloroform, 1,2-dichloroethane,1,3-dichloropropane, 1,4-dichlorobutane, 1-chlorobutane, and1-chloropentane at T = (298.15, 308.15, and 318.15) K andatmospheric pressure on entire compositional range are reported.The derived excess molar volumes, VE, are positive for thenitromethane + 1,1,1-trichloroethane, + 1,2-dichloroethane, +1,3-dichloropropane, + 1,4-dichlorobutane, + 1-chlorobutane,and + 1-chloropentane binary mixtures, and they are negative forthe other two systems: nitromethane + 1,1,2,2-tetrachloroethane,and + chloroform, on the entire compositional range and at allthree studied temperatures. The excess molar volumes have beencorrelated with the three-parameter Redlich−Kister equation.

■ INTRODUCTION

Nitroalkanes and chloroalkanes define classes of importantindustrially compounds which are used as final products oras intermediates. Nitromethane is principally used as stabilizerfor chlorinated solvents, with high importance in degreasing,dry cleaning, and semiconductor processing.From a variety of possible combinations, a large number of

nitromethane + chloroalkane mixtures must be studied experi-mentally for obtaining the necessary data to the separationprocesses design in chemical plants. Simultaneously, theseexperimental data are very useful to the development of newthermodynamic property predictive methods and for verifyingthe existing theories of liquids.Therefore, the study of excess thermodynamic properties,

such as excess molar volume, is quite important to understandmolecular interactions in mixtures and to develop and testtheories of solutions and mathematical models.1,2

The present work is a part of our systematic study on theexcess thermodynamic properties for nitroalkanes withchloroalkanes mixtures. The paper reports excess molarvolumes data of eight binary liquid mixtures of nitromethanewith: 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane, chloro-form, 1,2-dichloroethane, 1,3-dichloropropane, 1,4-dichlorobu-tane, 1-chlorobutane, and 1-chloropentane, at three temper-atures (298.15, 308.15, and 318.15) K and atmosphericpressure, over the whole range of composition.The measurements were carried out for complementing the

experimental data on vapor−liquid equilibria (VLE) of thefollowing binary mixtures: 1,2-dichloroethane + nitromethane/nitroethane,3 1,3-dichloropropane + nitromethane/nitroethane,4

1,4-dichlorobutane + nitromethane/nitroethane,5 and 1-chlor-obutane, 1-chloropentane + nitromethane/nitroethane.6

■ EXPERIMENTAL SECTIONMaterials. The commercial sources and purity levels of the

compounds used in this work are shown in Table 1. The liquids

were kept in advance on freshly reconditioned 4 Å molecularsieves and therefore dried by water traces. They were usedwithout other purification procedure. The quality of thecompounds was verified by gas chromatography, and it wasbetter than declared. In Table 2 it can be observed that ourexperimental density values for the pure substances are in fairagreement with the values from literature.

Apparatus and Procedure. The binary systems weresynthetically obtained by mixing certain weighted volumes ofpure liquids in airtight glass bottles by means of a electronicbalance GH-252 (A&D Japan) with uncertainty of ± 0.1·10−6 kg.

Received: November 26, 2012Accepted: April 1, 2013Published: April 25, 2013

Table 1. Material Descriptions

chemical name sourcemass fraction

puritypurificationmethod

nitromethane Fluka ≥0.987 none1,1,2,2-tetrachloroethane Aldrich ≥0.98 none1,1,1-trichloroethane Merck ≥0.99 nonechloroform Aldrich ≥0.99 none1,2-dichloroethane Aldrich ≥0.998 none1,3-dichloropropane Aldrich >0.996 none1,4-dichlorobutane Aldrich ≥0.998 none1-chlorobutane Aldrich ≥0.996 none1-chloropentane Aldrich ≥0.998 none

Article

pubs.acs.org/jced

© 2013 American Chemical Society 1161 dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−1167

Page 2: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

Table 2. Comparison of Measured Densities with Literature Values for Pure Components at T = (298.15, 308.15, and 318.15) Ka

10−3·ρ/kg·m−3

T = 298.15 K T = 308.15 K T = 318.15 K

component exptl lit. exptl lit. exptl lit.

