+ All Categories
Home > Documents > Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly...

Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly...

Date post: 14-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
34
Vortex solutions on membranes Vortex solutions on membranes Shinsuke Kawai SKKU, Suwon APCTP YongPyong Winter School, February 2010
Transcript
Page 1: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Vortex solutions on membranes

Shinsuke Kawai

SKKU, Suwon

APCTP YongPyong Winter School, February 2010

Page 2: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Outline

1 IntroductionAdS/CFTAdS/CMTThe ABJM model

2 Non-relativistic mass-deformed ABJMRelativistic mass-deformed ABJMThe non-relativistic limitNon-relativistic SUSY

3 BPS vortex solutionsThe BPS equationsThe exact vortex solutionsExamplesPreserved supersymmetry

4 Summary and comments

Page 3: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

Introduction

What is string theory?

Page 4: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

Introduction

What is string theory?

The theory of strong interaction

Page 5: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

Introduction

What is string theory?

The theory of strong interaction

Page 6: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

Introduction

What is string theory?

The theory of strong interaction

The theory of everything

Page 7: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

Introduction

What is string theory?

The theory of strong interaction

The theory of everything

AdS/CFT: Logical completion of QFT(incl. QCD, Condensed Matter Systems...)

Page 8: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CFT

AdS/CFT correspondence

(Some) strongly coupled field theories have gravity duals [Maldacena]

Conformal group SO(d , 2) ↔ AdSd+1

(Poincare Mµν ,Pµ, Dilatation D, SCG Kµ)

Poincare coordinates are

ds2 = ρ2ηµνdxµdxν +dρ2

ρ2

Dilatation is D : xµ 7→ λxµ, ρ 7→ ρ/λ

Dictionary: [Gubser, Klebanov, Polyakov] [Witten]

〈eR

φ0O〉 = ZAdS [φ0] ∼ e−S[φ0]

Boundary conditions ↔ statesVariation of boundary conditions ↔ correlation functions

Page 9: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CFT

Radial coordinate ↔ energy scale (‘holographic renormalization’)

A realisation of holographic principle

Canonical example:AdS5 × S5 in Type II B string theory ↔ N = 4 SYM in 4 dimSO(4, 2)conf × SO(6)R : isometries of the spacetime

Page 10: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CFT

λ = g 2YMN : ’t Hooft coupling

3 versions of AdS/CFT

weak: large λ

strong: any finite λ but N → ∞ and gs = g 2YM → 0

(exact in α′ but for small gs only)

strongest: any gs and N

(α′ and gs)

Page 11: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CMT

Condensed matter applications of AdS/CFT

Application to QCD relatively successful– why not Condensed Matter Theory?

AdS/CFT in laboratory

Strongly correlated systems near criticality in low dimensionsRich examplesGood control

A new computational tool in CMT

Beyond perturbative field theory and lattice

A new arena of string theory

Typically, non-relativistic (∆ ∼ (q − qc)νz , ξ ∼ (q − qc)

−ν)D : t 7→ λz t, x i 7→ λx i

NR AdS/CFT duality: limited technology – a new challenge

Page 12: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CMT

Examples of condensed matter systems

SuperconductivitySuperfluidityQuantum Hall systems

AdS/CFT involves large N SYM.

The AdS is realised by some other fields – CMT is assumed tobe a probe on a background geometrySupersymmetry – broken by finite T (?)Phenomenological approach – be maximally optimistic and useas a computational tool

Questions

Phase transition, solitonic excitation (brane excitations)Especially, vortices play important roles in above examplesABJM: M-theory on AdS4 × S7/Zk ⇐⇒ CFT on M2-branes

Page 13: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CMT

Superfluidity in He

4He phase diagram (left) and 3He phase diagram (right)

Source: Low Temperature Laboratory, TKK, Finland

Page 14: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CMT

Vortices in 3He superfluidity

A closer look at the low temperature 3He phase diagram (left) andtwo types of vortices in the superfluid B phase (right)

Source: Low Temperature Laboratory, TKK, Finland

Page 15: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

AdS/CMT

Our focus: vortex solutions on the CFT side.Solitonic solutions in ABJM

Abelian vortices (Jackiw-Lee-Weinberg type) and domain walls[Arai, Montonen, Sasaki 2008]

