VSC Design via Sliding ModesHarry G. Kwatny
Department of Mechanical Engineering & MechanicsDrexel University
Outline VS systems, sliding modes, reaching Example: undersea vehicle Design based on normal form
VSC Design via Sliding Modes: Setup( , )
, , smoothn m
x f x ux R u R f
=
∈ ∈
discontinuous across switching surface ( ) 0
( ), ( ) 0( ) , 1, ,
( ), ( ) 0
( ), ( ), smooth
i i
i ii
i i
i i
u s x
u x s xu x i m
u x s x
u x u x
+
−
+ −
=
>= =
<
System:
Control:
VSC Design via Sliding Modes: Strategy( )
( )
( )
1. Choose switching surfaces, , so that sliding mode has desired dynamics.2. Choose control functions, , so that sliding mode is reached in finite time.Approach:1. How does choice of
i
i
i
s x
u x
s x
±
( )
affect sliding behavior? equivalent control method2. How can we choose to insure finite time reaching? Lyapunov method
iu x±
⇒
⇒
Equivalent Control ~ 1( ) ( ) ( )
( ) ( )( ){ }
, 0, , ,
, 0
Suppose 0 contains a sliding domain.
We can obtain the dynamics in by identifying the .equivalent control
i ii
i i
ns
s
u t x s xx f t x u u
u t x s x
M x R s x
M
+
−
>= = <
= ∈ =
Equivalent Control ~ 2( )
( ) ( )
( ) ( )n
I
t
f
r
the
l
re exists a control , such that
, , and 0, then is referredto as the and denoted
, , 0
if a solution exists for , then
equivalent
0
c
on 0,and
, ,
o o eq
eq
eq
eq
u t x
x f t x u s x uu
ss x f t x ux
u s s
x f t x u
= =
∂= ≡
∂= ≡
=
( )( ) dynamics in sliding,t x ⇐
Equivalent Control – Special Cases
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( )( )
( )
1
1
1
1
0
det 0
,
(assuming det 0)
eq
eq
eq
x f x G x u
s x S x f x S x G x u
SG u S x G x S x f x
x I G x S x G x S x f x
x Ax Bu s x Cx
u CB CAx CB
x I B CB C Ax
−
−
−
−
= +
= + ≡
≠ ⇒ = − = −
= + =
= ≠
= −
Systems 'linear in control'
Linear Systems
Reaching
( ) ( ) ( ) ( )
( ) ( ) ( )
( )( ) ( )
2
Choose
2 ,
Suppose 2 , ( ) on where is an open set containing
is a sliding domain and it is reached in finite time from any initial point in .
T
T
Ts
s s
s
V x s x s x s x
sV x s x f x ux
s x s x f x u s x D MD D M
DD
ρ
= = ⇒
∂=
∂∂ ∂ < − −
⊂ ⇒
Linear Example ~ Reaching( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )( ) ( )
( )( ) ( ) ( )
( )
2
, ,
2 ( ) 2
We can only affect the second term. Choose,sgn , 0
2 ( ) sgn
p
This insures b
rovid
that is a g
,
/
lo
ed
x f x u Ax bu s x cx
V s x V s x cAx s x cbu
u k x s x cb k x x
V s x cAx cbk x s x cb s x
cbk x c
b
s x
Ax x
k x cAx c
ρ
ρ
ρ
= = + =
= ⇒ = +
= − > ∀
= − ≤ − − ≥ ∀
= +
.al sliding domain
Linear SISO Example ~ 1( )
( )
( )
[ ]
( )
1
1
1 1
, 0 0
: 0
Define a matrix whose columns span ker , i.e.,, 0
Notice that ker and Im ker . Define a state transformation
, ,
eq eq
n i
s x cx s s
cx cAx cbu u cb cAx
x I b cb c Ax
V cV v v cv
b c X b c
x w z x Vw bz
−
−
−
= ≡ ⇒ ≡
= + = ⇒ = −
= −
= =
∉ = ⊕
= +
( ) ( )
1
1
,nw R z R
Vw bz I b cb c A Vw bz
−
−
∈ ∈
+ = − +
Sliding dynamics
Linear SISO Example ~ 2
[ ] ( ) [ ]
[ ] ( )
( ) [ ] [ ]
1
1 11
1
00 1
0
0 0
n
w wV b I b cb c A V b
z z
U UV Ub IV b d cb c
d dV db
w U w U wI b cb c A V b A V b
z d z z
w UAV UAb wz z
−
− −−
−
= −
= ⇒ = ⇒ =
= − =
=
[ ]sliding: 0z
w UAV w→
=
( ) 1 0
note:
I b cbd c− − =
Designing the Sliding Surface
( ) ( )( )
( )( ) ( )
0
1 1 1 2
2 1 1 2 2 1 2
1 2 2 0
Consider the system
rank around