nitromethane 1.13087 1.1295797 1.11725 1.1159247 1.10350 1.10608

1.13348 1.11978 1.1037910

1.13099 1.1175310

1.1311810 1.1168611

1.1306211 1.1158212

1,1,2,2-tetrachloroethane 1.58823 1.5891813 1.57266 1.5735713 1.55704 1.5579413

1.57290114

1,1,1-trichloroethane 1.32824 1.3282713 1.31145 1.3114513 1.29447 1.2944713

1.3292915

1,2-dichloroethane 1.24559 1.2454813 1.23096 1.2308313 1.21616 1.2160413

1.24529014 1.23056614

1.2456316 1.230917

1.245517

1,3-dichloropropane 1.18010 1.1795813 1.16770 1.1671613 1.15521 1.1546713

1.1792218 1.1676719 1.154218

1.1790819

1.1802520

1,4-dichlorobutane 1.13394 1.1325713 1.12300 1.1216113 1.11200 1.1106113

1.132821 1.122417

1.1354022

1-chlorobutane 0.88117 0.8810513 0.87000 0.8698613 0.85867 0.8585213

0.880921 0.869622 0.86388224

0.881023

1-chloropentane 0.87709 0.8768125 0.86697 0.856730.8770026

chloroform 1.47342 1.4731613 1.45433 1.4540713 1.43498 1.4347213

1.479726 1.46002528

1.478827

au(T) = 0.01 K; u(ρ) = 0.4 kg·m−3.

Table 3. Experimental Densities, ρ, and Excess Molar Volumes, VE, for Binary Mixtures of Nitromethane with Chloroalkanes atTemperatures of (298.15, 308.15, and 318.15) Ka

T = 298.15 K T = 308.15 K T = 318.15 K

10−3·ρ 106·VE 10−3·ρ 106·VE 10−3·ρ 106·VE

x kg·m−3 m3·mol−1 kg·m−3 m3·mol−1 kg·m−3 m3·mol−1

x 1,1,2,2-Tetrachloroethane + (1 − x) Nitromethane0.0000 1.13086 0.0000 1.11724 0.0000 1.10350 0.00000.0711 1.19108 −0.0285 1.17712 −0.0307 1.16303 −0.03240.1888 1.27568 −0.0828 1.26126 −0.0864 1.24676 −0.09160.2563 1.31800 −0.1462 1.30341 −0.1529 1.28869 −0.15840.3464 1.36665 −0.1499 1.35185 −0.1570 1.33694 −0.16380.4341 1.40857 −0.1697 1.39361 −0.1778 1.37854 −0.18500.5431 1.45403 −0.1839 1.43891 −0.1925 1.42368 −0.19980.6654 1.49784 −0.1803 1.48256 −0.1877 1.46720 −0.19490.8211 1.54460 −0.1353 1.52917 −0.1405 1.51367 −0.14530.9285 1.57192 - 0.0646 1.55640 −0.0668 1.54082 −0.06871.0000 1.58823 0.0000 1.57266 0.0000 1.55704 0.0000

x 1,1,1-Trichloroethane + (1 − x) Nitromethane0.0000 1.13091 0.0000 1.11729 0.0000 1.10355 0.00000.0921 1.16187 0.0186 1.14777 0.0187 1.13354 0.01880.1727 1.18548 0.0339 1.17098 0.0357 1.15635 0.03700.2614 1.20835 0.0494 1.19350 0.0506 1.17849 0.05260.3951 1.23806 0.0646 1.22271 0.0674 1.20719 0.07120.4862 1.25560 0.0716 1.23996 0.0750 1.22413 0.08020.5904 1.27347 0.0753 1.25752 0.0801 1.24139 0.08590.7066 1.29118 0.0708 1.27493 0.0765 1.25849 0.08340.8358 1.30867 0.0513 1.29214 0.0565 1.27542 0.0625