Non-abelian vortices [Kim, Kim, Kwon, Nakajima 2009] [Auzzi, Kumar 2009]

Abelian, non-relativistic vortices [Kawai, Sasaki 2009]

Page 16: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

The ABJM model

The ABJM model

The ABJM model [Aharony, Bergman, Jafferis, Maldacena (2008)]

Sbos

ABJM =

d3x(

Lbos

kin + LCS − V bos

D − V bos

F

)

,

Lbos

kin= −Tr

h

(DµZA)†(D

µZ

A) + (DµWA)

†(D

µWA)

i

,

LCS =k

4πǫµνλ

Tr

h

Aµ∂νAλ +2i

3AµAνAλ − Aµ∂ν Aλ −

2i

3AµAν Aλ

i

,

Vbos

D =4π2

k2Tr

h

˛

˛

˛

˛

ZB

Z†B

ZA− Z

AZ†B

ZB

− W†B

WBZA

+ ZAWBW

†B˛

˛

˛

˛

2

+

˛

˛

˛

˛

W†B

WBW†A

− W†A

WBW†B

− ZB

Z†B

W†A

+ W†A

Z†B

ZB

˛

˛

˛

˛

2 i

,

Vbos

F =16π2

k2Tr

h

˛

˛

˛

˛

ǫACǫBD

WBZC

WD

˛

˛

˛

˛

2

+

˛

˛

˛

˛

ǫACǫBD

ZB

WC ZD

˛

˛

˛

˛

2 i

.

Aµ, Aµ · · ·U(N)×U(N) gauge fields, and Z A, W †A (A = 1, 2, A = 3, 4)

· · · complex scalars in U(N) × U(N) bi-fundamental (N, N) rep

Page 17: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

The ABJM model

Chern-Simons-matter theory on 2+1 dimensions

2+1 dim

X1,...,X8

(Z A,W†A) → e2πik (Z A,W†A)

M-theory on AdS4 × S7/Zk

N, k → ∞, λ = Nk

fixed (’t Hooft limit): IIA on AdS4 × CP3

Page 18: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

The ABJM model

We consider:The ABJM model (Chern-Simons-matter theory)

↓ massive deformationMass-deformed ABJM

↓ non-relativistic limitNR, mass-deformed ABJM

↓ solving BPS eqnsBPS vortex solutions

Page 19: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Introduction

The ABJM model

A bigger picture:

ABJM CSm-th

��

ks +3 M-theory on AdS4 × S7/Zk

��

Massive ABJM

��

Fuzzy spheres

��

NR Massive ABJM

��

NR

��

NR BPS vortices ks +3 gravity dual of NR BPS vortices?

Page 20: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Non-relativistic mass-deformed ABJM

Relativistic mass-deformed ABJM

Relativistic mass-deformed ABJM

Before taking the NR limit we take massive deformation[Hosomichi, Lee3, Park 2008], [Gomis, Rodrıguez-Gomez, Van Raamsdonk, Verlinde 2008]

· · · introducing a scale that is necessary for the solitonic solutionsMaximally supersymmetric (N = 6) massive deformation

SO(8)R → SU(2) × SU(2) × U(1) × Z2

The scalars acquire equal masses

The change of (the bos. part of) the Lanrangian:

δL = Tr

[

− m2Z†AZ A − m2W †AWA

+ 4πmk

(

(Z AZ†A)2 − (W †AWA)2 − (Z †

AZ A)2 + (WAW †A)2

)

]

Page 21: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Non-relativistic mass-deformed ABJM

The non-relativistic limit

The non-relativistic limit

Now we consider the NR limit [Nakayama, Sakaguchi, Yoshida 2009], [Lee3 2009]

1 Write down the action with c and ~ explicitly

2 Decompose: Z A = ~√2m

(

e−i mc2 t~ z A + e i mc2t

~ z∗A)

etc.

(z A, z∗A are non-relativistic scalar fields)

Keep the particle DoF (z A,w †A) & drop the antiparticles

3 Send c , m → ∞ and look at the leading orders

The resulting (bos. part of the) Lagrangian:

LNR,bos

ABJM=

k~c

4πǫµνλ

Tr

»

Aµ∂νAλ +2i

3AµAνAλ − AµAν Aλ −

2i

3AµAν Aλ

+Tr

"

i~

2

−z†A

Dt zA

+ Dt zA· z

†A

«

−~

2

2mDi z

ADi z

†A

+i~

2

−wADtw†A

+ Dtw†A

· wA

−~

2

2mDi w

†ADi wA

+π~

2

km

(zAz†A

)2− (z

†A

zA)2− (w

†AwA)

2+ (wAw

†A)2

ff

#

.

