+ All Categories
Home > Documents > Voorblad presentatie

Voorblad presentatie

Date post: 11-Jan-2017
Category:
Upload: vantu
View: 217 times
Download: 3 times
Share this document with a friend
31
Status and Future Challenges of CFD for Liquid Metal Cooled Reactors IAEA Fast Reactor Conference 2013 Paris, France 5 March 2013 Ferry Roelofs [email protected] V.R. Gopala K. Van Tichelen X. Cheng E. Merzari W.D. Pointer
Transcript
Page 1: Voorblad presentatie

Status and Future Challenges of CFD

for Liquid Metal Cooled Reactors

IAEA Fast Reactor Conference 2013

Paris, France

5 March 2013

Ferry Roelofs

[email protected]

V.R. Gopala

K. Van Tichelen

X. Cheng

E. Merzari

W.D. Pointer

Page 2: Voorblad presentatie

2 Paris • 5 March 2013

Contents

• Introduction

• Computational Fluid Dynamics

• Thermal-Hydraulics Challenges in Design and Safety

• Liquid Metal Turbulence

• Core Thermal Hydraulics

• Pool Thermal Hydraulics

• System Dynamics

• Summary

• Acknowledgement

Page 3: Voorblad presentatie

3 Paris • 5 March 2013

Introduction Background

• Nuclear power plays and probably will play

important role in energy production

• Large role is attributed world-wide to fast

reactors

• Thermal-hydraulics is considered as key

issue

– Overview by Denis Tenchine in NE&D (2010)

– Overview by K. Velusamy (2010)

– Many subjects involve application of CFD

Page 4: Voorblad presentatie

4 Paris • 5 March 2013

Computational Fluid Dynamics

Page 5: Voorblad presentatie

Computational Fluid Dynamics

Paris • 5 March 2013

approximation

ph

ys

ics

co

mp

ute

r p

ow

er

DNS

LES

Hybrid

RANS/LES

(U)RANS

calculation

DNS LES Hybrid (U)RANS

System Thermal

Hydraulics

STH

Page 6: Voorblad presentatie

6 Paris • 5 March 2013

Thermal-Hydraulics Challenges in

Nuclear Design and Safety

Page 7: Voorblad presentatie

1

2 3

4 3

TH Challenges in Design and Safety

7 Paris • 5 March 2013

1

2

3

4

Core

Reactor Vessel

Heat Transfer System

Heat Transport System

Page 8: Voorblad presentatie

1

TH Challenges in Design and Safety Core

8 Paris • 5 March 2013

1 Core

Levels:

- Complete Core

- Fuel Assembly

- Subchannel

- Molten Core

Page 9: Voorblad presentatie

2

TH Challenges in Design and Safety Reactor Vessel / Pool

9 Paris • 5 March 2013

2 Reactor Vessel

- Core outlet region

- Temperature stratification &

fluctuations

- Gas entrainment

- Fission product transport

- Forced-natural convection

Page 10: Voorblad presentatie

3 3

TH Challenges in Design and Safety Heat Transfer System

10 Paris • 5 March 2013

3 Heat Transfer System

- Efficiency

- Integrity

- Correlations

Page 11: Voorblad presentatie

4

TH Challenges in Design and Safety Heat Transport System

11 Paris • 5 March 2013

4 Heat Transport System

- 3D effects

- Coupling STH-CFD

Page 12: Voorblad presentatie

12 Paris • 5 March 2013

Liquid Metal Thermal-hydraulics

Page 13: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Heat transfer for low Prandtl number fluids

13 Paris • 5 March 2013

• Issue with Low Prandtl number fluids

– Existing (U)RANS engineering turbulence

models all use Reynolds analogy for

coupling temperature and velocity fields

– Not valid for fluids with low Prandtl

numbers (e.g. liquid metals)

source: R. Stieglitz (KIT)

Viscous boundary layer

Thermal boundary layer

Ratio thermal/viscous

Reynolds analogy th=

Page 14: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Heat transfer for low Prandtl number fluids

14 Paris • 5 March 2013

Velocity

Temperature (Pr = 1) Temperature (Pr = 0.01)

Field Scales Boundary

Layer

Velocity Small Thin

Temperature (Pr = 1) Small Thin

Temperature (Pr = 0.01) Large Thick

Page 15: Voorblad presentatie

Liquid Metal Thermal-Hydraulics Improvement of (RANS) models

15 Paris • 5 March 2013

• Implemented in cooperation between CD-adapco, NRG and model developer

Sasa Kenjeres (TU Delft) in STAR-CCM+ β-version

• Challenge: Derive a model for use in all flow regimes simultaneously

2

3210 i

u

j

ij

u

j

ji

uu

i gCx

UuC

x

TuuCCu

AHFM: Kenjeres &

Hanjalic (2005)

Flow

Regime Gr(Pr, Re)

(velocity) Heat transfer

Existing

Models

AHFM

Kenjeres

2000

AHFM

Kenjeres

2005

Natural Low Conduction &

Buoyancy -

+ (air)

- (LM)

+ (air)

+ (LM)

Mixed Intermediate Mixed - - +

Forced High Convection o/+ - +

stability

Careful selection

of model constants

Page 16: Voorblad presentatie

16 Paris • 5 March 2013

Core Thermal-hydraulics

Page 17: Voorblad presentatie

Core Thermal-Hydraulics Subchannel

17 Paris • 5 March 2013

• 7 pin rod bundle – Code independence (STAR-CCM+ vs. OpenFOAM)