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671162

Page 3: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

Table 3. continued

T = 298.15 K T = 308.15 K T = 318.15 K

10−3·ρ 106·VE 10−3·ρ 106·VE 10−3·ρ 106·VE

x kg·m−3 m3·mol−1 kg·m−3 m3·mol−1 kg·m−3 m3·mol−1

x 1,1,1-Trichloroethane + (1 − x) Nitromethane0.9012 1.31672 0.0392 1.30008 0.0427 1.28324 0.04741.0000 1.32824 0.0000 1.31145 0.0000 1.29447 0.0000

x 1,2-Dichloroethane + (1 − x) Nitromethane0.0000 1.13086 0.0000 1.11724 0.0000 1.10350 0.00000.1132 1.14731 0.0840 1.13359 0.0828 1.11973 0.08210.2235 1.16254 0.1265 1.14871 0.1244 1.13475 0.12200.3249 1.17569 0.1455 1.16177 0.1421 1.14771 0.13850.4672 1.19294 0.1418 1.17889 0.1366 1.16469 0.13160.5586 1.20325 0.1280 1.18911 0.1227 1.17481 0.11760.6264 1.21049 0.1164 1.19629 0.1106 1.18196 0.10290.7349 1.22180 0.0718 1.20748 0.0664 1.19299 0.06140.8570 1.23337 0.0330 1.21891 0.0293 1.20428 0.02590.9230 1.23920 0.0149 1.22467 0.0122 1.20997 0.00961.0000 1.24559 0.0000 1.23096 0.0000 1.21616 0.0000

x 1,3-Dichloropropane + (1 − x) Nitromethane0.0000 1.13090 0.0000 1.11728 0.0000 1.10353 0.00000.0878 1.13558 0.1267 1.12212 0.1302 1.10853 0.13400.1939 1.14134 0.2326 1.12805 0.2391 1.11463 0.24650.2938 1.14679 0.2890 1.13364 0.2978 1.12037 0.30660.3998 1.15241 0.3151 1.13939 0.3249 1.12626 0.33510.5028 1.15765 0.3134 1.14476 0.3228 1.13176 0.33290.6154 1.16315 0.2831 1.15038 0.2920 1.13751 0.30110.7207 1.16807 0.2311 1.15541 0.2383 1.14265 0.24600.8326 1.17304 0.1551 1.16049 0.1599 1.14784 0.16870.9404 1.17755 0.0674 1.16510 0.0693 1.15256 0.07111.0000 1.18010 0.0000 1.16770 0.0000 1.15521 0.0000

x 1,4-Dichlorobutane + (1 − x) Nitromethane0.0000 1.13095 0.0000 1.11732 0.0000 1.10357 0.00000.0825 1.12817 0.1693 1.11498 0.1723 1.10165 0.17700.1759 1.12677 0.2904 1.11392 0.2996 1.10097 0.30900.2825 1.12633 0.3726 1.11386 0.3839 1.10128 0.39660.3815 1.12662 0.4059 1.11444 0.4187 1.10217 0.43210.4815 1.12733 0.4061 1.11542 0.4183 1.10342 0.43160.5911 1.12846 0.3703 1.11680 0.3819 1.10505 0.39440.6898 1.12964 0.3135 1.11818 0.3233 1.10665 0.33320.8208 1.13138 0.2044 1.12016 0.2106 1.10888 0.21630.9262 1.13286 0.0922 1.12181 0.0950 1.11070 0.09771.0000 1.13394 0.0000 1.12300 0.0000 1.11200 0.0000

x 1-Chlorobutane + (1 − x) Nitromethane0.0000 1.13076 0.0000 1.11714 0.0000 1.10339 0.00000.1107 1.08018 0.1059 1.06700 0.1093 1.05370 0.11170.2174 1.04011 0.1915 1.02727 0.1991 1.01429 0.20680.3236 1.00702 0.2377 0.99447 0.2489 0.98209 0.23700.3932 0.98792 0.2724 0.97554 0.2860 0.96301 0.30020.4856 0.96538 0.3061 0.95321 0.3223 0.94087 0.34080.5569 0.94992 0.3197 0.93792 0.3356 0.92576 0.35270.6626 0.92996 0.2801 0.91809 0.3034 0.90620 0.31430.7722 0.91175 0.2322 0.90015 0.2479 0.88840 0.26290.8646 0.89807 0.1839 0.88665 0.1950 0.87507 0.20681.0000 0.88117 0.0000 0.87000 0.0000 0.85867 0.0000

x 1-Chloropentane + (1 − x) Nitromethane0.0000 1.13086 0.0000 1.11723 0.0000 1.10348 0.00000.1043 1.07506 0.1738 1.06209 0.1833 1.04899 0.19380.1721 1.04539 0.2864 1.03277 0.3022 1.02002 0.31930.2575 1.01458 0.3532 1.00233 0.3755 0.98995 0.39950.3466 0.98760 0.4026 0.97570 0.4295 0.96367 0.45830.4525 0.96073 0.4448 0.94919 0.4756 0.93753 0.5078