Page 22: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Non-relativistic mass-deformed ABJM

The non-relativistic limit

The equations of motion

The scalar part: nonlinear Schrodinger equations

i~Dt zA

= −~

2

2mD

2i z

A−

2π~2

km(z

Bz†B

zA− z

Az†B

zB

),

i~Dtw†A

= −~

2

2mD

2i w

†A+

2π~2

km(w

†BwBw

†A− w

†AwBw

†B).

The gauge field part: Gauss-law constraints

The fermionic part:

i~Dtψ−A + 2mc2δ

AAψ−A

− i~cD−ψ+A = 0,

i~Dtψ+A + 2mc2δ

AAψ+A

− i~cD+ψ−A = 0.

(due to these NR Dirac eqns 1/2 of the fermionic DoF drop)

Page 23: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Non-relativistic mass-deformed ABJM

Non-relativistic SUSY

Non-relativistic SUSY

Apply the same procedure of NR limit to SUSY trfn rules→ non-relativistic SUSY (super Schrodinger symmetry)14 supercharges:

10 kinematical SUSY:(

ω+AB, ω−AB , ω±AB

)

2 dynamical SUSY:(

ω−AB, ω+AB

)

2 conformal SUSY:(

ξAB, ξAB

)

SUSY parameters defined by

ωAB = ǫi ΓiAB (i = 1, 2, ..., 6), ω = 1√

2

ω− + ω+−iω− + iω+

«

, ωAB± = (ω±AB )† = 1

2ǫABCD ω±CD

Conformal SUSY ∼ Special conformal charge × Dynamical SUSY,S = i [K ,QD ]

Page 24: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

The BPS equations

The BPS equations

The Hamiltonian density (Noether charge of the time translation)

H = Tr

"

~2

2m|Di z

A|2

+~

2

2m|Di w

†A|2−π~

2

km

(zAz†A

)2− (z

†A

zA)2− (w

†AwA)

2+ (wAw

†A)2

ff

#

.

Using D± ≡ D1 ± iD2 and Bogomol’nyi completion =⇒ BPS bound:

E =

d2x H =

d2x Tr

[

~2

2m

∣D−z A

2

+~2

2m

∣D+w †A

2]

≥ 0

saturated by BPS equations

D−z A = 0, D+w †A = 0,

Recall: z A and w †A are matrix-valued (N × N)

Page 25: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

The BPS equations

The fuzzy 3-sphere ansatz [Gomis, Rodrıguez-Gomez, Van Raamsdonk, Verlinde 2008]

z A(x) = ψz(x)S I ,w †A(x) = ψw (x)S I ,Ai (x) = ai (x)S IS†I , Ai (x) = ai (x)S†

I S I .

Here, ψz , ψw , ai ∈ C, (S†1 )mn =

√m − 1δmn, (S†

2 )mn =√

N − mδm+1,n

SI

= SJS†J

SI− S

IS†J

SJ,

S†I

= S†I

SJS†J

− S†J

SJS†I,

Tr SIS†I

= Tr S†I

SI

= N(N − 1).

Then the BPS eqns =⇒ the Jackiw-Pi vortex eqns [Jackiw and Pi 1990]

(D1 − iD2)ψz(x) = 0, (D1 + iD2)ψw (x) = 0 (Di ≡ ∂i + iai)

J-P eqns allow exact solutions

Page 26: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

The exact vortex solutions

The exact vortex solutions

Finding solutions:Set w †A = 0 & solve for z A, Ai and Ai (BPS I), orset z A = 0 & solve for w †A, Ai and Ai (BPS II)

The radius of the fuzzy S3 (in the case of BPS I):

R2 =2

NTM2Tr

[

Z AZ†A

]

=N − 1

TM2

|ψz |2m

,

TM2: the tension of an M2-brane

Page 27: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

The exact vortex solutions

The BPS I solutions

1 Changing the variables ψz(x) = e iθ(x)ρ12 (x), (θ, ρ ∈ R),

the BPS eqns become

ai (x) = −∂iθ +1

2ǫij∂

j ln ρ.