satisfies controllability rank conditionTransform to :
,
, ,
, ,det 0 around n m m
x f x G x u
G x mx
x f x x
x f x x G x x u
x R x R G x−
= +
=
=
= +
∈ ∈ ≠
regular form
( )( )( )
( ) ( )
2 0 1
1 1 1 0 1
1 2 0 1 2
Strategy:1) choose so that
,
has desired behavior,2) choose to enforce sliding on
,
x s x
x f x s x
us x x s x x
= −
= −
= +
Design dlidingdynamics
Reaching
Example: Linear SISO Design ~ 1( )
12 2
2
11 111 1 2
122
11 12 1
21 22
, rank 1, , controllablereorder states to obtain
, with , det 0
transform to :
, ,00
0t
1
regular form
nn
n
x Ax bu b A b
bb b R b
b
I bI b bz Tx T T
bb
A Az z u
A A
−−−−
−
−
= + =
= ∈ ≠
− − = = =
= +
( )11 12he pair , is controllableA A
Example: Linear SISO Design ~ 2
( )
( )
( ) ( ) ( ) ( )
( )
12 1 1 11 12 1 1 2
1 2
2
To shape , choose, ,
Choose by any means, pole placement, LQG
i
, etc.Now, To d
sliding dynamics
reach ng contresign the take1 ,
ol1 0
2 2
n
T TQ
T
z Kz z A A K z z R z RK
s z Kz zu
V z s z s z Q s z Q Q
V z s
−= ⇒ = + ∈ ∈
= − +
= = = >
=
[ ] [ ]( ) ( ) ( )
( ) [ ] [ ]
* *
- 1 - 1
sgn , ,
- -
TT T
i i i
TTm m
Q s z K Q K Az s Qu
u z s s z Qs z
z z K I Q K I Az
κ
κ
= +
= − =
>
Example: Linear MIMO Design ~ 1( )
12 2
2
1111 2
122
11 12
21 22
, rank , , controllablereorder states to obtain
, with , det 0
transform to :
, ,00
0t
regular form
m m
n mn m
x Ax Bu B m A B
BB B R B
B
I BI B Bz Tx T T
BB
A Az z u
A A I
×
−−−−
−
= + =
= ∈ ≠
− − = = =
= +
( )11 12he pair , is controllableA A
Example: Linear MIMO Design ~ 2
( )
( )
( ) ( ) ( ) ( )
( ) [ ] [ ]
2 1 1 11 12 1
1 2
2
To shape ,
Choose by any means, pole placement, LQG, etc.Now,
sliding dynamic
d
s
reaching contTo esign the take1 1 , 02 2
- -
rol
T TQ
TT Tm m
z Kz z A A K zK
s z Kz zu
V z s z s z Q s z Q Q
V z s Q s z K I Q K I A
= ⇒ = +
= − +
= = = >
= =
( ) ( ) ( )( ) [ ] [ ]
* *sgn , ,
- -
T
i i i
TTm m
z s Qu
u z s s z Qs z
z z K I Q K I Az
κ
κ
+
= − =
>
Example: Underwater Vehicle[ ]
( )
[ ]
2
, , uncertain, ,
1
1. Choose a sliding surface: .Why? Because 0 ( stabilizes first eq)
2. Choose reaching control based on , ,
2 1
T
mx cx x u m c u U Ux v
cv v v um m
s v xs x x v x
V x v s s s
vV s c v v
m
λλ λ
λ
+ = ∈ −
=
= − +
= +≡ ⇒ = − = −
= =
=−
0120
U ss u u
U sm− > + ⇒ = <
Control Based on Normal Form
( , , )[ ( , ) ( , ) ]
F z uz Az E z z uy Cz
ξ ξα ξ ρ ξ
== + +=
( ) ( ) ( )Choose such that 0 0
( ) ( ) 0( )
( ) ( ) 0i i
ii i
s x s x Kz x
u x s xu x
u x s x
+
−
= ⇔ =
>=
<
Recall Brunovsky structure of A,E
( ) ( )( )
x f x G x uy h x
= +=ρ−1( )x
α ( )x
Kz x( )
-x
yuv
Sliding Dynamics
( )
( ) ( ) ( ) ( )
[ ] ( )
1 1
0
( ) 0 ( ) 0
( ) 0
, 0
eq
eq
s x Kz x
Kz KAz KE x x u
u x KAz x x x
z I EK Az Kz t
α ρ
ρ ρ α− −
= ⇔ =
⇓
= + + = ⇓
= − −
⇓
= − =
KE I=Note : same as feedback linearizing
control
Sliding Dynamics
Choosing K1
1
,1 , 1
0 0
, 1
0 0
r
i
rm
i i i r
m
k
K k a a
k
←→
−
←→
= =
,1 ,2 , 1
0 1 0, 1, ,
are 0 and are0 0 1
ii i i r
i mm r m
a a a
λ
−
= − − − −
One choice:
Eigenvalues of (A+EK) are:Sliding eigenvalues
ReachingConsider the positive definite quadratic form in s
QssxV T=)(
Upon differentiation we obtain
[ ] QKzuQKzKAzQssVdtd TTTT ρα 222 ++==
If the controls are bounded, 0>≤ iiUu ( 0 0> ≤ ≤ >U u Ui i imin, max, ) then choose
uU s xU s xi
i i
i i
=><
RSTmin,
*
max,*
a fa f
00
, mi ,,1= , )()()(* xQKzxxs Tρ=
VSC Summary