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671163

Page 4: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

Then, for preventing the formation of absorbed gas bubbles inthe densimeter capillary at high temperatures, mixture sampleswere partially degassed for 30 min, by using an ultrasonic heatedbath (VWR TM International, model USC 300TH). Theestimated uncertainty for the experimental mole fractions wasbetter than ± 0.0002.The density measurements at the three temperatures (298.15,

308.15, AND 318.15) K for the pure components and for thebinary systems were carried out by using a density and soundvelocity meter Anton Paar DSA-5000 M with precision of± 0.05 kg·m−3. Dried air and distilled−deionized ultra purewater at atmospheric pressure were used as calibration fluids forthe cell. The probes thermostatting was maintained constant at± 0.01 K. The experimental measurement uncertainty fordensity was better than 0.4 kg·m−3.

■ RESULTS AND DISCUSSION

The experimental density values, ρ, for the eight investigatedbinary nitromethane with chloroalkane systems at temperaturesof (298.15, 308.15, and 318.15) K and for the entire composi-tion range are displayed in Table 3.The derived excess molar volumes, VE, were determined

from the equation:

ρ ρ ρ ρ= − + − −

⎛⎝⎜⎜

⎞⎠⎟⎟

⎛⎝⎜⎜

⎞⎠⎟⎟V xM x M

1 1(1 )

1 1E1

12

2 (1)

where x is the liquid mole fraction of chloroalkane, M1 and M2are molar masses of chloroalkane and nitromethane, and ρ1and ρ2 are the densities of the pure liquid compounds 1 and 2.The experimental VE values are shown also in Table 3.The obtained VE values were correlated with the three-

parameter Redlich−Kister model:

∑= − −=

V x x A x(1 ) (1 2 )k

kkE

0

2

(2)

Table 3. continued

T = 298.15 K T = 308.15 K T = 318.15 K

10−3·ρ 106·VE 10−3·ρ 106·VE 10−3·ρ 106·VE

x kg·m−3 m3·mol−1 kg·m−3 m3·mol−1 kg·m−3 m3·mol−1

x 1-Chloropentane + (1 − x) Nitromethane0.5435 0.94121 0.4638 0.92996 0.4948 0.91859 0.52730.6864 0.91634 0.3900 0.90549 0.4168 0.89451 0.44590.8325 0.89575 0.2655 0.88527 0.2821 0.87465 0.30200.8859 0.88918 0.2100 0.87882 0.2224 0.86833 0.23671.0000 0.87709 0.0000 0.86697 0.0000 0.85673 0.0000

x Chloroform + (1 − x) Nitromethane0.0000 1.13086 0.0000 1.11724 0.0000 1.10350 0.00000.1197 1.18905 −0.0052 1.17460 −0.0080 1.16001 −0.01090.1772 1.21482 −0.0127 1.20000 −0.0169 1.18502 −0.02090.3007 1.26596 −0.0357 1.25036 −0.0412 1.23459 −0.04700.4009 1.30355 −0.0506 1.28737 −0.0572 1.27100 −0.06380.5000 1.33774 −0.0649 1.32100 −0.0711 1.30411 −0.08020.5978 1.36878 −0.0714 1.35155 −0.0785 1.33409 −0.08500.7194 1.40419 −0.0747 1.38634 −0.0799 1.36825 −0.08470.8607 1.44114 −0.0562 1.42265 −0.0599 1.40389 −0.06230.9562 1.46358 −0.0163 1.44471 −0.0195 1.42556 −0.02151.0000 1.47342 0.0000 1.45433 0.0000 1.43498 0.0000

au(T) = 0.01 K; u(x) = 0.0002; u(ρ) = 0.4 kg·m−3; u(VE) = 10−8 m3·mol−1.