2 Using the Gauss law constraint=⇒ Liouville equation ∇2 lnρ = −4π

kρ,

solved by

ρ(x) =k

2π∇2 ln

(

1 + |f (z)|2)

(f (z): a holomorphic function of z = x1 + ix2)

3 θ is fixed by regularity of ψz at z = 0

Page 28: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Examples

Examples

Examples of BPS I solutionsChoose a profile: f (z) =

(

z0

z

)n, n ∈ Z, z0: a complex const; yielding

ρ(x) =k

4n2

r20

rr0

”2(n−1)

»

1 +“

rr0

”2n–2, θ = −(n − 1) arg z = −(n − 1) arctan(x2/x1)

These are non-topological vortices since |ψz | → 0 as |z | → ∞

-2

-1

0

1

2

x1-2

-1

0

1

2

x2

00.20.40.60.8Ρ

-2

-1

0

1

2

x1

-2

-1

0

1

2

x1-2

-1

0

1

2

x2

00.20.40.60.8Ρ

-2

-1

0

1

2

x1

-2

0

2x1

-2

-1

0

1

2

x2

0

0.5

-2

0

2x1

Figure: |ψz |2 shown for f (z) = 1z, 1

z2 and 1z(z−1) , with k = 1

Page 29: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Examples

Examples of BPS II solutions

Setting z A = 0 we find similar solutions for w †A:

ψw (x) = e iθ(x)ρ12 (x),

ρ(x) = − k

2π∇2 ln

(

1 + |f (z)|2)

,

θ = (n − 1) arctan(x2/x1).

Page 30: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Preserved supersymmetry

Preserved supersymmetry

Check the SUSY trfns against the BPS eqns (in the BPS-I case)

w †A = 0, D−z A = 0.

The fermion transformation rules:

δKψ+A= −ω

+ABzB, δKψ−A

= +ω−ABzB,

δDψ+A=

i

2mω−AB

D+zB, δDψ−A = 0,

δSψ+A∼ ξ

ABzB, δSψ−A

∼ 0.

Hence δψ = 0 =⇒ ω+AB = ω−AB = ω−AB = ξAB

= 0

This means that the BPS-I solutions break 5 kinematical, 1dynamical and 1 conformal SUSYs (i.e. exactly 1/2).

Page 31: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Preserved supersymmetry

The BPS II case is similar.Summarising the results,

Type of Kinematical Dynamical ConformalSUSY ω+AB ω+AB ω−AB ω−AB ω−AB ω+AB ξ

ABξAB

BPS I © × © × × © × ©BPS II × © × © © × © ×

Table: ©: preserved, ×: broken

Page 32: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Preserved supersymmetry

Summary of our solutions

We find exact solutions of abelian vortices by solving BPSequations in the non-relativistic ABJM model: Jackiw-Picombined with fuzzy 3-sphere

These solutions preserve half of the super Schrodingersymmetry

Any relevance in real physics?– more realistic, parity broken models with external fieldsdesirable.

Page 33: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

BPS vortex solutions

Preserved supersymmetry

Vortex solutions in AdS

Vortex line

Pure AdS [Dehghani Ghezelbash Mann, 2001]

AdS-Sch [Dehghani Ghezelbash Mann, 2001]

with boundary magnetic field

[Albash Johnson 2009]

[Montull Pomarol Silva 2009]

[Maeda Natuume Okamura 2009]

with vanishing magnetic field on the boundary[Keranen Keski-Vakkuri Nowling Yogendran 2009]

Page 34: Vortex solutions on membranes · Introduction AdS/CFT AdS/CFT correspondence (Some) strongly coupled field theories have gravity duals [Maldacena] Conformal group SO(d,2) ↔ AdS

Vortex solutions on membranes

Summary and comments

Unsorted list of problems

Non-relativistic AdS/CFT exists at all?

In 2 + 1 dim, spontaneous breaking of continuous symmetry isnot possible at finite temperature (Mermin-Wagner).However, such a phase transition is found in holographicsuperconductor. How do we interpret? Large N artefact?

Berezinskii-Kosterlitz-Thouless transition in AdS?


Recommended