– Application of various RANS turbulence models confirms negligible influence

• 19 pin rod bundle – Grid independence (1M vs 5M vs 9M)

• Validation (Challenge) – JAEA experiments (large uncertainties → limited

validation)

– ANL reference 7 pin LES benchmark (ANL-SCK-NRG cooperation starting 2013)

– NRG reference 1 pin LES (under preparation)

– Experiments in NACIE and KALLA loops (2013-2014)

7 pin bundle LES (ANL)

Single pin LES preparation (NRG)

19 pin RANS (NRG)

Page 18: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

• Numerical evaluation of performance of

spacer designs

– Pressure drop

– Clad temperatures

– Local velocities

– Cross flow

18 Paris • 5 March 2013

ALFRED FA (SRS)

Evaluation of spacer performance (NRG)

Page 19: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

• LES reference data (ANL)

– 7 Pin Bundle

– 19 Pin Bundle

– 37 Pin Bundle

– 217 Pin Bundle

• Validation of RANS and low

resolution approaches

– Pressure drop

• Improvement of correlations

• Extending applicability range of

correlations

– Velocity and it’s fluctuations

19 Paris • 5 March 2013

217 pin sodium bundle LES (ANL)

Page 20: Voorblad presentatie

Core Thermal-Hydraulics Fuel Assembly

20 Paris • 5 March 2013

Approach Traditional CFD LRGR CFD

Mesh

Solve All (Flow, bulk turbulence,

boundary layers,

secondary flows)

Main flow

characteristicts

Bulk turbulence

Sub Grid Model To consider

Page 21: Voorblad presentatie

Core Thermal-Hydraulics Complete Core

21 Paris • 5 March 2013

Complete geometry

Identify representative

block within complete

geometry

Section of geometry

Setup of numerical grid for

representative block

Detailed CFD-simulation

of representative block

Extraction of CG-Forces

employing CFD results

Complete geometry

Setup coarse mesh for

complete geometry

Simulation of complete

geometry

employing CGCFD

Parameterization

of CG-Forces

Page 22: Voorblad presentatie

22 Paris • 5 March 2013

Pool Thermal-hydraulics

Page 23: Voorblad presentatie

Pool Thermal-Hydraulics Fundamental Validation

• Triple Jet (Nam & Kim, 2004)

– LES & RANS

• Double Jet: MAX facility (ANL)

– Design support by LES

– Validate LES and RANS with

experimental results

23

LES of Triple parallel jet

experiments by Nam & Kim (2004)

MAX facility and design support (ANL)

Page 24: Voorblad presentatie

Pool Thermal-Hydraulics Integral Simulation

24 Paris • 5 March 2013

Democritos Water Mock-up

(VKI)

MYRRHA Design

(SCK)

ESCAPE LBE Mock-up

(SCK) Scaling simulations

Full scale – velocity scale – Froude scale

• Simulation of integral pool system

– Challenge: Validation with experimental campaign (water and

liquid metal)

Page 25: Voorblad presentatie

Pool Thermal-Hydraulics Gas Entrainment

• Determination of flow patterns in SFR upper

plenum to analyse gas entrainment risk

• From URANS to LES modeling approaches

• From single phase to multiphase

• Modeling core outlet and large components

25 Paris • 5 March 2013

Multiphase LES in TRIO-U (Tenchine, 2010)

URANS (NRG)

Page 26: Voorblad presentatie

26 Paris • 5 March 2013

System Dynamics

Page 27: Voorblad presentatie

System Dynamics

• Code Coupling

– ATHLET – OpenFOAM (KIT)

– Phenix natural convection test

– Pool in OpenFOAM

27 Paris • 5 March 2013

ATHLET nodalization and 3D pool snapshot from OpenFOAM (KIT)

Page 28: Voorblad presentatie

System Dynamics

• Code Coupling

– CATHARE – TRIO_U (CEA)

– Phenix natural convection test

– Dedicated post-processing tools enabling 3D visualization

(using 3D glasses) of sodium flow patterns in reactor pool

28 Paris • 5 March 2013

Page 29: Voorblad presentatie

29 Paris • 5 March 2013

Summary

Page 30: Voorblad presentatie

30 Paris • 5 March 2013

Summary & Conclusions

• Status of CFD developments and future challenges:

– Liquid metal turbulence

• Heat transport modelling for RANS and LES

• Thermal fluctuation prediction for thermal fatigue evaluation

• Flow induced vibrations of e.g. a fuel pin

– Core thermal hydraulics

• Wire wrap fuel assembly simulation and validation

• Low resolution CFD modelling of a fuel assembly to assess blockage scenarios

• Coarse Grid CFD development to allow modelling a complete core

– Pool thermal hydraulics

• Fundamental validation using separate effect facilities, e.g. multiple jets

• Pool modelling validation using prototypical scaled down facilities

• Gas entrainment modelling and validation

• Seismic evaluations including liquid metal sloshing

– System dynamics.

• Coupling of STH and CFD

Page 31: Voorblad presentatie

Acknowledgements

• Colleagues at

– NRG

– SCK•CEN

– KIT

– ANL

• Denis Tenchine and his colleagues at CEA!

31 Paris • 5 March 2013


Recommended