Table 4. Coefficients Ak of the Fitting eq 2 and StandardDeviations, of the Composition σx, and of the Excess MolarVolume, σVE

106·A0 106·A1 106·A2 106·σVE

T/K m3·mol−1 m3·mol−1 m3·mol−1 106·σx m3·mol−1

x 1,1,2,2-Tetrachloroethane + (1 − x) Nitromethane298.15 −0.7352 0.2201 −0.0547 1.6940 0.012308.15 −0.7688 0.2237 −0.0504 2.0900 0.012318.15 −0.7988 0.2252 −0.0537 2.1600 0.012

x 1,1,1-Trichloroethane + (1 − x) Nitromethane298.15 0.2899 −0.1089 0.0512 0.1480 0.001308.15 0.2901 −0.1018 0.0627 0.1470 0.001318.15 0.3257 −0.1575 0.0772 0.1830 0.002

x 1,2-Dichloroethane + (1 − x) Nitromethane298.15 0.5588 0.3489 −0.0576 0.5550 0.004308.15 0.5384 0.3635 −0.0596 0.5320 0.004318.15 0.5161 0.3790 −0.0548 0.4840 0.003

x 1,3-Dichloropropane + (1 − x) Nitromethane298.15 1.2509 0.2863 0.1540 0.8420 0.002308.15 1.2895 0.2921 0.1535 0.8690 0.002318.15 1.3290 0.2903 0.1790 0.6760 0.002

x 1,4-Dichlorobutane + (1 − x) Nitromethane298.15 1.6032 0.4705 0.2375 1.6300 0.003308.15 1.6533 0.4829 0.2359 1.2700 0.002318.15 1.7072 0.5004 0.2316 1.2300 0.002

x 1-Chlorobutane + (1 − x) Nitromethane298.15 1.2073 −0.2611 0.1147 2.6000 0.011308.15 1.2754 −0.3092 0.1165 2.6700 0.010318.15 1.3259 −0.3766 0.1118 3.9300 0.017

x 1-Chloropentane + (1 − x) Nitromethane298.15 1.8067 −0.0276 0.2722 4.4500 0.012308.15 1.9314 −0.0362 0.2512 4.8700 0.012318.15 2.0623 −0.0511 0.2499 5.2400 0.012

x Chloroform + (1 − x) Nitromethane298.15 −0.2591 0.2534 0.0046 0.3260 0.003308.15 −0.2852 0.2566 −0.0055 0.2470 0.002318.15 −0.3153 0.2537 0.0061 0.1950 0.002

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671164

Page 5: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

The eq 2 parameters, Ak, were evaluated by using the maximumlikelihood optimization method.29

These parameters are given in Table 4, together with theobtained standard deviation, σY, expressed as follows:

∑σ = − −=

Y Y n m[ ( ) /( )]Yi

n

i i1

exp , calc,2 0.5

(3)

where Y = value of the property (the mole fraction ofchloroalkane, x, and the excess molar volumes, VE), n is thenumber of the experimental data points, and m = 3 is thenumber of the Redlich−Kister equation parameters.From the measurement results shown in Table 3 and

Figures 1 and 2 it can be seen that the VE values are negative forthe systems: nitromethane + 1,1,2,2-tetrachloroethane, +chloroform and positive for the systems: nitromethane + 1,2-dichloroethane, + 1,3-dichloropropane, + 1,4-dichlorobutane,+ 1,1,1-trichloroethane, + 1-chlorobutane, and + 1-chloropen-tane, on the entire composition domain and at all investigatedtemperatures. It is clear that the interaction factor is dominantfor the mixtures with negative VE values while the steric factorprevails for mixtures with positive VE values.

The negative values of excess volumes for nitromethane +1,1,2,2-tetrachloroethane or + chloroform mixtures decreasewith the increasing temperature. These negative values of VE

indicate that, between unlike molecules, strong intermolecularforces (probably of the H-bonded type) appear at mixing. Suchbehavior could be explained also by the packing effect whichbecame more dominant and increases with temperature, as itwas observed for other systems in literature.13,30

Generally, it seems that the strength of these intermolecularforces is higher for the systems with more chlorine atomsconnected to carbon−hydrogen pair atoms in tetra- ortrichloroalkanes (excepting 1,1,1-trichloroethane) and lesserfor systems with α,ω-dichloroalkanes where it decreases withthe increasing length of the n-alkyl chain.For the binary nitromethane + 1,2-dichloroethane, + 1,3-

dichloropropane, and + 1,4-dichlorobutane mixtures, the VE

values are positive, but small. These values of VE increase with

Figure 1. Excess molar volume, VE, for x chloroalkane + (1 − x)nitromethane binary mixtures at: ◇, 298.15 K; ▲, 308.15 K; ○,318.15 K; (a) 1,1,2,2-tetrachloroethane; (b) chloroform; solid line ,Redlich−Kister correlation.

Figure 2. Excess molar volume, VE, for x chloroalkane + (1 − x)nitromethane binary mixtures at: ◇, 298.15 K; ▲, 308.15 K; ○,318.15 K; (a) 1,1,1-trichloroethane; (b) 1,2-dichloroethane; (c) 1,3-dichloropropane; (d) 1,4-dichlorobutane; (e) 1-chlorobutane; (f)1-chloropentane; solid line , Redlich−Kister correlation.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671165

Page 6: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

the increasing temperature. It appears that the positive valuesfor nitromethane + α,ω-dichloroalkanes are given by thedecreased strength of component molecules interactions andincreased unpacking of unlike molecules at mixing. Theinteractional factor of VE for this class of chloroalkanes variesin the order: 1,2-dichloroethane > 1,3-dichloropropane > 1,4-dichlorobutane. The same variation was observed in terms ofexcess Gibbs energy, GE, in our previous publications.3−5 Someother probable interpretation of the positive VE values could be“the breaking of dipole−dipole interactions between the α,ω-dichloroalkanes molecules from pure state”13 at mixing.For the systems of nitromethane with 1-chloroalkanes, the

free volume, due to the size of the chloroalkane molecules, ishigher for 1-chloropentane than for 1-chlorobutane. It seemsthat this steric effect is giving the size and the sign of the VE

values. The same effect was noticed for the values of GE in themixtures of 1-chlorobutane/1-chloropentane + nitromethane/nitroethane, in our previous paper.6

■ CONCLUSIONNew experimental density values, at T = (298.15, 308.15, and318.15) K and atmospheric pressure, for the binary mixtures ofnitromethane with 1,1,2,2-tetrachloroethane, 1,1,1-trichloroethane,chloroform, 1,2-dichloroethane, 1,3-dichloropropane, 1,4-dichlor-obutane, 1-chlorobutane, and 1-chloropentane were measured.They are dependent on composition, temperature, and the natureof chloroalkane.The VE values determined from densities are positive for the

nitromethane + 1,1,1-trichloroethane, + 1,2-dichloroethane, +1,3-dichloropropane, + 1,4-dichlorobutane, + 1-chlorobutane,and + 1-chloropentane binary mixtures and negative for theother two systems: nitromethane + 1,1,2,2-tetrachloroethane, +chloroform, on the entire composition range and at all studiedtemperatures from (298.15 to 318.15) K.It was shown that the interaction factor is dominant for the

mixtures with negative VE values while the steric factor prevailsfor mixtures with positive VE values.

■ AUTHOR INFORMATIONCorresponding Author*E-mail: [email protected]. Tel.: +40 213167912. Fax:+40 213121147.

Author ContributionsAll authors contributed equally to this paper.

FundingThe financial support of the Romanian Government and EU(ERDF), through research infrastructure acquisition under POS-CCE O 2.2.1 project INFRANANOCHEM - Nr. 19/01.03.2009,is highly appreciated.

NotesThe authors declare no competing financial interest.

■ REFERENCES(1) Sekar, P. R.; Venkateswarlu, R.; Kalluru, R. S. Excess Volumes,Isentropic Compressibilities, and Viscosities of Binary MixturesContaining Cyclohexene. Can. J. Chem. 1990, 68, 363−368.(2) Pico, J. M.; Menaut, C. P.; Jimenez, E.; Legido, J. L.; Fernandez,J.; Andrade, M. I. P, Excess Molar Volumes of Binary Mixtures With 2-Pentanone and 1-Chloroalkanes at 298.15 and 308.15 K. Can. J. Chem.1995, 73, 139−145.(3) Teodorescu, M.; Barhala, A.; Dragoescu, D. Isothermal Vapour-Liquid Equilibria for 1,2-Dichloroethane + Nitromethane and +

Nitroethane Binary Systems at Temperatures Between 333.15 - 353.15K. Fluid Phase Equilib. 2010, 292, 58−63.(4) Teodorescu, M.; Barhala, A.; Dragoescu, D.; Gheorghe, D.Isothermal Vapor-Liquid Equilibria for Nitromethane and Nitroethane+ 1,3-Dichloropropane Binary Systems at Temperatures between(343.15 and 363.15) K. J. Chem. Eng. Data 2011, 56, 4665−4671.(5) Teodorescu, M.; Dragoescu, D.; Gheorghe, D. Isothermal(Vapour + Liquid) Equilibria for (Nitromethane or Nitroethane +1,4-Dichlorobutane) Binary Systems at Temperatures Between(343.15 and 363.15) K. J. Chem. Thermodyn. 2013, 56, 32−37.(6) Dragoescu, D.; Teodorescu, M.; Gheorghe, D. IsothermalVapour-Liquid Equilibria and Excess Gibbs Free Energies in SomeBinary Nitroalkane + Chloroalkane Mixtures at Temperatures from298.15 to 318.15 K. Fluid Phase Equilib. 2013, 338, 16−22.(7) Cerdeirina, C. A.; Tovar, C. A.; Troncoso, J.; Carballo, E.;Romaní, L. Excess Volumes and Excess Heat Capacities ofNitromethane + (1-Propanol or 2-Propanol). Fluid Phase Equilib.1999, 157, 93−102.(8) García-Miaja, G.; Troncoso, J.; Romaní, L. Excess MolarProperties for Binary Systems of Alkylimidazolium-based Ionic Liquids+ Nitromethane. Experimental Results and ERAS-model Calculation. J.Chem. Thermodyn. 2009, 41, 334−341.(9) Tu, C.-H.; Lee, S.-L.; Peng, I.-H. Excess Volumes and Viscositiesof Binary Mixtures of Aliphatic Alcohols (C1-C4) with Nitromethane.J. Chem. Eng. Data 2001, 46, 151−155.(10) Ivanov, E. V. Water as a Solute in Nitromethane: Effect ofH2O−D2O Isotope Substitution on the Solution Volumetric Proper-ties Between 278.15 and 318.15 K. J. Chem. Thermodyn. 2010, 42,1458−1464.(11) Cwiklinska, A.; Kinart, M. C. Thermodynamic and Phys-icochemical Properties of Binary Mixtures of Nitromethane with {2-methoxyethanol + 2-butoxyethanol} Systems at T = (293.15, 298.15,303.15, 308.15, and 313.15) K. J. Chem. Thermodyn. 2011, 43, 420−429.(12) Almasi, M.; Mousavi, L. Excess Molar Volumes of BinaryMixtures of Aliphatic Alcohols (C1-C5) with Nitromethane over theTemperature Range 293.15 to 308.15 K: Application of the ERASModel and Cubic EOS. J. Mol. Liq. 2011, 163, 46−52.(13) Ciocirlan, O.; Teodorescu, M.; Dragoescu, D.; Iulian, O.;Barhala, A. Densities and Excess Molar Volumes of the BinaryMixtures of Cyclohexanone with Chloroalkanes at Temperaturesbetween (288.15 and 318.15) K. J. Chem. Eng. Data 2010, 55, 968−973.(14) Bhatia, S. C.; Bhatia, R.; Dubey, G. P. Studies on Transport andThermodynamic Properties of Binary Mixtures of Octan-1-ol withChloroform, 1,2-Dichloroethane and 1,1,2,2-Tetrachloroethane at298.15 and 308.15 K. J. Mol. Liq. 2009, 144, 163−171.(15) De Lorenzi, L.; Fermeglia, M.; Torriano, G. Densities andViscosities of 1,1,1-Trichloroethane with 13 Different Solvents at298.15 K. J. Chem. Eng. Data 1995, 40, 1172−1177.(16) Rodriguez, V.; Artigas, H.; Lafuente, C.; Rojo, F. M.; Urieta, J. S.Excess Volumes of (1,2-Dichloroethane or 1,2-Dibromoethane +Butan-1-ol or Butan-2-ol or Methylpropan-1-ol or 2-Methylpropan-2-ol) at the Temperatures 298.15 and 313.15 K. J. Chem. Thermodyn.1994, 26, 1173−1178.(17) García-Gimenez, P.; Martínez-Lopez, J. F.; Blanco, S. T.;Velasco, I.; Otín, S. Densities and Isothermal Compressibilities atPressures up to 20 MPa of the Systems N,N-dimethylformamide orN,N-dimethylacetamide + α,ω-Dichloroalkane. J. Chem. Eng. Data2007, 52, 2368−2374.(18) Gonzalez-Salgado, D.; Tovar, C. A.; Cerdeirina, C. A.; Carballo,E.; Romaní, L. Second-order Excess Derivatives for the 1,3-Dichloropropane + n-Dodecane System. Fluid Phase Equilib. 2002,199, 121−134.(19) Iglesias-Otero, M. A.; Troncoso, J.; Carballo, E.; Romaní, L.Density and Refractive Index for Binary Systems of the Ionic Liquid[Bmim][BF4] with Methanol, 1,3-Dichloropropane, and DimethylCarbonate. J. Solution Chem. 2007, 36, 1219−1230.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671166

Page 7: Volumetric Study for the Binary Nitromethane with Chloroalkane Mixtures at Temperatures in the Range (298.15 to 318.15) K

(20) Lafuente, C.; Pardo, J.; Rodriguez, V.; Rojo, F. M.; Urieta, J. S.Excess Volumes of Binary Mixtures of 1,3-Dichloropropane withIsomeric Butanols at 298.15 and 313.15 K. J. Chem. Eng. Data 1993,38, 554−555.(21) Dragoescu, D.; Teodorescu, M.; Barhala, A. Isothermal(Vapour-Liquid) Equilibria and Excess Gibbs Free Energies in SomeBinary (Cyclopentanone + Chloroalkane) Mixtures at Temperaturesfrom 298.15 to 318.15 K. J. Chem. Thermodyn. 2007, 39, 1452−1457.(22) Lafuente, C.; Rodriguez, V.; Lopez, M. C.; Rojo, F. M.; Urieta, J.S. Excess and Partial Excess Molar Volumes of 1,4-Dichlorobutanewith Butanols at 25 °C and 40 °C. J. Solution Chem. 1994, 23, 561−568.(23) Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E. A ComparativeStudy of Thermodynamic Properties of Binary Mixtures ContainingDimethylsulfoxide. J. Therm. Anal. Calorim. 2007, 90, 909−922.(24) Montano, D.; Gascon, I.; Schmid, B.; Gmehling, J.; Lafuente, C.Experimental and Predicted Properties of the Binary MixturesContaining an Isomeric Chlorobutane and Butyl Ethyl Ether. J.Chem. Thermodyn. 2012, 51, 150−158.(25) Santana, P.; Balseiro, J.; Jimenez, E.; Franjo, C.; Legido, J. L.;Carballo, E.; Paz Andrade, M. I. A Study of Excess Molar Enthalpiesand Excess Molar Volumes of Binary Mixtures of 1-Chloropentane + 11-Alkanol (from 1-Butanol to 1-Octanol) at 25 °C. J. Solution Chem.2000, 29, 1115−1122.(26) Riddick, J. A.; Bunger, W. B.; Sakano, T. Techniques ofChemistry, Vol. II. Organic Solvents, 4th ed.; Wiley: New York, 1986.(27) Exarchos, N. C.; Tasioula-Margari, M.; Demetropoulos, I. N.Viscosities and Densities of Dilute Solutions of Glycerol Trioleate +Octane, + p-Xylene, + Toluene, and + Chloroform. J. Chem. Eng. Data1995, 40, 567−571.(28) Kijecanin, M. L.; Serbanovic, S. P.; Radovic, I. R.; Djordjevic, B.D.; Tasic, A. Z. Volumetric Properties of the Ternary System Ethanol+ Chloroform + Benzene at Temperature range (288.15−313.15) K:Experimental Data, Correlation and Prediction by Cubic EOS. FluidPhase Equilib. 2007, 251, 78−92.(29) Vonka, P.; Novak, J. P.; Matous, J. Application of the MaximumLikelihood Method to the Parameter Evaluation in HeterogenousSystems. Collect. Czech. Chem. Commun. 1989, 54, 2823−2839.(30) Valtz, A.; Teodorescu, M.; Wichterle, I.; Richon, D. LiquidDensities and Excess Molar Volumes for Water + DiethyleneGlycolamine, and Water, Methanol, Ethanol, 1-Propanol + TriethyleneGlycol Binary Systems at Atmospheric Pressure and Temperatures inthe Range of 283.15−363.15 K. Fluid Phase Equilib. 2004, 215, 129−142.

Journal of Chemical & Engineering Data Article

dx.doi.org/10.1021/je3013342 | J. Chem. Eng. Data 2013, 58, 1161−11671167


Recommended